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Abstract. The partitioning of CO2 between atmosphere and ocean depends to a large degree not only on the amount 

of dissolved inorganic carbon (DIC) but also of alkalinity in the surface ocean. That is also why, in the context of 10 

negative emission approaches ocean alkalinity enhancement is discussed as one potential approach. Although 

alkalinity is thus an important variable of the marine carbonate system little knowledge exists how its representation 

in models compares with measurements. We evaluated the large-scale alkalinity distribution in 14 CMIP6 models 

against the observational data set GLODAPv2 and showed that most models as well as the multi-model-mean 

underestimate alkalinity at the surface and in the upper ocean, while overestimating alkalinity in the deeper ocean. 15 

The decomposition of the global mean alkalinity biases into contributions from physical processes (preformed 

alkalinity), remineralization, and carbonate formation and dissolution showed that the bias stemming from the physical 

redistribution of alkalinity is dominant. However, below the upper few hundred meters the bias from carbonate 

dissolution can become similarly important as physical biases, while the contribution from remineralization processes 

is negligible. This highlights the critical need for better understanding and quantification of processes driving calcium 20 

carbonate dissolution in microenvironments above the saturation horizons, and implementation of these processes into 

biogeochemical models. 

For the application of the models to assess the potential of ocean alkalinity enhancement to increase ocean carbon 

uptake and counteract ocean acidification, a back-of-the-envelope calculation was conducted with each model’s global 

mean surface alkalinity and DIC as input parameters. We find that the degree of compensation of DIC and alkalinity 25 

biases at the surface is more important for the marine CO2 uptake capacity than the alkalinity biases themselves. The 

global mean surface alkalinity bias relative to GLODAPv2 in the different models ranges from -85 mmol kg-1 (-3.6%) 

to +50 mmol kg-1 (+2.1%) (mean: -25 mmol kg-1 or -1.1%), while for DIC the relative bias ranges from -55 mmol kg-

1 (-2.6%) to 53 mmol kg-1 (+2.5%) (mean: -13 mmol kg-1 or -0.6%). Because of this partial compensation, all but two 

of the CMIP6 models evaluated here overestimate the Revelle factor at the surface and thus overestimate the CO2-30 

draw-down after alkalinity addition by up to 13% and pH increase by up to 7.2%. This overestimate has to be taken 

into account when reporting on efficiencies of ocean alkalinity enhancement experiments using CMIP6 models.  
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This study evaluated the alkalinity distribution in 14 climate models and found that most models underestimate 35 

alkalinity at the surface and overestimate in the deeper ocean. It highlights the need for better understanding and 

quantification of processes driving alkalinity distribution and calcium carbonate dissolution and the importance of 

accounting for biases in model results when evaluating potential ocean alkalinity enhancement experiments.  

1 Introduction 

The carbon dioxide (CO2) concentration in the atmosphere is largely determined by the marine carbonate system in 40 

the surface ocean since the partitioning of CO2 between atmosphere and ocean depends to a large degree on the amount 

of DIC and alkalinity in the surface ocean (Zeebe and Wolf-Gladrow, 2001). Since preindustrial times the ocean has 

taken up about a quarter of the anthropogenic CO2 emitted into the atmosphere (Friedlingstein et al., 2022). Once in 

the ocean, most of the aqueous CO2 is converted into bicarbonate (HCO3
-) and carbonate (CO3

2-) ions, the two other 

carbonate species of the so-called dissolved inorganic carbon (DIC). The oceanic uptake of anthropogenic carbon 45 

leads to an increase in aqueous CO2 and total DIC and decreases ocean pH, and thus to a change in the chemical 

equilibria between the carbonate species. Total Alkalinity (TA), a measure of the excess of bases (proton acceptors) 

over acids, plays a central role in determining how much of the DIC pool exists in the form of CO2, which is the only 

of the three marine carbonate species which can exchange with the atmosphere. The overall effect of the carbonate 

chemistry on the marine uptake capacity of anthropogenic CO2 emissions is called the buffering capacity of seawater 50 

- also known as the Revelle factor, where a low Revelle factor indicates a high buffering capacity and vice versa 

(Revelle and Suess, 1957, Middelburg et al., 2020). This implies that the resulting change in pH and CO2 from the 

same process, e.g., carbonate dissolution, differs depending on the background conditions in TA and DIC (Middleburg 

et al., 2020). Any changes in pH and CO2 would be smaller in low-sensitivity or well-buffered seawater with a high 

TA:DIC ratio (low Revelle factor). That is why when Earth System Models (ESMs) are used to quantify the CO2 55 

uptake potential of the ocean, it is important to know the initial states of TA and DIC in the models.  

