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ABSTRACT: We present a new global oxygen atlas. This atlas uses all of the available full water column profiles of
oxygen, salinity, and temperature available as part of theWorld Ocean Database released in 2018. Instead of optimal inter-
polation, we use the Data Interpolating Variational Analysis (DIVA) approach to map the available profiles onto
108 depth levels between the surface and 6800 m, covering more than 99% of ocean volume. This 1/28 3 1/28 atlas covers
the period 1955–2018 in 1-yr intervals. The DIVA method has significant benefits over traditional optimal interpolation. It
allows the explicit inclusion of advection and boundary constraints, thus offering improvements in the representations of
oxygen, salinity, and temperature in regions of strong flow and near coastal boundaries. We demonstrate these benefits of
this mapping approach with some examples from this atlas. We can explore the regional and temporal variations of oxygen
in the global oceans. Preliminary analyses confirm earlier analyses that the oxygen minimum zone in the eastern Pacific
Ocean has expanded and intensified. Oxygen inventory changes between 1970 and 2010 are assessed and compared against
prior studies. We find that the full ocean oxygen inventory decreased by 0.84% 6 0.42%. For this period, temperature-
driven solubility changes explain about 21% of the oxygen decline over the full water column; in the upper 100 m, solubility
changes can explain all of the oxygen decrease; for the 100–600 m depth range, it can explain only 29%, 19% between
600 and 1000 m, and just 11% in the deep ocean.

SIGNIFICANCE STATEMENT: The purpose of this study is to create a new oxygen atlas of the world’s oceans
using a technique that better represents the effects of ocean currents and topographic boundaries, and to investigate
how oxygen in the ocean has changed over recent decades. We find the total quantity of oxygen in the world’s oceans
has decreased by 0.84% since 1970, similar to previous studies. We also examine how much of this change can be
explained by changes in water temperature; we find that this can explain all the changes in the upper 100 m but only
21% of the oxygen decline over the whole water column.

KEYWORDS: Ocean; Ship observations; Variational analysis; Interdecadal variability; Climate change;
Marine chemistry

1. Introduction

Ocean oxygen concentration in the near-surface regime is
controlled by a combination of oxygen production during
photosynthesis, solubility, and air–sea gas exchange, while at
deeper levels oxygen consumption by respiration and redistri-
bution by a combination of circulation and mixing are the
dominant factors. Both regional (e.g., Whitney et al. 2007;
Sasano et al. 2015; Bograd et al. 2015) and global studies (e.g.,
Helm et al. 2011; Ito et al. 2017; Schmidtko et al. 2017; Ito
2022) have identified a decline in oxygen concentration across
much of the world’s oceans. The IPCC Special Report on the
Ocean and Cryosphere in a Changing Climate (SROCC)
(Bindoff et al. 2022) concluded that “there is a growing con-
sensus that the open ocean is losing oxygen overall with a
very likely loss of 0.5%–3.3% between 1970 and 2010 from
the ocean surface to 1000 m.” This oxygen loss is also associated
with an “unabated warming” and that it is “likely that the rate

of ocean warming has increased since 1993” and that it is “very
likely that the upper ocean is stratifying” and “that nutrient
cycles have been perturbed (high confidence)”.

By combining the available estimates of oxygen loss from
the literature SROCC (Bindoff et al. 2022) assessed, it was
very likely the global oxygen inventory had declined by
0.2%–2.1% in the upper 100 m and by 0.7%–3.5% between
100 and 600 m. The decline in oxygen content is negatively
correlated with ocean heat content (Ito et al. 2017), and stud-
ies suggest that between 15% and 50% (Bindoff et al. 2022)
of the oxygen decline in the upper 1000 m can be explained
by solubility changes driven by ocean warming. The role of
changes in ocean stratification, ventilation, and respiration are
more difficult to assess (Oschlies et al. 2018) but likely act to
reinforce the warming signal.

Oxygen is an important ocean state variable and is the third
most common measured variable after temperature and salin-
ity. The sampling methods used to collect dissolved oxygen
data are well established over the observational period (e.g.,
Montgomery et al. 1964; Gamo and Horibe 1980; Culberson
1991; Dickson 1994; Langdon 2010). Since oxygen observations
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are sparse and scattered in both space and time, to properly
assess how ocean oxygen content has changed on decadal
time scales it is necessary to construct gridded atlases. Histori-
cally, most gridded atlases were created using optimal inter-
polation (OI) or similar approaches in which a prescribed
covariance function is used to determine the influence of data
on a grid point while seeking to minimize the error variance.
However, the covariance functions used are usually simple in
nature and often not constrained by ocean physics which can
lead to a range of issues including the “leakage” of signals be-
tween seas separated by narrow regions of land, the mixing of
water masses leading to artificial water masses (Lozier et al.
1994), or the loss of fronts. More recently numerical models
combined with data assimilation techniques have been used to
produce time-evolving fields of state variables, for example,
SODA (Carton and Giese 2008) and ECCO (Wunsch et al.
2009). Applying such methods to oxygen data or other biogeo-
chemically active tracers requires coupling with biogeochemi-
cal models. While this approach was implemented in several
studies, such as B-SOSE (Verdy and Mazloff 2017), it remains
computationally expensive, implying compromises in resolu-
tion or domain size. Further, there are significant biases from
the uncertainty in the parameters in the biogeochemical models
(Buchanan et al. 2018) forcing significant trade-offs and potential
biases in the state estimates of temperature, salinity, oxygen, and
nutrients.

