
1. Introduction
The Southern Ocean (SO) plays a critical role in ventilating the global oceans and regulating the earth's climate 
through the uptake and storage of atmospheric CO2 on centennial-millennium timescale (Rae et al., 2018), being 
responsible for ∼40% of the global oceanic uptake of anthropogenic CO2 (Cant) (Gruber et al., 2019; Khatiwala 
et al., 2009). The ongoing absorption of Cant is ensured by the unique ocean circulation in this region, where Cant 
is mainly transported and subducted by the Antarctic Intermediate Water (AAIW), Sub-Antarctic Mode Water 
(SAMW), and Antarctic bottom water (AABW) (Ito et al., 2010). Major efforts to assess the carbon balance of the 
Southern Ocean have focused on quantifying the air-sea CO2 flux and the Cant inventory in the upper cell of the 
Meridional Overturning Circulation (Bopp et al., 2015; DeVries et al., 2017; Ito et al., 2010; Sallée et al., 2012), 

Abstract Flow of dense shelf water provide an efficient mechanism for pumping CO2 to the deep 
ocean along the continental shelf slope, particularly around the Antarctic bottom water (AABW) formation 
areas where much of the global bottom water is formed. However, the contribution of the formation of 
AABW to sequestering anthropogenic carbon (Cant) and its consequences remain unclear. Here, we show 
prominent transport of Cant (25.0 ± 4.7 Tg C yr −1) into the deep ocean (>2,000 m) in four AABW formation 
regions around Antarctica based on an integrated observational data set (1974–2018). This maintains a 
lower Cant in the upper waters than that of other open oceans to sustain a stronger CO2 uptake capacity 
(16.9 ± 3.8 Tg C yr −1). Nevertheless, the accumulation of Cant can further trigger acidification of AABW at 
a rate of −0.0006 ± 0.0001 pH unit yr −1. Our findings elucidate the prominent role of AABW in controlling 
the Southern Ocean carbon uptake and storage to mitigate climate change, whereas its side effects (e.g., 
acidification) could also spread to other ocean basins via the global ocean conveyor belt.

Plain Language Summary The Southern Ocean is thought to uptake and store a large amount of 
anthropogenic CO2 (Cant), but little attention has been paid to the Antarctic coastal regions in the south of 60°S, 
mainly due to the lack of observations. Based on an integrated data set, we discovered the deep penetration 
of Cant and a visible pattern of relatively high concentration of Cant along the AABW formation pathway, and 
the concentration of Cant along the shelf-slope is higher than that of other marginal seas at low-mid latitudes, 
implying a highly effective Cant transport in AABW formation areas. We also found strong upper-layer CO2 
uptake and a significant acidification rate in the deep waters of the Southern Ocean due to the AABW-driven 
CO2 transport, which is 3 times faster than those in other deep oceans. It is therefore crucial to understand how 
the Antarctic shelf regions affect the global carbon cycle through the uptake and transport of anthropogenic 
CO2, which also drives acidification in the other ocean basins.
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25.0 ± 4.7 Tg C yr −1, sustaining the 
CO2 uptake in the surface ocean

•  This further triggers acidification 
of AABW at a rate of 
−0.0006 ± 0.0001 pH unit yr −1, which 
is faster than in other deep oceans
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whereas less is paid on the Antarctic coastal regions affected by the lower cell of overturning circulation because 
previous studies based on carbon inventory suggested that these regions are characterized by a negligible carbon 
sink due to the influence of upwelling of CO2-rich deep waters and seasonal sea-ice formation that physically 
blocked the air-sea CO2 exchange (Gruber et al., 2019; Poisson & Chen, 1987; Sabine et al., 2004).

Some evidence to the contrary showed that the upwelling of Circumpolar Deep Water (CDW), characterized 
by depleted Cant, is preferential for the uptake of anthropogenic CO2 (DeVries, 2014; DeVries et al., 2017), and 
sea-ice blockage could enhance CO2 uptake by suppressing winter CO2 outgassing (Du et al., 2022; Shadwick 
et al., 2021). Modeling studies demonstrated that Cant inventories in the ocean interior were not always appro-
priate for assessing the local carbon uptake capacity, as the apparent asymmetry between them was attributed 
to the rapid northward transport of Cant into the sub-Antarctic zone (DeVries, 2014; Sarmiento et  al.,  1992). 
The ability of the Antarctic deep-water formation regions to regulate the air-sea CO2 balance and to act as a 
carbon sink was partially confirmed (Arrigo et al., 2008; Bourgeois et al., 2016; Marinov et al., 2006; Nissen 
et  al.,  2022). However, ocean models are difficult to correctly simulate all the processes involved in AABW 
formation above the continental shelves (de Lavergne et al., 2014; Heuzé, 2021), which is associated with sea-ice 
formation, surface cooling, and mixing with ambient water as it cascades down the continental slope (Foster & 
Carmack, 1976). A few recent studies (Gao et al., 2022; Mahieu et al., 2020; Ríos et al., 2012) imply that AABW 
has a high Cant concentration and might even influence the Cant of adjacent deep oceans (e.g., South Atlantic) by 
advection. Therefore, the contribution of the AABW formation to the transport of Cant from the Antarctic shelf 
into the deep Southern Ocean and the consequences of this transport need to be clarified.

Here we use data from a combination of the Global Ocean Data Analysis Project (Lauvset et al., 2022) version 
2022 (GLODAPv2.2022) and the Chinese Antarctic Research Expedition (CHINARE) to report the distribution 
of Cant in the Antarctic coastal regions (particularly the AABW formation regions Weddell Sea, Ross Sea, Prydz 
Bay, and Adélie Land) based on three different approaches. The phenomenon is presented in a climatological way 
(average over a period 1974–2018) by integrating all the available data. We propose an AABW-formation-driven 
mechanism to explain the prominent downward transport of Cant and its link with CO2 uptake in the surface ocean. 
We further diagnose and evaluate the consequences of carbon export to and accumulation in the abyssal Southern 
Ocean, which leads to long-term acidification in the deep waters.