In 2015, the ‘Paris Agreement’ was adopted by 196 governments at the Conference-of-Parties 21 (COP21). Its goal is 

to restrict human-induced global warming to well below 2°C, preferably to 1.5°C, compared to preindustrial levels. 

To accomplish this goal, the signing countries aim to reach peak emissions as quickly as possible and to achieve 

carbon neutrality by the mid-21st century. This goal is likely not achievable through carbon emission reductions alone 60 

according to socio-economic scenario simulations with Integrated Assessment Models (Rogelj et al., 2018). The IPCC 

Special Report on Global Warming of 1.5°C states that all (most) projected pathways that limit warming to 1.5°C 

(2°C) also require use of carbon dioxide removal (CDR) or negative emission technologies (NETs), on the order of 

100–1000 Gt CO2 over the 21st century (Rogelj et al., 2018). Existing and potential CDR measures are afforestation 

and reforestation, land restoration and soil carbon sequestration, bioenergy with carbon capture and storage (BECCS), 65 

direct air carbon capture and storage (DACCS), enhanced weathering and ocean alkalinization (Gattuso et al., 2018; 

de Coninck et al., 2018; Board and National Academies of Sciences, 2019; National Academies of Sciences, 2021). 

So far, much research has been focused on land-based CDR measures and it has become clear that it would be 

extremely difficult to limit global warming to the agreed level with land-based NETs alone (Fuss et al., 2018; 
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Lawrence et al., 2018; Smith et al., 2016). Less is known about ocean-based NETs, although some of them appear 70 

promising, especially with respect to the potential scale of application (Gattuso et al., 2018; Boettcher et al., 2019). 

One promising pathway could be ocean alkalinity enhancement (OAE) (Köhler et al., 2013, Renforth and Henderson, 

2017). This method is an accelerated version of a natural process: silicate weathering, where alkaline minerals can be 

mined and crushed (e.g., olivine) or created (e.g., lime) and added to the surface ocean. Alternatively, alkaline 

solutions from electrochemical weathering can be added. In both scenarios, the alkalinity of the upper ocean is 75 

increased and with it the carbon storage capacity of seawater, which leads to an increased uptake of CO2 from the 

atmosphere. Aside from lab experiments (Hartmann et al., 2022)  and first results from microcosm experiments 

(Ferderer et al., 2022), these OAE applications are untested at larger scales, so that simulations with state-of-the-art 

Earth System Models (ESMs) are essential for assessing the efficiency and biogeochemical implications of ocean 

alkalinization. Previous model experiments have provided first estimates of the efficiency for idealized experiment 80 

set-ups, e.g., Ilyina et al. (2013), Köhler et al. (2013), Keller et al. (2014), Hauck et al. (2016), González and Ilyina 

(2016), Lenton et al. (2018), or Burt et al. (2021). Although these modeling studies have suggested that OAE may be 

a viable method to help reduce atmospheric CO2, the results are difficult to compare due to different experimental 

designs. Another caveat is that previous estimates of OAE efficiency and side effects were based on single model 

experiments and did not include a thorough assessment of simulated alkalinity and model-dependence of the results. 85 

Now, more and more projects are underway or in planning that seek to apply more realistic scenarios for OAE e.g., 

Butenschön et al. (2021), which is why a model evaluation is even more important.  

There have been a number of studies that evaluate the simulation of ocean biogeochemical parameters in state-of-the-

art Earth System Models (ESMs) that contributed to CMIP6, the 6th phase of the Coupled Model Intercomparison 

Project (Eyring et al., 2016), but did not include the evaluation of alkalinity (Séférian et al. (2020), Tagliabue et al. 90 

(2021), Kwiatkowski et al. (2020)) or if so then only with one global score number (Fu et al., 2022). The recent study 

by Planchat et al. (2022) assessed simulated alkalinity and parameters related to the carbonate pump in CMIP6 models 

and their predecessor CMIP5 versions. They report a significant improvement in the representation of alkalinity and 

the carbonate pump in CMIP6 versus CMIP5. While some models did increase in complexity, they find that potential 

effects of future ocean changes (e.g., ocean acidification) are not well constrained in many models.  95 

Here we present further analyses of biases in alkalinity and DIC in CMIP6 models. We show how those biases can be 

attributed to the ocean’s physical, soft-tissue, or carbonate counter pump following Koeve et al. (2014). Furthermore, 

we provide an estimate of each model’s carbonate system sensitivity to OAE depending on their alkalinity and DIC 

bias in historical simulations.  