Ideally, we would like to combine the relative computational
efficiency of OI with the realistic physical constraints of numeri-
cal models while also avoiding biases in the parameterizations
in biogeochemical models (Buchanan et al. 2018) and full state
estimation as used in adjoint models. This was achieved through
a hybrid approach, using variational inverse methods (VIM),
that includes advection of tracer but avoids the complexity of a
full biogeochemical model. Variational inverse methods differ
from OI in that instead of seeking to minimize error variance
VIM seeks to minimize a cost function which includes, at a
minimum, terms for closeness of fit to observations and field
smoothness (Troupin et al. 2012). VIM based methodologies
have been implemented by Troupin et al. (2012) as the Data
Interpolating Variational Analysis (DIVA) package in For-
tran, which supports 2D analysis on finite element grids and by
Barth et al. (2014) as the DIVAnd package (https://github.
com/gher-ulg/DIVAnd.jl) in Julia, which supports 3D and
4D analyses on curvilinear grids. Data Interpolating Varia-
tional Analysis has previously been applied on regional
scales to generate temperature and salinity climatology for
the North Atlantic (Troupin et al. 2010), map mixed layer
and cold layer depths in the Black Sea (Capet et al. 2014),
create climatologies of inorganic nutrients in the Mediter-
ranean Sea (Belgacem et al. 2021), and to produce gridded
sea surface height in the Arctic (Doglioni et al. 2023).

In this study we use DIVAnd (Barth et al. 2014) to produce
a new atlas of oxygen concentration, conservative tempera-
ture, and absolute salinity. We have taken into account time
as well, thus making the atlas suitable for climate change stud-
ies of the oceans changing state on scales of about a decade
up to 50 years. This atlas comes as new oxygen-sampling floats
that were tested during the SOCCOM experiment (Riser et al.

2018) are being expanded to form the basis of a global net-
work (Claustre et al. 2020). This global atlas (808S–808N) has
been created on a 1/28 3 1/28 grid on 108 depth levels with a
temporal resolution of 1 year. Effective resolution on local
scales varies on the data and VIM constraints.

In section 2 we describe the datasets used in this study. In
section 3 we describe our methodology including the DIVAnd
fitting procedure, how we selected DIVAnd parameters, and
the error analysis. In section 4 we present our results and in
section 5 we conclude the work and discuss its merits relative
to past approaches and potential application.

2. Data

a. World Ocean Database

The World Ocean Database (WOD) is a repository of stan-
dardized and quality controlled oceanographic profiles main-
tained by NOAA, containing data from the earliest days of
oceanography up until the present. WOD was first released in
2005, and has been regularly updated since, with the most re-
cent major release occurring in 2018 (hereafter referred to as
WOD18). Details of WOD18 processing and quality control
can be found in Boyer et al. (2018) and Garcia et al. (2018).
WOD18 interpolates profiles to 137 depth level between the
surface and 9000 m depth. However, below 6100 m (depth
level 108) there is very little ocean volume (e.g., at 6100 m depth
ocean grid cells make up only 0.3% of the domain); hence, we
exclude these deeper depth levels from this study.

While the WOD18 archive includes data from BioArgo and
SOCCOM floats, calibration techniques to counter sensor drift
were not fully developed and deployed until late in the data-
base’s coverage (Bittig and Körtzinger 2015; Bushinsky et al.
2016); thus, we exclude float data from this study and focus on
shipboard profiles of oxygen, temperature, and salinity. Profile
data from ships tend to be higher quality and in the experience
of these authors tend not to include difficult to manage biases
and quality characteristics found in sensors from float and ex-
pendable measurements (e.g., XBTs). As seen in Figs. 1b and 1c,
shipboard observations are sparse in the Southern Hemisphere
and at depth levels below about 4000 m prior to the late
1950s; hence, we confine our analysis to the period between
1955 and 2018. We then opted to only use the higher quality
data (that is, data flagged as 0, “all good”) in WOD18 data
files. Additionally for each depth level we computed the back-
ground, or, a priori error variance of the data as (Wong et al.
2001)

s2
apriori 5 ∑

n

i51
(di 2 dj)2/2n,

where di and dj are a pair of closely spaced observations
(here, less than 18 apart in both longitude and latitude), and n
is the total number of observations on the depth level. This es-
timate of a priori noise represents the unresolved ocean pro-
cesses in the observations at scale of order 18–28 and included
mesoscale eddies, internal waves, and other ocean variability.
Pairs of nearest-spaced data with differences exceeding the
62sapriori range were excluded from this analysis as these
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data likely represent a combination of small-scale or high-
frequency features we are unable to resolve in this analysis
and erroneous data.

Having applied this QC process, we obtained a total of
818 484 oxygen profiles (out of 1 138226), 2 194 406 tempera-
ture profiles (out of 3 986 254), and 2 758 094 salinity (out of
3 488 851) profiles for the period up to 2018. Temperature and
salinity were converted to conservative temperature and abso-
lute salinity using the GSW MATLAB toolbox (McDougall
and Barker 2011).

Our choice of shipboard data does impose a seasonal sam-
pling bias at high latitudes, with sampling in the Arctic (above
about 758N) and Antarctic margins (below about 608S) mostly
concentrated in the summer months. This pattern of sampling
bias remains robust throughout the period of the experiment,
and as such is unlikely to contribute to long-term oxygen
trends.

b. CMCC historical reanalysis velocity fields

In this study we use velocity fields from the CMCC Historical
Ocean Reanalysis (Yang et al. 2017), RL version (http://c-glors.
cmcc.it/index/index-3.html?sec=2), as the advection constraint in
the DIVAnd analysis. The CMCC Historical Ocean Reanalysis
(CHORS) products used the NEMO ocean model in the
ORCA05 configuration, forced with atmospheric and solar forc-
ing from the Twentieth-Century Reanalysis version 2 (Compo
et al. 2006). Hydrographic profiles, principally from the Hadley
Center “EN” collection, were assimilated into the model using a
3D-Var approach (Storto et al. 2011) while sea surface tempera-
ture was relaxed to the Hadley Centre’s Sea Ice and Sea Surface
Temperature dataset (Rayner et al. 2003).