2. Methods
2.1. Study Area and Data

Antarctic shelves are typically categorized into non-cold and cold depending on the relative environmental condi-
tions and their efficiency for deep transport (Petty et al., 2013). The non-cold shelf region is flooded by warm 
Circumpolar Deep Water (CDW) and is unfavorable for bottom water formation (Lee et al., 2017), whereas the 
cold shelf region is characterized by cooler seafloor temperatures and is therefore conducive to bottom water 
formation, including four major AABW formation sites (Solodoch et al., 2022).

Water samples throughout the water column were collected using Niskin bottles along six transects from Prydz 
Bay aboard the R/V XueLong during the 31st Chinese National Antarctic Research Expedition (CHINARE 31, 
Figure S1a in Supporting Information S1; Liu et al., 2023) from 05 February to 02 March 2015. Hydrographic 
data were measured with an SBE-911plus conductivity-temperature-depth (CTD) unit (Sea-Bird, USA), which 
measured practical salinity (±0.002), temperature (±0.001°C), and pressure (0.015% of full scale). Measure-
ments and quality control of carbonate chemistry parameters are described in Text S1 and Figure S2 in Support-
ing Information S1 and follow the “Guide to Best Practices for Ocean CO2 Measurements” (Dickson et al., 2007) 
with respect to marine carbonate systems.

Other DIC and TA data in the four Antarctic cold shelves in Figure S1b of the Supporting Information S1 were 
downloaded from the GLODAPv2.2022 data set (Lauvset et  al.,  2022). Cruises are listed in Table S1 of the 
Supporting Information S1 and the synthetic data set shown in Figure S1 of the Supporting Information S1 was 
used in this study.

In situ pH and other related parameters were calculated from DIC, TA, temperature, salinity and nutrients (phos-
phate and silicate) using the Matlab version of CO2SYS v1.1 (S. Van Heuven et al., 2011). In order to make full 
use of DIC and TA data (because some of them are not accompanied with phosphate and silicate concentrations), 
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we used the mean values of phosphate and silicate concentrations (from GLODAPv2.2022 and CHINARE31 data 
sets) for the missing nutrient values in AABW in each region. Carbonate dissociation constants were taken from 
Lueker et al. (2000), Ksp from Mucci (1983), Kso4 from Dickson (1990) and total boron from Lee et al. (2010).

2.2. Anthropogenic CO2 Calculation

Based on the integrated data (Figure S1 in Supporting Information S1), we estimated and compared Cant through-
out the water column using three different approaches; the TrOCA approach, the ∆C* approach and the TTD 
approach (Gruber et al., 1996; Touratier & Goyet, 2004a; Waugh et al., 2006). We also evaluated air-sea fluxes in 
the Antarctic coastal seas (Text S2 in Supporting Information S1).

2.2.1. TrOCA Approach

The TrOCA (Tracer combining O2, TCO2, TA) method was originally proposed by Touratier (Touratier & 
Goyet,  2004a,  2004b) to calculate anthropogenic CO2 concentrations. The conservative tracer TrOCA was 
defined as in Equation 1 (Touratier et al., 2007). The pre-industrial TrOCA and TrOCA 0 values derived from 
∆ 14C and CFC-11 were combined and fitted with the following exponential function ( Equation 2 based on the 
GLODAP world ocean database (http://cdiac.ornl.gov/oceans/glodap/Glodaphome.htm). The anthropogenic CO2 
concentration (Cant_TrOCA) in Figures 1a–1d was then estimated using Equation 3. This has been applied previously 
in the Antarctic regions (Sandrini et al., 2007; Shadwick et al., 2014; S. M. A. C. van Heuven et al., 2011). It is 
noteworthy that the TrOCA method, as well as the other back calculation methods, remains subject to large uncer-
tainties when it was applied in the upper mixed layer (e.g., 150 m; Gruber et al., 2019), where biological processes 
and air-sea CO2 fluxes modify the carbon content of the upper ocean on a short time scale.

TrOCA = 𝑂𝑂2 + 𝑎𝑎

(

DIC −
1

2
TA

)

 (1)

TrOCA
0
= 𝑒𝑒

(

7.511−(1.087×10−2)𝜃𝜃−
7.81×10

5

TA2

)

 (2)

Figure 1. Vertical distributions of Cant in Adélie Land, Weddell Sea, Ross Sea, and Prydz Bay using the TrOCA, ∆C*, and TTD approaches. Four cold shelves are 
defined as Adélie Land (60°–90°S, 140°–150°E), Weddell Sea (60°–90°S, 0°–60°W), Ross Sea (60°–90°S, 150°–180°E, 160°–180°W) and Prydz Bay (60°–90°S, 
60°–85°E). The red solid lines in (n) indicate the sections in (a)–(l). The vertical distribution of TrOCA-based Cant in four cold shelves is shown in (m). Water masses 
are defined by the neutral density (γn) in (e), combined with depth, temperature, and salinity in Table S3 of the Supporting Information S1. The Weddell Sea and Ross 
Sea have wide continental shelves, the Prydz Bay and Adélie Land have the narrow continental shelves in (n). Figures were made with Ocean Data View version 5.6.2 
(Schlitzer, 2023).
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𝐶𝐶ant_TrOCA =
TrOCA − TrOCA0

𝑎𝑎
=

𝑂𝑂2 + 1.279

(

DIC −
1

2
TA

)

− 𝑒𝑒

(

7.511−(1.087×10−2)𝜃𝜃−
7.81×10

5

TA2

)

1.279

 (3)

where θ is potential temperature, °C; O2 is dissolved oxygen, μmol  kg −1; DIC is total inorganic carbon, 
μmol  kg −1; TA is total alkalinity, μmol  kg −1; Cant_TrOCA is anthropogenic CO2 concentration estimated from 
TrOCA, μmol kg −1.