2. Methods 100 

2.1. CMIP6 models and observational data products 

Our evaluation includes 14 ESMs with ocean biogeochemistry modules from ten modelling centers that contributed 

to CMIP6 and that provided the variables dissic (DIC [mol m-3]), no3 (nitrate concentration [mol m-3]), o2 (dissolved 
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oxygen concentration [mol m-3]), ph (seawater pH on total scale), po4 (phosphate concentration [mol m-3]), so (salinity 

(S) [g kg-1]), talk (TA [mol m-3]), and thetao (potential temperature [°C]), Table 1).  105 

Table 1: Overview of CMIP6 models considered in this study showing the climate model name and description paper, the model 

ocean component, the model biogeochemistry component, horizontal grid resolution, number of vertical levels, and data reference 

CMIP6 ESM Ocean Model Ocean 

Biochem. 

Model 

Ocean Horizontal 

Resolution (lon x lat) 

Ocean 

vertical 

levels 

Dataset Reference 

ACCESS-ESM-1.5 

(Ziehn et al., 2020) 

MOM5 WOMBAT  360 x 300  (~1°) 50 (Ziehn et al., 2019) 

CanESM5 

(Swart et al., 2019b) 

NEMO3.4.1 

(ORCA1)  

CMOC 361 x 290  (~1°) 45 (Swart et al., 2019a) 

CESM2 

(Danabasoglu et al., 2020) 

POP2  MARBL 320 x 384  (~1°) 60 (Danabasoglu, 2019a) 

CESM2-WACCM 

(Danabasoglu et al., 2020) 

POP2 MARBL 320 x 384  (~1°) 60 (Danabasoglu, 2019b) 

CNRM-ESM-2-1 

(Séférian et al., 2019) 

NEMO 3.6 

(eORCA1) 

PISCES 2.s 362 x 294  (~1°) 75 (Seferian, 2018) 

GFDL-CM4 

(Held et al., 2019; Dunne et 

al., 2020a) 

MOM6 GFDL-

BLINGv2 

1440 x 1080 (~ 0.25°) 75 (Guo et al., 2018) 

GFDL-ESM4 

(Dunne et al., 2020b) 

MOM6 GFDL-

COBALTv2 

720 x 576 (~0.5°) 75 (Krasting et al., 2018) 

IPSL-CM6A-LR 

(Boucher et al., 2020) 

NEMO-OPA 

(eORCA1.3) 

NEMO-

PISCES 

362 x 332 (~1°) 75 (Boucher et al., 2018) 

MPI-ESM1-2-HR 

(Müller et al., 2018; 

Mauritsen et al., 2019) 

MPIOM1.63  HAMOCC6 802 x 404 (~0.4°) 40 (Jungclaus et al., 2019) 

MPI-ESM1-2-LR 

(Mauritsen et al., 2019) 

MPIOM1.63  HAMOCC6 256 x 220 (~1.5°) 40 (Wieners et al., 2019) 

MRI-ESM2-0 

(Yukimoto et al., 2019a) 

MRI.COM4.4 MRI.COM4.4 360 x 364 (~1°) 61 (Yukimoto et al., 

2019b) 

NorESM2-LM 

(Tjiputra et al., 2020) 

MICOM  HAMOCC 360 x 384 (~1°) 70 (Seland et al., 2019) 

NorESM2-MM 

(Tjiputra et al., 2020) 

MICOM HAMOCC 360 x 384 (~1°) 70 (Bentsen et al., 2019) 

UKESM1-0-LL 

(Sellar et al., 2019) 

NEMO-

HadGEM3-GO6.0 

(eORCA1)  

MEDUSA2 360 x 330 (~1°) 75 (Tang et al., 2019) 

 

For the 14 CMIP6 models, monthly data from the first available ensemble member of the historical simulation was 

downloaded from the CMIP6 archive (https://esgf-data.dkrz.de), post-processed and regridded with bilinear 110 

remapping onto a common 1°x1° grid using Climate Data Operators (cdo, Schulzweida (2022)). Salinity normalization 

of alkalinity was achieved by using a reference salinity of 35 g kg-1: 

𝑇𝐴𝑛 =
𝑇𝐴

𝑆
 ×  35 (1) 

The present-day (1995-2014) model climatologies from the historical simulations are evaluated against gridded 

observational products, e.g., TA, DIC and pH from the GLODAPv2.2016b Mapped Climatology (in the following 115 

GLODAP, Lauvset et al. (2016)), oxygen and nutrients from the World Ocean Atlas 2018 dataset (WOA, Garcia H.E. 
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(2019)) and GLODAP, and salinity and temperature from the Polar science center Hydrographic Climatology 

(PHC3.0, Steele et al. (2001)) and WOA. For the evaluation of global mean vertical profiles, the model data is 

interpolated onto the same 33 vertical levels used in the GLODAP climatology.  