Studies of climate change in CMIP5 models suggest that
large-scale ocean circulation is only weakly sensitive to cli-
mate change (Terada and Minobe 2018). Thus, the temporal
variation of the velocity field is assumed to be small and we

FIG. 1. Distribution of shipboard oxygen profiles from the World Ocean Database 2018.
(a) The spatial distribution (profiles per 18 3 18 bin) emphasizes coastal regions and repeat ship
surveys. The distributions by (b) depth and time and (c) depth and latitude show the scarcity of
profiles below about 4000 m and south of 308N before the late 1950s.
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use CHORS reanalysis zonal and meridional velocity fields
averaged over the period 1960–2016. This use of a time-mean
velocity fields means that our atlas is unable to resolve any
currents that evolve on a seasonal time scale (e.g., monsoon
surface current in the northern Indian Ocean).

3. Methods

a. Data Interpolating Variational Analysis

Data Interpolating Variational Analysis (Troupin et al.
2010; Barth et al. 2014) is a mapping or interpolation method
which seeks to find an optimal tracer field for given observa-
tions by minimizing a cost function which includes terms for
field smoothness and the residual between the tracer and ob-
servations and, optionally, terms for further constraints includ-
ing the influence of advection and boundary conditions arising
from topography. Details of implementation of DIVAnd can be
found in Barth et al. (2014). Example application of Data Inter-
polating Variational Analysis to both realistic and idealized sce-
narios can be found in Barth et al. (2014), Troupin et al. (2012,
2017), and at https://github.com/gher-uliege/Diva-Workshops.

The “core” constraints consist of two terms, an observation
constraint which penalizes data-analysis misfit [dj 2 f(xj)]

2

and a smoothness constraint which penalizes field curvature
||f 2 fb||2:

J(f) 5 ∑
n

j51
mj[dj 2 f(xj)]2 1 ‖f 2 fb‖

2 1 Jc(f), (1)

where dj are the observations at locations xj with a weighting
mj, f is the analysis tracer field, fb is the background field,
and ||???|| denotes the L2 norm.

Equation (1) can be reexpressed as Belgacem et al. (2021):

J(f) 5 ∑
n

j51
mjL

2
c[dj 2 f(xj ,yj ,tj)]2 1

�
D
(a2==f : ==f

1 a1L
2
c=f ? =f 1 a0L

4
cf

2)dD 1 Jc(f), (2)

where Lc is the correlation length scale (usually defined in the
zonal, meridional, and time directions Lx, Ly, and Lt); the co-
efficients a0 (minimizing field anomalies), a1 (minimizing spa-
tial gradients), and a2 (penalizing field variability) are set
internally by the DIVAnd program; =f is the gradient of the
tracer field, ==f:==f is the squared Laplacian of the tracer field;
mj is an arbitrary weighting applied to the data to reflect consid-
erations such as data quality (in this study we apply a uniform
weighting to all data as all “bad data” have been excluded); and�
D
· · ·dD denotes the integral across the domain.
Additional constraints [Jc(f)] can be included, in this study

we used the advection constraint [Ja(f,U)] and coastal bound-
ary constraint built into DIVAnd. The coastal boundary con-
straint penalizes nonzero near-coast tracer field gradients. The
advection constraint penalizes any misalignment between the
analysis tracer field and a specified vector field:

Ja(f) 5 wu
2
�
D
(U ? =f)2dD,

where wu is the advection weighting, U is the vector field
(usually velocity), and ? denotes the dot product.

When the gradient of the tracer field is close to perpendicu-
lar to the vector field U ? = is small and the penalty imposed
by the cost function is, thus, low, as the gradient of the tracer
field aligns more closely with the vector field this term be-
comes larger and the penalty imposed increases.

The cost function can then be expressed as a matrix equa-
tion [see Barth et al. (2014) for details] which can then be
solved by factorization using the CHOLMOD factorization
package (Chen et al. 2008; Davis and Hager 2009).

b. DIVAnd fitting procedure

We assume that on each depth level the field Ftot of a given
tracer can be decomposed into three terms:

Ftot 5 Fy(y) 1 FBG(x, y) 1 Ft(x, y, t);

Fy represents the zonal-mean dependency of a tracer on lati-
tude. This is estimated by applying a low-order polynomial fit
to all data on a given depth level. This is necessary as other-
wise areas with few data relax back to the global mean value.
The second term on the right-hand side, FBG, is the time-mean
background tracer anomaly field from the latitude-dependent
mean Fy and Ft is the time-varying tracer anomaly.

We convert the observational data into anomalies relative
to Fy (i.e., Fobs 2 Fy), then run a 2D (longitude–latitude)
DIVAnd analysis to obtain FBG, then reanomalize the obser-
vations as Fobs 2 (Fy 1 FBG), and then run a 3D (longitude–
latitude–time) analysis to obtain Ft. Due to computational
resource constraints this final step is implemented by solving
Ft for series of overlapping 10-yr windows. This mapping pro-
cedure is applied to oxygen, conservative temperature, and
absolute salinity data on all 108 depth levels between 0 and
6100 m. The temporal extent of the interpolation runs from
1955 to 2020 at 1-yr intervals (notionally 1 January of each
year), but due to boundary effects and availability of data
only the years 1960–2017 are included in the published atlas.

c. Selecting parameters

The DIVAnd fit, described above, depends on a set of cor-
relation scales, an advection weighting, and the signal-to-noise
ratio. As the time-mean DIVAnd fit is followed by a time-
varying fit we opt to moderately underfit and thus consider
signal-to-noise ratios between 1.15 and 1.2. For Lx 5 500 km
this suggests an advection weighting of 1 is acceptable. We de-
scribe how these correlations scales and advection weightings
are selected. Conventionally, one would use an iterative appli-
cation of generalized cross validation (GCV) to select optimal
decay scales, advection weightings and signal-to-noise ratio.
However, in this case GCV is impractical. Shipboard observa-
tions are generally clustered in time and space along ship tracks.
As a consequence of this distribution of measurements the ap-
plication of GCV produces unrealistically high signal-to-noise
ratios and short correlation scales (Troupin et al. 2012). Instead
for each depth level we estimate univariate covariance functions
in longitude, latitude, and time based on a random subsample
of observations. This reduces the sampling effects from long
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hydrographic lines. We then assume the covariance function
can be represented as either

C 5 sK(L) 1 Coff (3a)

or

C 5 sK(L), (3b)

where K denotes the DIVAnd kernel, L the decay scale, s is a
scale factor, andCoff a correction for any large-scale “background”
covariance.