2.2.2. ∆C* Approach

The quasi-conservative tracer, ∆C*, was defined as the difference between the measured DIC (Cm) and the 
pre-industrial preformed DIC in equilibrium with the atmosphere (C280) in Equation  4. The biological term 
(∆Cbio) included organic remineralization, dissolution of calcium carbonate particles and denitrification. The 
organic component could be estimated from the changes in AOU together with the stoichiometric ratios (C/
O2 = 117/170, N/O2 = 16/170) (Anderson & Sarmiento, 1994). The oxygen utilization should be corrected on 
the basis of the Optimum Multiparameter (OMP) analysis (Text S3 in Supporting Information S1) due to the real 
unsaturated state of oxygen in polar regions (Lo Monaco, Goyet, et al., 2005; Lo Monaco, Metzl, et al., 2005). The 
latter components could be obtained from the difference between the measured TA and a preformed TA (TA 0) and 
a denitrification correction to the biological with a denitrification ratio of 106/104 (Gruber & Sarmiento, 1997), 
as in Equation 5. The TA 0 values (Equation 6) were based on a multiple linear regression fit of surface TA values 
from different cruises in the Pan-Antarctic region (around the Antarctic seas; Figure S3 in Supporting Informa-
tion S1). The air-sea disequilibrium component (∆Cdiseq) could be distinguished from the anthropogenic signal 
using either water age information (from CFC-12) or the distribution of ∆C* in regions that was not affected by 
the anthropogenic transient (Sabine et al., 2004) (as in Equation 7). For given isopycnal surfaces, we assumed 
that the Cant was zero over some portion of an isopycnal surface, the ∆Cdiseq was set equal to the average of the 
∆C* values for that portion of the surface (Sabine et al., 2004). We used an OMP analysis to evaluate the relative 
contributions of the different water sources (Figure S4 in Supporting Information S1) on individual isopycnal 
surfaces to obtain the net air-sea disequilibrium values (Table S2 in Supporting Information S1). This method has 
been applied to the global oceans (Gruber, 1998; Sabine et al., 2002, 2004).

Δ𝐶𝐶
∗
= 𝐶𝐶𝑚𝑚 − Δ𝐶𝐶bio − 𝐶𝐶280 (4)

Δ𝐶𝐶
∗
= 𝐶𝐶𝑚𝑚 − 𝐶𝐶280 + 117∕170(𝑂𝑂 − 𝑂𝑂sat) − 1∕2

(

TA − TA
0
− 16∕170(𝑂𝑂 − 𝑂𝑂sat)

)

+ 106∕104𝑁𝑁
∗
anom (5)

TA
0
= 20.2208 + 69.1934 ∗ 𝑆𝑆 − 0.1123 ∗ PO − 2.9645 ∗ 𝜃𝜃 (6)

𝐶𝐶ant_star = 𝐶𝐶𝑚𝑚 − Δ𝐶𝐶bio − 𝐶𝐶280 − Δ𝐶𝐶diseq = Δ𝐶𝐶
∗
− Δ𝐶𝐶diseq (7)

where Cant_star denotes to anthropogenic carbon concentration, Cm denotes to measured DIC concentration in 
μmol kg −1, ∆Cbio denotes to DIC (μmol kg −1) changes due to remineralization of organic matter and dissolution 
of calcium carbonate particles, C280 denotes to DIC (μmol kg −1) of waters in equilibrium with an atmospheric 
CO2 concentration of 280 μatm, PO is a quasi-conservative tracer introduced by Broecker (1974). N*anom is the 
N* anomaly from the mean as the denitrification correction.

2.2.3. Transit Time Distribution (TTD) Approach

The application of the TTD method to Cant concentration estimation was described by Waugh et al. (2004). It was 
based on several assumptions: (a) the circulation was in a steady-state, (b) a single surface source region dominated 
the Cant at each interior location, (c) the TTD of the ocean could be approximated by a 1-D advection-diffusion 
equation, known as the “inverse Gaussian,” and (d) the disequilibrium of carbon between the atmosphere and the 
surface ocean was constant with time (Waugh et al., 2004, 2006). Cant, at any point in the interior of the ocean, was 
related to the history of surface Cant and the range of times it took to reach its sequestration location (Equations 8 
and 9). Thus, assuming that Cant behaves as an inert passive tracer (Waugh et al., 2006), Cant could be estimated 
using the IG-TTD model (Equation 10) (Waugh et al., 2004).

𝑐𝑐(𝑟𝑟𝑟 𝑟𝑟) =

∞

∫
0

𝑐𝑐0

(

𝑟𝑟 − 𝑟𝑟
′
)

𝐺𝐺
(

𝑟𝑟𝑟 𝑟𝑟
′
)

𝑑𝑑𝑟𝑟
′ (8)
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𝐺𝐺(𝑡𝑡) =

√

Γ3

4𝜋𝜋Δ2𝑡𝑡3
exp

(

−Γ(𝑡𝑡 − Γ)
2

4Δ2𝑡𝑡

)

 (9)

where the concentration of a passive tracer at a location, r, and time, t, c(r,t), 
is related to the surface water history c0(t). G(r, t) is the TTD of the tracer. 
The input function of the tracers, c0(t), is determined using the atmospheric 
history of the tracers and their salinity and temperature dependent solubility. 
Γ is the mean age and ∆ is the width of the TTD (Waugh et al., 2004). The 
considered transit time distribution assumes that advection (0) and mixing 
(1) processes are globally of the same order of magnitude (∆/Γ = 1). The 
surface saturation of CFC-12 here was assumed to be 80% (Shao et al., 2013).