2.2. Analysis of the vertical distribution of total alkalinity - the TA* Method 120 

In order to better understand the vertical distribution of modeled alkalinity compared to the observed one, we follow 

the ‘TA* Method’ as described by Koeve et al. (2014). This method aims to separate the effects of biogeochemical 

processes and ocean circulation on the distribution of TA. To achieve this, TA is separated into three components: 

preformed TA (TA0), TA decrease from remineralization of organic matter (TAr), and TA increase due to calcium 

carbonate (CaCO3) formation and dissolution (TA*): 125 

𝑇𝐴 =  𝑇𝐴0 + 𝑇𝐴∗ − 𝑇𝐴𝑟   [mmol m−3] (2) 

Preformed TA represents the TA a water parcel had when it was last in contact with the atmosphere. This preformed 

TA is derived by applying multi-linear regression of upper ocean (here top 100 m) salinity, temperature, and PO (a 

conservative water-mass tracer analog to NO in Broecker (1974)) for each model, where  

𝑃𝑂 = 𝑂2 + 𝑟−𝑂2:𝑃𝑂4 ∙ 𝑃𝑂4 , (3) 130 

with 𝑟−𝑂2:𝑃𝑂4 = 170, onto upper ocean TA values. The obtained regression coefficients are then applied to salinity, 

potential temperature, and PO everywhere in the interior ocean to compute the model’s TA0 at any location.  

The TAr term describes the reduction of TA stemming from the remineralization of organic matter. This term can be 

described as a function of the simulated Apparent Oxygen Utilization (AOU, Garcia and Levitus, 2006):  

𝑇𝐴𝑟 =  𝑟𝐴𝑙𝑘:𝑁𝑂3  ∙  𝑟𝑁𝑂3:−𝑂2  ∙ 𝐴𝑂𝑈, (4) 135 

with rAlk:NO3 = 1.26, rNO3:-O2 = 1/10.625, and AOU as difference between oxygen saturation computed following Weiss 

(1970) and oxygen concentration O2.  

Lastly, the contribution from carbonate formation and dissolution, TA*, is computed as residual after rearranging Eq. 

(2).  

We applied the TA* Method to 10 of 14 CMIP6 models (CNRM-ESM2-1, GFDL-CM4, GFDL-ESM4, IPSL-CM6A-140 

LR, MPI-ESM1-2-HR, MPI-ESM1-2-LR, MRI-ESM2-0, NorESM2-LM, NorESM2-MM, UKESM1-0-LL), which 

had the necessary output fields (talk, so, thetao, o2, and po4).  

2.3. Theoretical Model Sensitivity to Alkalinity Enhancement 

Systematic biases in TA and DIC have implications for a model’s carbonate system sensitivity to added alkalinity 

during OAE and thus differences in ocean carbon uptake and pH increase may result. In order to evaluate the range 145 

of this carbonate system sensitivity we conducted back-of-the-envelope-calculations for all ESMs and the GLODAP 

dataset using the Matlab toolbox CO2SYS (Lewis et al., 1998; Van Heuven et al., 2011). This toolbox computes the 
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remaining parameters of the carbonate system in seawater based on two input parameters. Here, we use the time and 

area-weighted mean surface TA and DIC converted from mmol m-3 to µmol kg-1 with a density of 1026 kg m-3, see 

Figure 1 for individual values. We evaluate the CO2SYS output fields Revelle Factor, pH, and pCO2 (partial pressure 150 

of CO2 in seawater) based on the CMIP6 output and additionally the changes in pCO2 after an addition of 100 µmol 

kg-1 TA against GLODAP observations.  

 

 

Figure 1: (a) Global mean surface total alkalinity  (TA) of the 14 CMIP6 models and the multi-model-mean (MMM), black vertical 155 
line indicates GLODAP value, (b) same for dissolved inorganic carbon (DIC). 