We then fit Eqs. (3a) and (3b) to the covariance estimate
using least squares optimization. Estimation of the covariance
and the fits are repeated 50 times, giving us a total of 100 esti-
mates for Lx, Ly, and Lt on each depth level.

Scatterplots and histograms of correlation scales are shown
in Fig. 2. Examination of temporal covariance shows strong
seasonal-scale signals in the upper 100 m, while estimates of
temporal covariance range from seasonal time scales within the
upper 100 m, likely also accounting for the exceptionally long
zonal correlation scales observed at the surface, to 8–12 years
below 200 m. At depths over 2000 m, the observations are insuf-
ficient for reliable fits to these equations. This analysis suggests
that the most suitable choice (dictated by a peak in the correla-
tion-scale histograms) of zonal correlation scale is about 500 km
and meridional correlation scale is about 100 km and 2.5 years
for correlation time. However, the presence of mesoscale fea-
tures and the heterogeneous nature of the sampling, in both
time and space, from along a single cruise track (generally less
than 200 km in distance, and hours to days in time) compared
with the spacing of observations from many different cruises

(500 km or more in space and months to years in time) implies
that these correlation scales could still be biased low. The zonal
correlation scale is already sufficiently large that this is unlikely
to be an issue. However, as a precaution we opted to increase
the meridional correlation scale to 250 km.

Interpolation of any form represents a trade-off between
the ability to recreate data at observations (low residuals) and
field smoothness while not overfitting or underfitting (i.e., ob-
taining a signal-to-noise ratio close to 1). Hence, to determine
an appropriate choice of advection weighting and validate our
choice of decay scales, we produced time-mean DIVAnd fits
at 500 m depth for a range of different Lx and wu, with Ly fixed
as Lx/2 from which we computed and plotted signal-to-noise
ratios (defined here as s2

signal/s
2
apriori) and field roughness (here,

the variance of the horizontal oxygen gradient, or salinity or
temperature gradients). These results are shown in Figs. 3a and
3b, respectively.

Our desired signal-to-noise ratio (1.15 and 1.2, the white
contours shown in Fig. 3) excludes most of the Lx–wu state
space. Choices of shorter decay scales less than about 100 km
do not extend the influence of data far enough in space, and
thus, areas some distance from ship tracks relax back to the
large-scale meridional background estimate. This results in un-
realistically rough fields and is indicative of overfitting of the
observations (appendix Fig. A1b). Zonal decay scales of
around 200–300 km perform better, resulting in a less rough
background oxygen concentration map (appendix Fig. A1c),
but still retain some unreasonably strong gradients and traces
of ship tracks (e.g., the low-latitude North Atlantic, appendix
Fig. A2c). Long correlation scales (greater than about 800 km)
produce smoother fields (appendix Fig. A1d) but examination

FIG. 2. (a),(c),(e) Histograms of fitted correlations scales and (b),(d),(f) scatterplots of correlation scales as a function of depth.
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of spatial correlations (e.g., appendix Fig. A2d) demonstrate
that these long correlation scales erode the ability of the analy-
sis to resolve dynamical barrier in the velocity fields. Tests
with 400 , Lx , 600 km and wu ’ 1 show little difference to
our selected parameters of Lx 5 500 km and wu 5 1 (not
shown). We are, thus, confident that our choice of correlation
scales and advection weighting are close to optimal.

d. Error analysis

Given a covariance matrix C and data vector g, errors can
be propagated as (Tellinghuisen 2001)

s2 5 gTCg:

DIVAnd returns an inverse relative grid–grid covariance ma-
trix C21), where covariance is normalized by the a priori vari-
ance; we thus treat g as a vector of ones, and we can compute
as the total variance on each depth level as

s2 5 s2
apriori ? g

TCg: (4)

However, as the inverse covariance matrix C21 is a large,
sparse matrix, “brute force” inversion is impractical as inver-
sion produces a large, dense matrix which in turn runs into
memory limitations. To avoid it is necessary to obtain an ex-
pression in terms of (C21). To do this let us consider

x 5 Cg:

Multiply this system through by C21:

C21 ?x 5 C21 ?Cg,

which simplifies to

C21 ?x 5 g:

Given a known C21 and g this system can be solved for x.
Using \ to denote the solution of the above system, the full ex-
pression for error propagation [Eq. (4)] becomes

s2 5 s2
apriori ? g

T(g\C21): (5)

Computing confidence intervals from standard deviations ob-
tained from Eq. (5) assuming a specific distribution or using
Student’s t test requires estimating the effective degrees of
freedom. Both approaches to this problem are nontrivial to
solve (Janson et al. 2015). Computing error fields using the co-
efficient of determination (Bretherton et al. 1976), as applied
in Ito (2022), requires approximating data–data and data–grid
covariance matrices from the grid–grid covariance matrix,
which in turn runs into the compute and storage limitations
described above. Instead, we used Chebyshev’s inequality
(Tchebichef 1867) to obtain a “pessimistic” estimate of confi-
dence intervals. Chebyshev’s inequality states that the proba-
bility of a data point (X) lying within k standard deviations of
the mean is

P(|X 2 m| . ks) , k22:

From this inequality, a 62s range corresponds to a 75% con-
fidence interval, while 95% confidence intervals correspond
to a 64.4721s range. We opt to report uncertainty in verti-
cally integrated gridded inventories with the 2s range and
globally integrated inventories with 95% confidence intervals.