𝐶𝐶ant_ttd(𝑡𝑡) =

∞

∫
0

𝐶𝐶ant,0

(

𝑡𝑡 − 𝑡𝑡
′
)

𝐺𝐺
(

𝑡𝑡
′
)

𝑑𝑑𝑡𝑡
′ (10)

where Cant,0(t − t′) is the surface time history of Cant and G(t) is the TTD, as 
determined from CFC-12. The surface time history of Cant is estimated as the 
difference between modern and pre-industrial DIC concentrations, that is, 
Cant,0(t) = Ceq(T, S, TA 0, pCO2(t)) − Ceq(T, S, TA 0, pCO2 = 280 ppm), where Ceq 
is the DIC, T is temperature, S is salinity, TA 0 is the preformed alkalinity and 
pCO2(t) is the partial pressure of atmospheric CO2 at time t (Waugh et al., 2006).

2.3. Calculation of Carbon Export Flux

To obtain a conservative estimate of Cant and DIC export from the shelf region 
(e.g., Prydz Bay), we assumed that Dense Shelf Water (DSW) derived from 
the shelf region (Prydz Bay and Cape Darnley) contributed to about 6%–13% 
(0.52 ± 0.26 Sv) of the AABW flux (Ohshima et al., 2013). The downward trans-
port of Cant is associated with the formation of DSW, the subsequent offshore 
outflow, and the intrusion of the modified upwelling deep waters (mCDW) 
(Shadwick et al., 2014). Therefore, the gross export flux was calculated based on 
the mean Cant value of the offshore export flux along the layer characterized by 
neutral density (γn) > 28.27 kg m 3 and θ < −1.85°C (Equation 11); the net Cant 
export flux was calculated based on the difference in mean Cant values between 
the descending and upwelling water masses (Equation 12, Table S3 in Support-
ing Information S1). For other DSW ventilation rates we used 3.40 ± 0.60 Sv 
in the Weddell Sea (Akhoudas et al., 2021), 0.98 ± 0.93 Sv in the Ross Sea 
(Whitworth III & Orsi, 2006), 0.30 ± 0.28 Sv in the Adélie and George V Land 
coasts (Williams et al., 2010). The total ventilation rate is 5.20 ± 0.32 Sv for 
the four cold shelves, and 5.40 ± 1.70 Sv for the entire Pan-Antarctic region 
(Orsi et al., 2002). We took the average value of Cant concentrations (Table 1) 
for different water masses during 1974–2018 to present a mean state (similar to 
climatological state) flux of the period. The uncertainty for export flux is given 
in Text S4 of the Supporting Information S1.

Δ𝐶𝐶
gross−export

ant = 𝐶𝐶DSW_ant ∗ 𝑉𝑉
DSW

∗ Δ𝑡𝑡 ∗ 𝜌𝜌
DSW

∗ 𝑚𝑚𝑐𝑐 (11)

Δ�net−export
ant = �DSW_ant ∗ � DSW ∗ Δ� ∗ �DSW ∗ ��

−�mCDW_ant ∗ � mCDW ∗ Δ� ∗ �mCDW ∗ �� (12)

where Cant flux is in a unit of Tg C year −1, V DSW is the annual DSW ventila-
tion rate (Sv; 10 6 m 3 s −1), ∆t is the time period, ρ DSW is the mean density of 
DSW, and mc is the molar mass of carbon (g C mol −1).
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2.4. Quantification of Long-Term AABW pH Trends

pH deseasonalization: To avoid the seasonal biases in pH, which can be large in the polar ocean (Qi et al., 2022), 
we adopted a deseasonalization calculation as suggested by Takahashi et al. (2009). The difference between a 
monthly mean and the annual mean represents the correction to be applied to deseasonalize the monthly mean. 
Assuming that the seasonal variability and hence the deseasonalization corrections remain unchanged over time 
(Takahashi et al., 2009), we obtained the deseasonalized pH and its interannual rate of change.

Pressure normalization: pH observations were spatially unevenly distributed sampled, which could lead to a bias 
due to the over-weighted influence of high-dense data points concentrated in a particular area of the pressure 
layer. It might also affect our judgment of the long-term trend of pH in the AABW (Figure S5 in Supporting 
Information S1), according to the definition of AABW water masses (γn > 28.27 kg m −3, depth > 2,000 m in 
Table S3 of the Supporting Information S1) in this study. Therefore, we normalized the depth of the AABW to a 
mean depth (3,484 m), pH_pressure = f(DIC, TA, S, T, 3,484, Si, PO4 3−).

2.5. Driver of the Long-Term pH Trend in AABW

We used a first order Taylor-series deconvolution (Kwiatkowski & Orr, 2018; Ouyang et al., 2020; Sarmiento 
& Gruber, 2006) to decompose the drivers (including temperature (T), salinity (S), DIC, TA) of pH temporal 
changes, as shown in Equation 13:

�pH =
�pH
��

× �� +
�pH
�DIC

× �DIC +
�pH
�TA

× �TA +
�pH
��

× dS +
�pH
�fw

× �fw (13)

�pH
�fw

× �fw =
(

�DIC
�0

�pH
�DIC

+ �TA
�0

�pH
�TA

+ �
�0

�pH
��

)

× dS (14)

�pH = �
pH
��

× �� +
�pH
�DIC

× �
�0

× �(��ant + ��nat) +
�pH
�TA

× �
�0

× dsTA +
(

�DIC
�0

�pH
�DIC

+ �TA
�0

�pH
�TA

+ �
�0

�pH
��

)

× dS
 (15)