Additionally, we use the following values for the computation of the carbonate systems: salinity = 34.0, temperature 

= 15 °C, silicic acid = 2 µmol kg-1, and phosphate = 1 µmol kg-1. Gas exchange with the atmosphere is not considered 

in this exercise. 

3. Results 160 

3.1. Analysis of CMIP6 alkalinity and DIC 

The comparison of the models’ simulated TA at the ocean surface to the GLODAP climatology shows that – on a 

global scale - most models underestimate surface TA, except for four models, CanESM5, GFDL-CM4, GFDL-ESM4 

and MRI-ESM2-0, which simulate too much TA at the surface. The multi-model-mean (MMM) is slightly negatively 

biased (Figure 2). Near-surface TA is strongly correlated to salinity, and upper ocean salinity is governed by freshwater 165 

fluxes, e.g., precipitation and evaporation (Millero et al., 1998), and river flows (Cai et al., 2010). Thus, TA is often 

normalized with salinity to exclude the freshwater effect in the alkalinity assessment (Millero et al., 1998; Fry et al., 

2015). Overall, the comparison of salinity-normalized TA to GLODAP data shows bias patterns very similar to those 

of TA for all models. Most notably, some regional peculiarities that stem from salinity biases rather than 

biogeochemical processes are smoothed out (e.g., North Atlantic bias in NorESM) (Figure S1). 170 
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Figure 2: Surface distribution of total alkalinity [TA, mmol m-3] in GLODAP (top left) as well as its error estimate (top center), 

and the CMIP6 multi-model-mean (MMM) bias (top right) as well as the individual model’s biases. 
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The vertical profiles of globally averaged TA and normalized TA (Figure 3) show the aforementioned distribution of 

the CMIP6 models’ surface bias as well, with most of the models showing less surface TA than GLODAP. The models 175 

mostly reproduce the features of the observed TA depth profile: the surface minimum, the subsurface maximum of 

TA, another minimum at around 500 m depth and the increase of TA with depth below that (Figure 3a). Two models 

of the same family (MPI-ESM1-2-LR and MPI-ESM1-2-HR) have less TA than the GLODAP product over the whole 

water column and two models (GFDL-CM4 and GFDL-ESM4) have higher TA overall indicating that their global 

inventory of TA is too low (too high) compared to GLODAP. The explanation for the systematic low bias in the MPI 180 

model seems to be that too much TA was lost to the sediments during the model spin up (Koeve et al., 2014; Planchat 

et al., 2022). The high TA bias in the GFDL model was apparently introduced in the post-processing step during the 

unit conversion from gravimetric (µmol kg-1) to volumetric (mmol m-3, common SI unit). The unit conversion is 

usually based on a chosen density value which is not prescribed in modeling protocols. While most models chose a 

value between 1024 kg m-3 and 1028 kg m-3, the modeling group at GFDL apparently converted the units using a value 185 

of 1035 kg m-3 (Planchat et al., 2022). The profiles of the other models show either too little TA at the surface and too 

much at depth or vice versa, indicating that their TA inventory is closer to the observed one but that the TA distribution 

in the water column differs from the observations. Salinity-normalization generally does not change the bias patterns 

(Figure 3b). The salinity-normalization does affect the shape of the profiles in the upper ocean, where the surface 

minima and the subsurface maxima seen in TA disappear. Those features are essentially related to the upper ocean 190 

salinity distribution.  

 

Figure 3: Vertical profiles of global mean TA (a) and salinity-normalized TA (b) of the CMIP6 models, the multi-model-mean 

(MMM in grey) and GLODAP (black) with error estimate (black dashed lines) 

The near-surface TA maximum seen in the global profile is also evident in the Atlantic, Pacific and Indian Oceans 195 

(Figure 4). The high TA is related to the salinity maxima of subtropical underwater in the respective basins (Talley, 

2002) and all models replicate this pattern. In the Atlantic Ocean, a TA minimum can be observed in the GLODAP 

data at around 800 m depth which represents Antarctic Intermediate Water in the South Atlantic (low salinity) 
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(Takahashi et al., 1981). This minimum is not well reproduced by the ESMs. The relatively low TA in the deep Atlantic 

Ocean (compared to the Pacific and Indian Ocean) between 1,500 m and 3,500 m depth and the small gradient with 200 

depth is linked to North Atlantic Deep Water. Most models reproduce this pattern, while the CNRM, IPSL and UK 

ESMs simulate a strong increase of TA below about 2,000 m depth (Figure 4b). The profile shapes in the Southern 

Ocean and Arctic Ocean are generally reproduced in terms of the TA gradients with depths, albeit the biases in absolute 

amount of TA present are visible here as well.  