4. Results

We have constructed an atlas of the oxygen, salinity, and
temperature data from all of the research quality profile data
compiled in the 2018 version of the World Ocean Database
from the mid-1950s to 2018 (Roach and Bindoff 2023). The

FIG. 3. Background fit (a) signal-to-noise ratio and (b) oxygen gradient variance at 500 m for Ly 5 Lx/2. White contours indicate the target
signal-to-noise ratio range and the gray dashed line indicates the selected zonal correlation scale.
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underlying climatology or reference field created for this atlas
includes all of the available shipboard data from the 1950s to
2018. Consequently, its precise reference period for the un-
derlying climate is reflected in the time weighted average of
the all the data used to create the underlying climatology. Be-
cause the data distribution is heterogeneous in time, depth,
and geographic location (Figs. 1a–c) its precise time varies by
location depending on how the covariance field weights obser-
vations, but can generally be thought of as an early to mid-
1990s average. This climatology is used to create the anomaly
field of oxygen (and temperature and salinity) shown below.

a. Testing the mapping method

Atlases of oceanographic temperature, salinity, and oxygen
are a well-established tradition in oceanography (e.g., Wüst
1936; Levitus 1983; Wunsch 1996; Ridgway et al. 2002; Fukumori
et al. 2018). A key advantage of the DIVA approach is it capac-
ity to include advection as a specific constraint on the circulation
with explicit boundary conditions for coastlines. The inclusion of
advection through the tracer equation and the explicit boundary
conditions for coastlines largely overcomes two very common
problems in mapping of ocean fields using optimal interpolation
(Bindoff andWunsch 1992). The first problem is that optimal in-
terpolation often uses a simple circular or elliptical covariance
functions, with advection at most being represented by a stretch-
ing or rotating of the ellipse as in Ducet et al. (2000). As a result
OI can smooth tracers across dynamical barriers, creating false
water masses (Lozier et al. 1994), or suppressing fronts. The sec-
ond problem is OI does not include any coastal boundary condi-
tions; thus, signals can propagate through land barriers. These
problems can force atlases to neglect marginal seas as in Ito
(2022) or require complicated regional masking regimes.

DIVAnd’s ability to solve these problems is demonstrated
in the upper and middle panels of Fig. 4 which show example
spatial correlation plots for the 50 m depth level in the year
1975 for grid points in the Kuroshio (328N, 1338E; left) and
eastern Pacific (7.58N, 838W; right), which compare correla-
tion for optimal interpolation (Figs. 4a,b) with correlation for
DIVAnd (Figs. 4c,d). We see that in both cases DIVAnd
propagates correlation along advection pathways while OI
does not. This implies that DIVAnd is more realistic in re-
gions of strong flow where observations a long way up- or
downstream influence a grid point. We also see that DIVAnd
resolves dynamic barriers, as can be seen in proximity to the
standing eddy-like structure near 318N, 1338E in Figs. 4a and
4c. Under this circumstance, OI would behave in an unrealis-
tic manner and include the influence of observations on the
wrong side of the dynamical barrier, oversmoothing the CT,
SA, and oxygen fields and potentially creating false water
masses.

To check that DIVAnd was not creating artificial water
masses or oversmoothing fronts, we interpolated the full, time
varying temperature, salinity, and oxygen fields back onto the
times and places of observations. Example CT–oxygen and
SA–CT histograms for the Kuroshio region, selected as a re-
gion dominated by fronts with sharp boundaries between wa-
ter masses, are shown in Figs. 4e and 4f, both demonstrate

good agreement between the DIVAnd analysis and the “raw”
WOA18 observations. Similar plots were produced for other
regions with strong frontal features and show equally good
agreement.

b. Oxygen inventory

The oxygen atlas that has been created has both the un-
derlying mean state through the full water column and also
the changes from this mean underlying state. The large-
scale mean state of oxygen though the full water column us-
ing the available hydrographic data and DIVA is shown in
Fig. 5.

The background oxygen concentration at 100 and 500 m is
shown in Figs. 5a and 5b. The background fields represents
the average of the ocean state of about 1993 after factoring in
time density of the hydrographic data. Estimates of errors are
available for the underlying field, but these are very small rel-
ative to the large-scale variations and consequently have been
omitted on these two panels. Overall, the features of the oxy-
gen gradients and content are consistent with our large-scale
understanding of the mean oxygen field (e.g., Wüst 1936;
Wunsch 1996; Fukumori et al. 2018). Even in this relatively
shallow layer the presence of the strong oxygen minimum
in the equatorial and subtropical eastern Pacific, northern
Indian, and Atlantic Oceans can be seen. The high values in
this layer, where mixed layers are thicker the polar regions
(south of the Antarctic Circumpolar Current), and the local
minima at the Antarctic divergence before increasing again
toward the Antarctic coastline. The Arctic also shows high
values of oxygen. These high values of oxygen in the polar re-
gions are near saturation (see next section for more detail).