𝑑𝑑ΔLTpH
𝑑𝑑𝑑𝑑

=
𝜕𝜕pH
𝜕𝜕𝜕𝜕

× ΔLT𝜕𝜕
𝑑𝑑𝑑𝑑

+
𝜕𝜕pH
𝜕𝜕DIC

× 𝑆𝑆
𝑆𝑆0

×
ΔLT(𝑠𝑠𝑠𝑠ant + 𝑠𝑠𝑠𝑠nat)

𝑑𝑑𝑑𝑑
+

𝜕𝜕pH
𝜕𝜕TA

× 𝑆𝑆
𝑆𝑆0

× ΔLTTA
𝑑𝑑𝑑𝑑

+
(

𝑠𝑠DIC
𝑆𝑆0

𝜕𝜕pH
𝜕𝜕DIC

+ 𝑠𝑠TA
𝑆𝑆0

𝜕𝜕pH
𝜕𝜕TA

+ 𝑆𝑆
𝑆𝑆0

𝜕𝜕pH
𝜕𝜕𝑆𝑆

)

× ΔLT𝑆𝑆
𝑑𝑑𝑑𝑑

 (16)

The partial derivatives of pH with respect to the respective drivers, ∂pH/∂T, ∂pH/∂S, ∂pH/∂TA, and ∂pH/∂DIC, 
were calculated by allowing a small change (1‰) in temperature, salinity, TA and DIC respectively, while keeping 
all the other parameters constant (Table S4 in Supporting Information S1) (Orr et al., 2015). In addition, since 
freshwater fluxes (term fw) will induce changes in salinity, DIC and TA, it is useful to separate the freshwater 
effects from other biogeochemical processes, as in Equation 14 (Ouyang et al., 2020). We further separated DIC 
into Cant and natural DIC (Cnat), to determine the anthropogenic impact and natural impacts on pH, Cnat values 
were determined as the difference between DIC and Cant in Equation 15. sDIC, sTA, sCant, and sCnat are the salinity 
normalized deviations from the annual means of DIC, TA, Cant, and Cnat (sX = X*S0/S). Both have been calculated 
taking into account the effects of meltwater (Friis et al., 2003; Ouyang et al., 2020). S and S0 correspond to the 
observed and reference salinity (the average values of S in the AABW during 1974–2018), and the ratio between 
them approximates 1. The long-term changes in pH, d∆ LTpH/dt were then separated into thermal and non-thermal 
components in Equation 16. According to Equation 16, the long-term trend of pH can be attributed to three drivers, 
temperature, DIC, and salinity. The results of Equation 16 and its components are listed in Table 2.

To estimate the acidification of the AABW caused by anthropogenic CO2 from pre-industrial times to the present 
(year 2018), we used CO2SYS to simulate this process. Here, we defined “pHpre” as the pH in the pre-industrial 
period and “pH” as the observed pH. Since CO2 intrusion does not affect TA, and we assumed that TA, tempera-
ture, and salinity were constant over time. We calculated the changes in pH (∆pH_Cant) by removing Cant (based 
on TrOCA method) from DIC and then applying the CO2SYS calculation, ∆pH_Cant = pH − pHpre = f(TA, DIC, 

 19449224, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

B
007921 by Ifrem

er C
entre B

retagne B
lp, W

iley O
nline L

ibrary on [06/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Global Biogeochemical Cycles

ZHANG ET AL.

10.1029/2023GB007921

7 of 16

S, T) − f(TApre, DIC − Cant, Spre, Tpre). We found that pH has decreased by −0.04 ± 0.01 (Table 2) due to the 
additional anthropogenic CO2 since pre-industrial time.

3. Results and Discussion
3.1. AABW Delivers Anthropogenic Carbon Into the Deep Ocean

Three approaches estimating Cant concentrations agree with each other regarding the patterns and trends (Table 1; 
Figures S6 and S7, Text S5 in Supporting Information S1), all suggesting a hotspot of Cant accumulation from the 
shelf through the slope to the deep ocean (Figure 1). In addition, these values are also comparable to previous 
studies reporting Cant for different water masses at similar sites around Antarctica (Table 1), for instance, Cant of 
DSW in the Ross Sea (20–30 μmol kg −1; Chen, 1994; Sandrini et al., 2007) and the Adélie Land (44 μmol kg −1, 
Shadwick et al., 2014), and Cant of mCDW (10–20 μmol kg −1; Lo Monaco, Goyet, et al., 2005; Lo Monaco, 
Metzl, et al., 2005; Pardo et al., 2014) and AABW in the Southern Ocean (12–20 μmol kg −1; Lo Monaco, Goyet, 
et al., 2005; Lo Monaco, Metzl, et al., 2005; Pardo et al., 2014), respectively. It is worth noting that estimations 
from TrOCA and ∆C* appear to exhibit greater coherence compared to those from TrOCA and TTD due to the 
same basic assumption in the backward calculation (Figures S6 and S7 in Supporting Information S1). However, 
the TTD approach is subject to a series of assumptions (particularly the “constant-with-time disequilibrium of 
carbon between atmosphere and surface ocean”; see Section 2.2) that are challenging to satisfy across diverse 
regions of the Southern Ocean, leading to inconsistent estimates of Cant between TrOCA and TTD in the Weddell 
Sea and Prydz Bay.

Our results show that Cant decreases with depth from the slope to the deep basin. The overall pattern of Cant 
distribution in four cold-shelf regions (Figure 1) appeared to be consistent with CFC-12 (Figure S8 in Supporting 
Information S1). Maximum Cant concentrations in the shelf waters were found in the DSW, while minimum Cant 
values were found in the mCDW (Figure 1). We found that the shelf waters in cold shelf regions had higher Cant 
concentrations (40–50 μmol kg −1) than those in the adjacent basin (Figure 1), although they were still lower than 
those in other open oceans with a high Cant of 60–70 μmol kg −1 (Huang et al., 2022; Sabine et al., 2004). More 
importantly, we also found hotspots of high Cant in the AABW flowing along the Antarctic slope, below the cores 
of slightly contaminated (i.e., with low Cant at present days) CDW in the adjacent basin.