 205 

Figure 4: Global mean TA profiles for the major ocean basins. Color assignment is the same as in Figure 3.  

The surface DIC patterns compared to GLODAP show very similar patterns to those for TA, both in general direction 

und local distribution (Figure 5). The global mean surface biases in TA compared to GLODAP range from -85 mmol 

m-3 (-3.6 %) to +50 mmol m-3 (+2.1 %), where the MMM bias is -25 mmol m-3 (-1.1 %) and for the global mean 

surface DIC the biases range from -55 mmol m-3 (-2.6 %) to 53 mmol m-3 (+2.5 %), with the MMM bias being -13 210 

mmol m-3 (-0.6 %). TA biases likely lead DIC biases, as DIC can adjust through gas-exchange of CO2. Models with 

higher TA have higher DIC values and vice versa. We next investigate the origin of the models’ alkalinity biases.  
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Figure 5: Surface distribution of DIC in GLODAP as well as its error estimate, and the CMIP6 multi-model-mean (MMM, top 

right) bias as well as the individual models’ biases. 215 
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3.2. Analysis of the vertical alkalinity distribution 

The goal of the ‘TA* Method’ (Koeve et al., 2014) is to separate the TA bias into contributions from 1) an inadequate 

representation of ocean physics or forcings (e.g., circulation, freshwater flow, evaporation, and precipitation), 2) the 

parametrization of calcium carbonate (CaCO3) formation and dissolution and 3) the parametrization of organic matter 

remineralization processes.  220 

The vertical distribution of the TA bias with respect to GLODAP and its components according to the TA* method 

are shown in Figure 6. The MPI models have too little TA at all water depths. The IPSL-CM6A-LR, CNRM-ESM2-

1, the NorESM2 models and the UKESM1 model underestimate upper ocean TA and overestimate TA at depth. The 

MRI-ESM2-0 overestimates TA in the upper ocean and underestimates it at depths below ~ 1,000 m. Both GFDL 

models contain too much TA at all depths for the above explained reason of a too high seawater density during units 225 

conversion. In the upper 1 km most of the models’ alkalinity biases are due to their preformed TA (Figure 6b). This 

also implies that the subsurface maxima and minima in the observed TA profile are due to preformed TA and not 

related to biogeochemical modifications of TA. Biases in the representation of organic matter remineralization 

processes play a negligible role (Figure 6c), while for some models the bias in TA from calcium carbonate dissolution 

in the interior ocean (Figure 6d) is in absolute terms comparable to or even larger than the bias in preformed TA.  230 
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Figure 6: Globally averaged depth profiles of biases in TA, preformed TA (TA0), TA from remineralization (TAr) and from calcium 

carbonate formation and dissolution (TA*) in 10 CMIP6 models compared to the GLODAP climatology. 

 

3.3. Impact of biases on efficiency of ocean alkalinity enhancement 235 

Biases in simulated surface TA and surface DIC have implications for the individual models’ efficiency of OAE in 

terms of change in pCO2 and pH and thus in the marine CO2 uptake capacity. In order to evaluate the range of this 

sensitivity, a back-of-the-envelope-calculation was conducted to calculate the full carbonate system from two input 

parameters (global mean surface TA and DIC in µmol kg-1) (see Methods, see Figure 1 for input values). Results from 

this calculation together with the models’ TA-to-DIC-ratio are shown in Figure 7. All panels are sorted by Revelle 240 

Factor in ascending order. The Revelle factor or buffer factor describes the ocean’s capability to take up atmospheric 

CO2. It is the ratio of instantaneous change in pCO2 to the change in DIC at the ocean surface. Depending on the state 
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of the carbonate system, which is fully described by DIC and TA, the speciation of DIC into the three carbonate 

species CO3
2-, HCO3

-, and CO2 is determined. The lower the Revelle factor, the greater is the buffering capacity and 

the more DIC occurs as CO3
2- or HCO3

-, effectively lowering the pCO2 levels in the ocean. This allows the ocean to 245 

take up more CO2 which in turn also lowers atmospheric pCO2 (Egleston et al., 2010).  