In the equatorial regions, the deeper 500 m layer (Fig. 5b)
intersects the main core of the oxygen minimum and cuts
through the main thermocline of the subtropical gyres and the
mode waters on the equatorward side of the western bound-
ary currents and the Antarctic Circumpolar Current. This fig-
ure also shows the extended region of the oxygen minimum
waters in the equatorial region. They extend from the eastern
Pacific to almost the western side of the Pacific Ocean, extend
southward and cross the equator in the Indian Ocean. In the
Atlantic sector the oxygen minimum is weaker in value but its
signature extends across the whole of this ocean. The subtrop-
ical gyres (Northern and Southern Hemispheres) show quite
high values consistent with the known ventilation areas
(Talley et al. 2016) on the equatorward side of the main west-
ern boundary currents in the Northern Hemisphere and the
Antarctic Circumpolar Current in the Southern Hemisphere.
The circumpolar band of low oxygen in south of the Antarctic
Circumpolar Current is the upwelling low oxygen Circumpo-
lar Deep Waters (CDW) (Fig. 5b).

These maps have been created with the mean velocity field and
constrained by both the horizontal tracer advection and also the
boundary conditions at continental boundaries (section 3). Conse-
quently, the maps show local extrema that might be otherwise
smoothed out in optimal interpolation (Lozier et al. 1994) at
coastal margins; this is particularly evident in the oxygen mini-
mum layer on the eastern boundaries of the equatorial Pacific

R OACH AND B I NDO F F 1481NOVEMBER 2023

Brought to you by IFREMER/BILIOTHEQUE LA | Unauthenticated | Downloaded 03/11/25 08:18 AM UTC



and Atlantic Oceans as shown in the 100 and 500 m layers
(Figs. 5a,b).

The use of mean flow is also very useful in these maps. For
example, the low oxygen signal in the surface waters at the
Antarctic divergence also correspond precisely with the point
that the eastward surface ocean circulation become eastward
(progressing southward). The divergence in the field implying
vertical upwelling is not explicitly included in DIVA ap-
proach, but the DIVA approach allows the lower oxygen val-
ues observed in the data to be preserved as reflected in the
map at 100 m (Fig. 5a). Less conspicuous examples in the

figures are the higher oxygen values on the equatorward side
of the western boundary currents and Antarctic Circumpolar
Current. These (relatively enhanced) oxygen levels also make
sense when viewed with the mean flow field, higher near the
source regions in the mode waters and gradually declining
with the circulation around the subtropical gyres. Further, the
sharp boundary between the waters in the oxygen minimum
areas near the equator and their distinctive stretched out pat-
tern along the equator, particularly in the Pacific and Atlantic
Oceans, can also be more easily understood in terms of the
long pathways of these waters, coming around respective

FIG. 4. Example correlation maps (1975; 50 m depth) for optimal interpolation and DIVAnd relative to (a),(c) 328N, 1338E in the
Kuroshio region and (b),(d) 7.58N, 838W in the Pacific south of Panama; vectors indicate current heading and the black dot indicates the
reference grid point. (e) Conservative temperature–oxygen and (f) conservative temperature–salinity histograms for WOA18 observations
(dashed contours) and values interpolated from DIVAnd fields (solid contours) in the region indicated by the pink box in the Kuroshio
maps.
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Northern and Southern Hemisphere gyres, flowing westward in
the near equatorward and then returning eastward along the
equator feeding in to the oxygen most oxygen minimum regions
in the so-called blind zones (Luyten et al. 1980) (see Figs. 6a,b).

One of the aims of this atlas is to be able to look at the time
varying state of oxygen based on the available data, in addition
to the steady state. Two examples of the difference of oxygen
from the background state are shown for an earlier and later pe-
riod in the constructed time series. The earlier period of 1970 is
before the notional mean date of the background field (early
to mid-1990s), whereas the later period of 2010 is after this
mean date.

The earlier spatial snapshots (Figs. 5c,d) show for all
oceans, except the Atlantic, higher levels of oxygen relative to
the background field at both 100 and 500 m depths. The
Southern Hemisphere is more distinctive in its pattern of
higher oxygen almost everywhere (Fig. 5, middle-left panel).
In the equatorial and extratropics the pattern of higher oxy-
gen values tend to mimic the pattern of low oxygen found at
this depth and just below. Curiously, the North Atlantic shows
lower oxygen concentration relative to the background in
1970, and as explained in the next section this is not explained
by simply observed temperature changes.

The spatial snapshots for 2010 (Figs. 5e,f) show a distinctly dif-
ferent pattern (and sign) of oxygen change in the global oceans
relative to the background field. At 100 m both hemispheres
show a broad decrease in oxygen content in both the Southern,
Atlantic, and Indian Oceans. These large-scale changes, which
are typically below in the mixed layer (except in formation re-
gions of mode water), are consistent with the previous work that
show decline in oxygen relative to the background field. How-
ever, there are some distinct regions that show an increase in ox-
ygen below the mixed layer. Particularly in the Pacific Ocean, in
a roughly symmetric pattern around the equator, the oxygen lev-
els remain high relative to the background field. This distinct
pattern of higher values converge toward the western equato-
rial warm pool region and this pattern seems nicely tied to the
large-scale circulation of the two Pacific gyres (see Fig. 6a).
WOCE repeat hydrographic sections in the South Pacific sec-
tor show enhanced oxygen in a similar location in the west-
ward flowing part of the South Pacific subtropical gyre (Talley
et al. 2016). At depth (e.g., 500 m, Fig. 5f) the oxygen concen-
tration shows higher values than background in these same
regions as the 100 m depth level of the Pacific Ocean, but dis-
placed more toward the poles. Overall, the 500 m layer shows
a decline, with almost all areas showing negative values with

FIG. 5. Maps of (a),(b) background oxygen concentration (mmol kg21) and oxygen concentration anomalies at 100 and 500 m for
(c),(d) 1970 and (e),(f) 2010.
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respect to the background field (with exceptions notes
above). Relative to the 1970 pattern, the 2010 pattern of
change on the 500 m layer is very much a uniform decrease.
Indeed, the decrease between 2010 and 1970 seems remark-
ably uniform.

c. Oxygen inventory changes and drivers of change

Changes in oxygen content are driven by many factors:
temperature sets oxygen solubility; biology can act as both a
source in the surface waters or a sink in deeper waters; advec-
tion can move oxygen rich waters along isopycnals; changes to
surface wind fields can drive Ekman-driven upwelling or
downwelling of waters; water masses can move vertically
within the water column (heave) and changes in stratification
can act to enhance or suppress diapycnal mixing. To fully ex-
plore all factors lies beyond the scope of this paper.