This further reveals the evolution of carbon transport originating from the formation of DSW, which is triggered 
by sea-ice production and brine rejection, and subsequently sinks with CO2 from the atmosphere (Figure 2a). 
A strong carbon transport efficiency could accelerate the transfer of newly absorbed Cant from the shelf to the 

Driver Driver rate of change (yr −1)
Changes in drivers 

(1974–2018)

Contribution to the 
long-term trends pH 

(units yr −1)

Thermal component ∆T 0.001 ± 0.001°C 0.04 ± 0.05°C −0.00001 ± 0.00002

Non-thermal Component ∆sDIC 0.15 ± 0.04 μmol kg −1* 6.73 ± 1.59 μmol kg −1 −0.0005 ± 0.0001

 ∆sDIC_Cant
 a 0.14 ± 0.03 μmol kg −1** 6.09 ± 1.20 μmol kg −1 −0.0004 ± 0.0001

 ∆sDIC_Cnat
 a 0.01 ± 0.05 μmol kg −1 0.64 ± 1.99 μmol kg −1 −0.00004 ± 0.00014

∆sTA −0.05 ± 0.03 μmol kg −1 −2.10 ± 1.36 μmol kg −1 −0.0001 ± 0.0001

∆S(freshwater) −0.0003 ± 0.0001 ppt −0.013 ± 0.003 ppt b 0.000002 ± 0.000001

Sum −0.03 ± 0.01 −0.0006 ± 0.0002

Observed −0.03 ± 0.00 −0.0006 ± 0.0001

Cant pre-industrial-2018 −0.04 ± 0.01

Note. The thermal and non-thermal components were separated by normalizing the pH to S = 34.66 (the mean salinity value 
of the AABW in four regions). Rates (±standard error of slope) were estimated by linear regression using annual means. 
Asterisks indicate the levels of significance of the trends (**P < 0.01, *P < 0.05).
 aThe ∆DIC_Cant and ∆DIC_Cnat indicate the changes in DIC due to anthropogenic CO2 (TrOCA-based) and natural 
CO2.  bParts per thousand (ppt) measures the salinity of seawater.

Table 2 
Estimated Contributions to the Long-Term pH Trends in AABW of Pan-Antarctic From 1974 to 2018
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deep basin instead of accumulating in the shelf, resulting in a high Cant concentration in the AABW during its 
formation (Figure 1). In the cold shelf regions, there are typically two pathways for the transport of DSW to the 
deep ocean. Taking Prydz Bay as an example (Figure 2a), the high CO2 uptake (Figure 3; Table S6 in Supporting 
Information S1) observed in the Prydz Bay coincided with the high concentrations of Cant in the underlying shelf 
waters (Figure 1 and Table 1). The primary DSW that sources from Cape Darnley flowed directly out along the 
western flank and through the Prydz Channel, then migrated northwest as gravity current to eventually joined the 

Figure 2. An overview of anthropogenic carbon (Cant) export fluxes in the Pan-Antarctic. (a) Schematic view of carbon 
transport in the Prydz Bay. (a) The carbon (Cant and DIC) transport during AABW formation involves mCDW intrusion shelf 
and DSW formation. The DSW (marked with blue) with high DIC and Cant concentrations is transported downwards along 
the continental slope, where it continuously entrains CDW (marked with red) with high DIC and low Cant and then subducts 
to form the AABW. (b–e) Cant export fluxes in four cold AABW formation areas, including (b) Weddell Sea, (c) Prydz Bay, 
(d) Ross Sea, (e) Adélie Land. Carbon can be exported both within the DSW (values in blue) and mCDW (values in orange) 
across the shelf break (black dotted line). The air-sea CO2 fluxes are in green and the net carbon export fluxes are in light 
green (negative values indicate carbon sink). All Cant fluxes are presented as positive values, arrows indicate the direction of 
flux. The range of numbers in the figures is derived from the uncertainty of Cant estimated using two methods and water mass 
ventilation rates (Equations 11 and 12 in Section 2). By extrapolating the average value of Cant from the four cold shelves to 
the entire Pan-Antarctica, we obtained the Cant export fluxes of the Pan-Antarctica (values in center figure (f)).
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very saline DSW from Cape Darnley (Williams et al., 2016). Our observation also captured the downslope move-
ment of DSW (high concentrations of Cant and CFC-12) and its mixing with CDW (low concentrations of Cant and 
CFC-12) over the shelf in the east Prydz Bay (Figure 1; Figure S8 in Supporting Information S1), which showed 
another pathway for the DSW (following the western flank of the trough/sill and meeting the eastern boundary 
of the Cape Darnley ice barrier) (Williams et al., 2016). Both pathways were the sources of the DSW, precursor 
water that contributes to the formation of AABW with high concentrations of Cant and CFC-12 (Figure 2). There-
fore, DSW was expected to remain in the upper layer long enough to reach CO2 equilibrium with the atmosphere 
as much as possible, and then flow relatively quickly downwards and westwards to reach the deep Southern 
Ocean with higher Cant concentrations (Roden et al., 2016).