The global mean Revelle Factor from the CO2SYS computation for the GLODAP dataset is the third lowest in our 

compilation, 10.19, and thus almost all models have a higher Revelle Factor than GLODAP data suggest ranging from 

10.18 to 10.54 (Figure 7a). The Revelle factor is anti-correlated to the average TA-to-DIC-ratio (Figure 7b). Also, the 

order of relative surface pH (Figure 7c) and pCO2 (Figure 7d) values corresponds largely to each model’s rank in 250 

Revelle Factor and TA-DIC-ratio. Models with a higher Revelle factor than GLODAP have a lower buffer capacity 

which leads to already higher pCO2 values (290 to 314 µatm) and lower pH (8.12 to 8.17) than observed in GLODAP 

(pCO2: 292 µatm, pH: 8.16). Those models also show a greater decrease in pCO2 for the hypothetical addition of 100 

µmol kg-1 of TA (Figure 7e) than GLODAP (-92 µatm), ranging from a 91 µatm to a 104 µatm decrease in pCO2 . 

 255 

Figure 7: Carbonate system parameters were computed for all models, the multi-model-mean (MMM) and the GLODAP data (grey 

line) with the CO2SYS toolbox, based on the two input parameters global mean alkalinity and DIC. The results are sorted by 

Revelle Factor in ascending order for all panels. Shown are the Revelle factor (a), the TA-DIC ratio (b) pH (c), pCO2  (d) and 

difference in pCO2 after a 100 µmol kg-1 addition of TA. 

In relative terms, we find that the ESMs’ TA biases range from -3.6% to +2.1% with a mean of -1.1% and their DIC 260 

biases ranges from -2.6% to +2.5% with a mean value of -0.6% (Figure 1). Furthermore, the ESMs estimates of the 

pCO2 decrease after a hypothetical TA enhancement by 100 µmol kg-1 t ranges from -1.0% up to 13.0% (mean 5.1%) 

(Figure 8). The controlling factor for this pCO2 bias is in most cases the Revelle factor rather than the TA bias alone, 

because the TA bias is always accompanied by a compensating DIC bias.  
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 265 

Figure 8: Relative difference of the Revelle factor (blue) and TA-DIC-Ratio (green) to GLODAP, as well as pCO2 difference after 

a 100 µmol kg-1-increase in TA (orange) in CMIP6 models and the MMM. The models are sorted by Revelle Factor difference to 

GLODAP. 

This simplified OAE example shows that in 12 out 14 ESMs an increase of 100 µmol kg-1 in TA would lead to a 

higher decrease in pCO2 than observational data from GLODAP suggest. A higher sensitivity to TA changes due to a 270 

higher Revelle factor has also been shown in Hauck et al. (2016) during a decadal scale OAE simulation. We 

additionally calculated the effect of the additions of 200, 500 and 1,000 µmol kg-1 of TA. The degree of CO2 uptake 

overestimation decreases with the amount of TA added, but for a theoretical addition of 1,000 µmol kg-1 of TA the 

maximum CO2 uptake overestimate with respect to GLODAP is still 8% (Table S2). We conclude that almost all 

ESMs might overestimate the additional CO2 uptake in simulated OAE experiments. 275 

4. Discussion and conclusions 

We evaluated CMIP6 models regarding their large-scale biases in TA and DIC compared to the gridded data set 

GLODAP. Ten out of 14 ESMs underestimate surface TA (MMM: -25 mmol m-3 or -1.1%) and DIC (MMM: -13 

mmol m-3 or -0.6%) with respect to observations. The range of the bias in TA is -85 mmol m-3 (-3.6 %) to 50 mmol 

m-3 (+2.1 %) and in DIC is -55 mmol m-3 (-2.6 %) to 53 mmol m-3 (+2.5 %). This is a reversal from the TA and DIC 280 

representation in CMIP5, where most models and the MMM overestimated these variables, and the absolute and 

relative errors were at least twice as large as in CMIP6 (Planchat et al., 2022). The direction of the bias and the relative 

biases of TA and DIC have a direct impact on the buffer capacity of the surface ocean and should be known when 

assessing model experiments simulating OAE or other NETs that directly affect the ocean’s carbonate chemistry. 