Time series of oxygen inventory anomalies (relative to the
background) for various depth ranges are shown for the pe-
riod 1970–2010 in Fig. 7. In all depth bands we see a statisti-
cally significant decrease in oxygen inventories between the
1970s and 2000s with the decline predominately occurring
from the late 1980s onward. The upper ocean (0–100 m), full
ocean, and deep ocean (.1000 m) show possible decadal-

scale variability, with peak oxygen inventories occurring in
the mid-1980s; however, this high point is of marginal statisti-
cal significance using our current pessimistic assessment of
95% confidence intervals.

Oxygen inventory changes between 1970 and 2010 are fur-
ther assessed and compared against prior studies in Table 1.
We find that the full ocean oxygen inventory decreased by
20.84% 6 0.42%, with the near-surface (0–100 m) oxygen in-
ventory reducing by 20.85% 6 0.64%. These results are in
line with prior studies included in the SROCC (Bindoff et al.
2022) assessment. In the naive case where ocean oxygen con-
tent was driven solely by temperature changes, we would ex-
pect changes in oxygen inventory and oxygen solubility to be
identical. Examining global trends, we see that temperature-
driven solubility changes explains 21% of the oxygen decline
over the full water column. In the upper 100 m, solubility
changes can explain all of the oxygen decrease, but for the
100–600 m depth range it can explain only 29%, reducing to
19% between 600 and 1000 m, and 11% in the deep ocean.

Figure 8 shows oxygen inventory anomalies as a function of
latitude and time for the full depth of the ocean (Fig. 8a) and
the SROCC depth ranges (Figs. 8b–e), and as a function of
depth and time (Fig. 8f). While the full depth (Fig. 8a), upper

FIG. 6. Maps of mean velocity field used in the DIVA (m s21) for the (a) 0–100 and
(b) 100–600 m layers.
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ocean (Fig. 8c), midocean (Fig. 8d), and deep ocean (Fig. 8e)
inventories show statistically significant declines between
1970 and 2000–15 (at the 2s level) across most latitudes the
surface ocean (Fig. 8b) does not. However, in addition to the
long-term decline we also see significant decadal-scale vari-
ability with an increase in oxygen inventory starting in the
Southern Hemisphere in the late 1960s and moving into the
Northern Hemisphere in the early to mid-1970s in the upper
and midocean, and the late 1970s in the deep ocean, before
global oxygen decline comes to dominate in the late 1980s
and onward. The depth inventories (Fig. 8f) suggests this in-
terdecadal oxygen increase commences in the upper ocean in
the early to mid-1960s before spreading into the deep ocean
in the late 1970s; this high oxygen subsequently is eroded
starting in the surface layer in the upper ocean in the mid-
1980s and extending into the deep ocean in the late 1980s to
mid-1990s.

Maps of percentage change in oxygen inventory and oxygen
solubility “inventory” between 1970 and 2010 are shown in
Fig. 9. We observe that changes in oxygen concentration are
typically larger than can be explained by solubility alone and
that the spatial distribution of oxygen inventory and satura-
tion changes are frequently anticorrelated.

The surface ocean (0–100 m, Fig. 9a) shows increases in
oxygen concentration over the North Atlantic and much of
the Pacific. In the North Atlantic we see the strongest in-
creases in the Gulf Stream and along the eastern coast of
Greenland, while in the Pacific we see increasing oxygen
along the equator and gyre rims, with declining oxygen in the
gyre interiors, along the North American coast, and in the
Kuroshio. The southern Indian Ocean and Southern Ocean
predominately show neutral to weak decreases in oxygen in-
ventory. Marginal seas display a variety of behaviors; the
Mediterranean, Gulf of Mexico, South China Sea, Arabian
Sea, Coral Sea, and Sea of Okhotsk show increases in oxygen
content, while the Bay of Bengal, Sea of Japan, and East
China Sea show clear declines. The Caribbean Sea and
Tasman Sea show no significant changes.

The pattern of increases in surface oxygen saturation are
not explained by the reduced saturation estimated from the
warming of these regions (Fig. 9b). However, there is some
evidence that biological activity can cause supersaturation of
the surfaces associated with increased oxygen production
from “greening” of the ocean in some Earth system models
(Henson et al. 2010) and from remotely sensed observations
of chlorophyll (Gregg and Rousseaux 2019). The pattern of

FIG. 7. Oxygen anomaly inventories and 95% confidence intervals for (a) the surface ocean (dark blue), upper ocean (red), and middepth
ocean (green) and (b) the deep ocean (light blue) and full water column (black).

TABLE 1. Percentage change in oxygen inventories assessed from this study and earlier results as synthesized from the SROCC
chapter 5 (Bindoff et al. 2022), Table 5.2 (p. 472). Error bars for prior studies and SROCC assessment are 90% confidence intervals,
and error bars for this study are 95% confidence intervals.

Helm et al. (2011) Ito et al. (2017) Schmidtko et al. (2017) SROCC This study

Full depth 20.87 6 0.53 } 21.43 6 0.70 21.15 6 0.88 20.84 6 0.42
0–100 m 21.30 6 0.54 21.65 6 0.63 20.38 6 1.06 21.11 6 0.95 20.85 6 0.64
100–600 m 22.04 6 0.60 23.17 6 1.34 21.06 6 1.36 22.09 6 1.42 21.72 6 0.80
600 m–seafloor 20.81 6 0.57 } 21.51 6 0.62 21.16 6 0.84 20.71 6 0.47
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saturation change in these ocean basins largely coincides with
the pattern of primary productivity increases (Bindoff et al.
2022; Gregg and Rousseaux 2019).