3.2. A Greater Pan-Antarctic Export Flux Than Previously Thought

We then estimated the gross flux of Cant for the four AABW formation regions, and then integrated them to obtain 
the Cant gross flux (“gross” is defined as the total Cant export flux via the subduction of the DSW to form the 
AABW, see Section 2 and Table 1), which is 57.7 ± 12.0 Tg C yr −1 based on Cant in the DSW by TrOCA (Table 1) 

Figure 3. The updated annual air-sea CO2 flux (mol C m −2 yr −1) around the Pan-Antarctic. The updated annual air-sea 
CO2 flux in the center shows the mean value of CO2 flux from each sub-region. The separating sub-figures are the CO2 flux 
calculated from the daily fluxes that have been reported previously (see details in Table S5 of the Supporting Information S1). 
The four cold shelves filled with sky blue are (a) Weddell Sea shelf region (WS), (c) Prydz Bay shelf region (PB), (e) Adélie 
Land shelf region (AL), (f) Ross Sea shelf region (RS). The non-cold shelf regions are (b) Western Indian Sector (WIS), 
(d) Eastern Indian Sector (EIS), (g) Amundsen Sea shelf region (AS), (h) Antarctic Peninsula and Bellingshausen Sea shelf 
region (APB). The thick red arrows indicate the direction of AABW from main sources to the Southern Ocean. Positive 
values indicate a carbon source, negative values indicate a carbon sink. Units of flux are in mol C m −2 yr −1. Figures were 
made with Matlab version R2022a (The MathWorks Inc, 2022).
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according to Equation 11. We further upscaled this magnitude to the broader 
Pan-Antarctic cold shelf, including four AABW formation regions and poly-
nyas (Kitade et al., 2014) by multiplying the average Cant concentration from 
the four AABW formation regions by the total DSW ventilation rate in the 
Pan-Antarctic (5.40 ± 1.70 Sv) (Orsi et al., 2002). The broader Pan-Antarctic 
cold shelves have a gross Cant export flux of 68.6 ± 12.8 Tg C yr −1 (Figure 2f 
and Table  1), demonstrating that cold shelf regions dominate the carbon 
export from the shelf to the deep ocean in the Pan-Antarctica.

We also evaluated the net export flux for individual regions as this could 
determine the local carbon sink status. We obtained the net Cant flux (“net” 
is defined as the residual Cant export flux after deducting the supplied Cant 
from the upwelling of mCDW; Equation  12, Table  1) for each AABW 
formation region (Figures  2b–2e and Table  1). Applying the same princi-
ple, the net Cant flux was 25.0 ± 4.7 Tg C yr −1 in the four cold shelves and 
28.1 ± 6.2 Tg C yr −1 when extrapolated to the broader Pan-Antarctic cold 
shelves. This mean value of Pan-Antarctic shelf Cant export flux was compa-
rable to the air-sea CO2 uptake (−30.9 ± 6.1 Tg C yr −1, Text S2 in Support-
ing Information S1, Figures 2 and 3, Table 1, and Table S5 in Supporting 
Information S1) of the Pan-Antarctica, implying that the downward export of 
carbon could subsequently sustain the surface air-sea CO2 uptake.

3.3. Pan-Antarctic Carbon Transport Drives Strong Deep-Water 
Acidification

The export of CO2-rich and low-pH seawaters through the formation of DSW 
and AABW would further induce declines in pH, which is referred to as 
ocean acidification (OA). The Ross Sea is found to exhibit the most rapid 
acidification (Figure 4c); however, this signal is primarily attributed to the 
single data point with a relatively higher pH value in 1974 during the period 
of 1974–1992, which may potentially lead to an overestimation of the acidifi-
cation rate. We now investigate the long-term trend of pH (Figure 4) and the 
aragonite and calcite saturation state (Ωarag and Ωcalcite, Figures S9 and S10 in 
Supporting Information S1) in the AABW (γn > 28.27 kg m −3).

Notably, from 1974 to 2018, the mean acidification rate of AABW in the 
Pan-Antarctic region is about −0.0006 ± 0.0001 yr −1 in pH (Figure 4). This 
magnitude of acidification is less than that in the surface Southern Ocean, 
which ranged from −0.0011 to −0.0024 yr −1 during 1969–2019 (Gregor & 
Gruber, 2021; Iida et al., 2021; Leseurre et al., 2022; Mazloff et al., 2023; 
Midorikawa et  al.,  2012), however, it is already significantly faster than 
that of the deep waters in the global open ocean (<−0.0002 yr −1), such as 
the Hawaii Ocean Time-series (HOT) and the European Station for Time 
series in the Ocean at the Canary Island (ESTOC) (Chen et al., 2017; Dore 
et al., 2009). We suggest that this is linked to the rapid transport of Cant from 
cold shelves to the deep ocean, because AABW contains Cant from more 
recent years than the bottom waters at these other locations it is compared 
with. The more recent Cant in the AABW (Figure 5) is presumably higher 
because the atmospheric CO2 was higher.

To test this hypothesis, we quantified and decomposed the drivers of long-
term OA into thermal (driven by temperature change, Figure S11 in Support-

ing Information S1) and non-thermal (driven by salinity, DIC, and TA changes, Figure 5; Figures S12 and S13 in  
Supporting Information S1) components (see Section 2, Table 2, and Table S6 in Supporting Information S1). As  
temperature changed negligibly (2%), the pH decrease was mainly driven by the non-thermal effect (98%, Table 2).  
The main driver of the contemporary pH decrease (1974–2018) was the increasing DIC (contributing 76%), 