Terhaar et al. (2022) also found that CMIP6 models overestimate the Revelle factor and propose that CMIP6 models 285 

underestimate the anthropogenic ocean carbon sink 1994-2007 by 9%, of which around 3% can be explained by the 

overestimation of the Revelle factor and the remaining 6% are related to the models’ underestimation of the Atlantic 

Meridional overturning circulation.  
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It is helpful to understand the contributions of the physical and biological - the soft tissue and calcium carbonate - 

pumps to these TA biases in ESMs. We separated the global mean vertical TA bias into contributions from preformed 290 

alkalinity (physical pump), remineralization (soft tissue pump) and alkalinity from calcification and carbonate 

dissolution (CaCO3 pump) following Koeve et al. (2014). The conclusion from this analysis is that especially in the 

upper ocean the global distribution of TA in ESMs is largely determined by preformed TA which is set by ocean 

model physics (advection, overturning, mixing, etc.). Below the upper ocean, biases in TA are also driven by the 

CaCO3 cycle, while contributions from remineralization are negligible. Although Planchat et al. (2022) do not assess 295 

alkalinity biases due to the physical carbon pump, they also point to a larger contribution of the carbonate pump 

relative to the soft tissue pump (remineralization) to the (normalized) TA biases. The model processes involving the 

physical distribution of TA are tuned to achieve the best overall model performance and it could be tested whether a 

tuning to improve TA would support this goal. The findings regarding the contribution to the TA biases from the 

CaCO3 cycle simulation suggest that improving the parametrizations of biogeochemical processes that are sources and 300 

sinks of TA, e.g., calcification, remineralization of sinking detritus, chemical dissolution of calcium carbonate, 

biological CaCO3 formation and dissolution, etc. would be beneficial. Since the bias in TA from remineralization is 

small in all models, parametrizations that affect the carbonate chemistry are the most practical lever to improve the 

TA distribution for most models. This, in turn, needs a much-improved process understanding of CaCO3 dissolution 

in microenvironments such as aggregates, zooplankton and fish guts above the CaCO3 saturation horizons (Sulpis et 305 

al., 2021; Jansen and Wolf-Gladrow, 2001; Salter et al., 2017) from field and laboratory studies in order to 

mechanistically represent these processes and how they might be altered in a high-CO2 ocean. In the absence of this 

mechanistic understanding, some suggestions to reduce TA biases are:  

• If TA is low at the surface, decreasing the calcification (rate) within realistic limits or increasing near-surface 

dissolution could be beneficial (Gangstø et al., 2008; Gehlen et al., 2007). 310 

• If calcite dissolution is formulated as (mostly) saturation-dependent and is therefore (close to) zero above the 

calcite saturation horizon, a term can be implemented that encompasses dissolution processes that have been 

observed to occur above said horizon, e.g., calcite dissolution in microenvironments like marine snow and 

zooplankton guts (Sulpis et al., 2021). It was shown that the acidic environment in guts of starving copepods 

can dissolve up to 38% of the calcite taken up by grazing (White et al., 2018). For non-starving copepods 315 

this value was somewhat lower (Pond et al., 1995; Jansen and Wolf-Gladrow, 2001).  

• In addition to those processes, it is known that aragonite and high-magnesium calcite have a shallower 

saturation horizon than calcite and contribute to upper-ocean calcium carbonate dissolution (Sabine et al., 

2002; Gangstø et al., 2008; Barrett et al., 2014; Battaglia et al., 2016), while almost all models only simulate 

calcite explicitly (Planchat et al. 2022). The carbon cycle formulation could be expanded to also simulate 320 

aragonite or more dissolution can be let to occur above the saturation horizon.  

• If the calcite dissolution is prescribed to increase with depth (Yamanaka and Tajika, 1996) this process could 

be tuned with a better match to the observed vertical distributions of calcite or TA. 
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The back-of-the-envelope calculation of the ESMs’ carbonate system states revealed that all but two of models have 

a higher global mean Revelle Factor than calculated from GLODAP (see also Terhaar et al., 2022), correlated with a 325 

higher TA-DIC-ratio than suggested by observations. For a hypothetical addition of 100 µmol kg-1 TA this bias leads 

to an overestimate of the proposed additional CO2 uptake from the atmosphere by up to 13%. The addition of just 100 

µmol kg-1 TA is actually at the very low end of the spectrum used in past and current OAE experiments in models and 

in mesocosms (Hartmann et al., 2022; Ferderer et al., 2022). This calculation is a simplified exercise since gas 

exchange between ocean and  atmosphere is not accounted for nor the potential precipitation and sinking of calcium 330 

carbonate (Hartmann et al., 2022). In order to fully capture the effect of OAE on atmospheric CO2 concentration and 

the model spread related to biases stemming from circulation and biogeochemical assumptions, these OAE 

experiments need to be performed in a suite of fully coupled emission-driven ESMs with a precise protocol and with 

realistic representation of the carbonate pump, including CaCO3 dissolution above the carbonate saturation horizon, 

which is not even sufficiently understood in the real world (Sulpis et al., 2021).  335 
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