The upper ocean (100–600 m, Figs. 9c,d) demonstrates
strong decreases in oxygen inventory associated with expan-
sion of the oxygen minimum zones in the east Pacific, equato-
rial Atlantic, and the Indian Ocean, and in the Southern
Ocean likely relating to increased upwelling of low oxygen
deep waters driven by increasing wind speed (Waugh et al.
2013). We see increases in oxygen in the North Atlantic, tropi-
cal western North Pacific, the central South Pacific, and the
Tasman Sea in a pattern consistent with the residual downw-
elling seen in Liang et al. (2017), suggesting these upward
trends may be driven by increased downwelling of oxygen
rich surface waters. As above changes in oxygen saturation do
not explain the changes observed in oxygen inventory.

In the midocean and deep ocean (600–1000 m, Fig. 9e, and
1000 m to the seafloor, Fig. 9g) oxygen change is dominated
by large decreases in the Southern Ocean, moderate decreases
in the Pacific and South Atlantic Oceans, and minor decreases
to small increases in the Indian and North Atlantic Oceans.
These changes in oxygen content are too large to be explained
by solubility (Figs. 9f,h), but are consistent with our present
understanding of changes to the lower limb of the global over-
turning circulation, which includes a slowing of deep ocean
ventilation (Purkey et al. 2019; Bindoff et al. 2022).

5. Conclusions

We have created a new atlas of oxygen, salinity, and tempera-
ture using Data Interpolating Variational Analysis (Troupin

et al. 2012; Barth et al. 2014). This atlas has a spatial grid of
1/283 1/28, which represents an improvement over prior oxygen
atlases (e.g., Schmidtko et al. 2017; Ito et al. 2017; Ito 2022).
The use of DIVAnd combined with CMCC Historical Ocean
Reanalysis (CHOR) velocity fields means that our atlas is tied
to tracer advection and coastal boundary conditions. Conse-
quently, this approach explicitly removes leakage of artificial
signals across topographic barriers, driving a more “tracer-
like” behavior of the interpolated variables. This approach
is a natural and physically consistent inclusion and over-
comes the ad hoc approaches of treating topography and
coastlines in earlier atlases using optimal interpolation (e.g.,
Bretherton et al. 1976). It is a straightforward process to up-
date to the present when additional profile data become
progressively available and to add further variables like ni-
trate and phosphate. This atlas is suitable for detection and
attribution studies of human influence on oxygen decline
and vastly improves the atlases used in earlier studies (e.g.,
Andrews et al. 2013; Helm et al. 2011).

Our atlas shows good agreement in structure with the present
understanding of oxygen distribution in the world’s oceans. We
find a decrease in global oxygen full-depth inventory of20.84%6

0.42% change over the period 1970–2010, the upper ocean
(0–100 m) shows a change of20.85%6 0.64%, while the mid-
ocean (100–600 m) and deep ocean (600 m and deeper) show
changes of 21.72% 6 0.80% and 20.71% 6 0.47%, respec-
tively. These estimates are comparable with prior studies and
the IPCC SROCC assessment (Bindoff et al. 2022). We find
that temperature-driven solubility changes explain 29% of the
oxygen inventory change in the upper ocean, reducing to 11%

FIG. 8. Oxygen inventory anomalies as a function of time and latitude for (a)–(e) selected depth ranges and (f) depth. Dotted areas indi-
cate where the change in oxygen inventory is not significant at the 2s level relative to the 1970 value.
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in the deep ocean. These results mean that a substantial frac-
tion of the oxygen declines observed in the oceans are driven
by physical changes in the ocean, such as increased stratifica-
tion (Bindoff et al. 2022), reduced subduction, or by biological
activity though a slower circulation and increased oxygen con-
sumption (Bindoff and McDougall 2000).

Examining changes on a regional basis in the surface ocean
(0–100 m), we see some significant areas of increasing oxygen
inventory, potentially explained by “greening” of the upper
ocean causing enhanced oxygen production (Henson et al.
2010; Bindoff et al. 2022). The upper ocean is dominated by
decreases in oxygen and expansion of the oxygen minimum

zones likely driven by upwelling of deep waters driven by in-
creased wind (Waugh et al. 2013). The mid- and deep ocean
are dominated by decreased oxygen in the South Atlantic,
Pacific, and Southern Oceans, consistent a slowing deep ocean
ventilation (e.g., Purkey et al. 2019).

Potential future work includes using the atlas for detection
and attribution analysis; extending the mapping to other bio-
geochemical parameters; refining the error analysis and up-
dating the atlas to include data from biogeochemical Argo
floats, validation of biogeochemical simulations, and examin-
ing the temporal changes in more detail. For example, there is
an increase in oxygen seen in the deep Southern Ocean in the

FIG. 9. Maps of changes in (a),(c),(e),(g) oxygen inventories and (b),(d),(f),(g) oxygen solubility from 1970 to 2010 for (a),(b) the surface
layer, (c),(d) 100–600 m, (e),(f) 600–100 m, and (g),(h) below 1000 m. Dotted areas indicate where the change in oxygen inventory is not
significant at the 2s level relative to the 1970 value.
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early part of the time series (from 1970s and peaking in 1985,
Fig. 7).
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APPENDIX

Supplementary Figures

Figures A1 and A2 present example background
oxygen concentration maps and example correlation
maps for DIVAnd over a range of different correlation
scales and advection weighting. Details are discussed
in section 3c.

FIG. A1. Example background oxygen concentration (mmol kg21) maps for a range of different Lx and wu.
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