Figure 4. Long-term trends of pH in the deep Southern Ocean (AABW). 
The dark gray and the gray dots indicate the monthly mean of observed pH, 
and the raw observations in (a) Prydz Bay, (b) Weddell Sea, (c) Ross Sea, (d) 
Adélie Land, (e) Pan-Antarctic (the total of four cold shelf regions). The black 
and red dots in (a)–(e) indicate the deseasonalized monthly mean pH and the 
depth-normalized monthly mean pH after deseasonalization, respectively. The 
dark gray, black and red solid lines show linear regressions and the rates of 
change are shown in each panel, corresponding to the observed monthly mean, 
the deseasonalized monthly mean and the depth-normalized monthly mean, 
respectively. The pH values in (a)–(e) were obtained from the Global Data 
Analysis Project version 2022 database and CHINARE 31st.
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leading to a pH decrease of −0.0005 yr −1 in AABW, while TA contributed 23% with −0.0001 ± 0.0001 pH yr −1. 
However, it should be noted that the trend in TA is statistically insignificant (Figure S13 in Supporting Infor-
mation S1), and its role may be overstated. Due to the relatively small trend in pH, even a minor temporal 
change in TA (−0.05 μmol kg −1 yr −1, equivalent to change of 2.2 μmol kg −1 from 1974 to 2018) can make 
a significant contribution, although this change is just comparable to the uncertainty of TA measurement 
and therefore has negligible impact on CO2SYS and calculated pH. In addition, we observed an increase in 
temperature at a rate of 0.001 ± 0.001°C yr −1 (Figure S11 in Supporting Information S1) in AABW in the 
Pan-Antarctic, and a faster decrease in salinity of −0.0003 ± 0.0001 yr −1 (Table 2; Figure S12 in Support-
ing Information S1) in the cold shelf due to rapid downward transport of freshwater input from meltwater 
in these AABW formation regions (Williams et  al.,  2016). Although changes in temperature and salinity 

Figure 5. Long-term trends of Cant and DIC in the deep Southern Ocean (AABW). The dark gray and the gray dots indicate the monthly mean of raw data Cant and 
DIC, and the raw data in (a), (f) Prydz Bay, (b, g) Weddell Sea, (c, h) Ross Sea, (d, i) Adélie Land, (e, j) Pan-Antarctic (the total of four cold shelf regions). The red dots 
in (a)–(j) indicate the deseasonalized monthly mean Cant and DIC. The dark gray and red solid lines show linear regressions and the rates of change are shown in each 
panel, corresponding to the raw data monthly mean, and the deseasonalized monthly mean. The DIC data in (f)–(j) were obtained from the Global Data Analysis Project 
version 2022 database and CHINARE 31st. Cant was calculated by TrOCA method.
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contributed little to pH, they had a significant effect on the properties of AABW (Herraiz-Borreguero & 
Naveira Garabato, 2022), which has important implications for transport across the shelf (e.g., Cant).

We further decomposed the changes in DIC (∆sDIC) into a natural effect (∆sDIC_Cnat) and an anthropo-
genic effect (∆sDIC_Cant). Our decomposition showed that, regarding the contribution of ∆sDIC term (76%) 
to a long-term decrease in pH, ∆sDIC_Cant accounts for 69% and ∆sDIC_Cnat accounts for 7%, which could 
be due to anomalies in the biological pump, TA, zonal winds and ocean circulation in the cold Shelf (DeVries 
et al., 2017; Shi et al., 2021; Tagliabue & Arrigo, 2016). In addition, we estimated that an increase in Cant 
has resulted in a pH change of −0.02 ± 0.01 (Table 2 and Figure 5) in the AABW from 1974 to 2018, and a 
pH change of −0.04 ± 0.01 (Figure S8 in Supporting Information S1 and ∆pH_Cant in Section 2.5) from the 
pre-industrial period to 2018, which is close with previous studies (Jiang et al., 2019; Lauvset et al., 2020). 
It is worth noting that the change in pH in the AABW driven by Cant from 1974 to 2018 accounts for almost 
50% ± 30% of the change since the pre-industrial period. Furthermore, the decrease in pH corresponds well with  
an increase in Cant in waters deeper than 2,000 m (Figures 1, 4, and 5, and Figure S8 in Supporting Informa-
tion S1), indicating that the rapid invasion and acceleration rates of Cant (Figure 5) have been responsible for deep  
ocean acidification over the past four decades. The uptake and transport of Cant is critical to the interpretation of  
the acidified AABW, which then drives acidification in the other ocean basins and would affect the organisms  
living in those waters, especially phytoplankton and invertebrates, and ultimately the marine ecosystem (Hancock  
et al., 2020).

4. Conclusions and Implications
Taken together, our work raises the possibility that the Antarctic continental shelf plays a larger role in the global 
ocean carbon cycle than previously thought, and the potential stress (acidification) on deep-sea ecology in the 
context of global change. Under the global warming scenario, warmer and faster CDW inflow (Shi et al., 2021) 
and increased freshwater input from the ice sheet could potentially result in less dense shelf water and reduced 
AABW formation, leading to a weaker downward carbon flux (Herraiz-Borreguero & Naveira Garabato, 2022; 
Nissen et al., 2022). On the other hand, the frequent climate anomalies could also lead to episodes of enhanced 
sea-ice formation that counteract the effects of ice sheet melting, leading to the rebound of the dense shelf water 
(Castagno et al., 2019) and the recovery of AABW formation (Silvano et al., 2020). These would add further 
complexity to the long-term variability of anthropogenic carbon export, and thus feed back to the carbon uptake 
capacity of the surface ocean. Therefore, in the face of such a complex and multi-factorial influenced dynamic 
process in shelf-slope systems, sustained observations and further investigations are needed.
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Erratum
In the originally published version of this article, authors Chengyan Liu, Qinghua Yang, Yiming Lu, and Xiao 
Cheng were incorrectly affiliated to “Centre for Southern Hemisphere Oceans Research (CSHOR), CSIRO 
Oceans and Atmosphere, Hobart, TAS, Australia.” The correct affiliation is “Southern Marine Science and Engi-
neering Guangdong Laboratory (Zhuhai), Zhuhai, China.” The error has been corrected, and this version may be 
considered the authoritative version of record.
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