
1.  Introduction
The oceans provide a large ecosystem service by taking up roughly a quarter of the CO2 emitted by anthropogenic 
activities (Friedlingstein et al., 2022; Gruber et al., 2023; Khatiwala et al., 2013; Sabine et al., 2004), but this 
comes at a substantial cost, that is, ocean acidification (OA) (Caldeira & Wickett, 2003; Doney et al., 2009; Orr 
et al., 2005). Although the term “acidification” describes the process by which CO2 taken up from the atmosphere 
increases the concentration of hydrogen ions (H +) in seawater and thereby lowers its pH (pH = –log [H +]), OA 
encompasses a broader range of chemical changes in seawater. For example, some of the CO2 that is taken up is 
titrated away by carbonate ions dissolved in seawater (Sarmiento & Gruber, 2006), reducing the concentration of 
these ions. This causes the saturation state of calcium carbonate CaCO3 minerals (Ω), such as that of aragonite 
(Ωar), to decline.

Ocean acidification has been the subject of much research in the past two decades since it can severely impact 
marine life (Doney et al., 2009; R. A. Feely et al., 2004; Gruber et al., 2012; Jiang et al., 2019; Kroeker et al., 2013; 
Orr et al., 2005). This impact can occur at the level of an individual organism by affecting its physiology or 
behavioral patterns (Cornwall et al., 2022; Doney et al., 2020; Figuerola et al., 2021; Radford et al., 2021). It 
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can also occur all the way up at the scales of communities and ecosystems, for example, by altering population 
dynamics or by knocking out keystone species and thereby altering community structure (Cornwall et al., 2021; 
Doney et al., 2020; Hall-Spencer & Harvey, 2019; Harvey et al., 2021). Thus, it is critical that we understand the 
historical progression and contemporary state of OA across the global ocean. This enables us to track the ocean's 
chemistry changes while society decarbonizes its economy. However, the ability of the oceanographic commu-
nity to quantitatively describe the past progression of OA across the global ocean with observations has been 
remarkably limited. This contrasts with model-based studies which clearly established past and future trends of 
OA (Bopp et al., 2013; R. A. Feely et al., 2009; Friedrich et al., 2012; Kwiatkowski et al., 2020; Orr et al., 2005; 
Terhaar et al., 2023).

This lack of observation-based studies of OA trends is in part due to the limited number of historical observa-
tions available for the key parameters of OA, that is, [H +], pH, and Ωar. For example, seawater pH measurements 
before 1989 relied primarily on glass electrodes, which involve uncertainties of the order of 0.1 pH units. This 
is too uncertain to capture the pH alterations induced by OA, rendering these observations unusable. A further 
complication arises because the pH scale of many earlier records is ambiguous (Jiang et al., 2019). The availabil-
ity and quality of seawater pH data has improved gradually in the subsequent decades, following the refinement of 
spectrophotometric pH measurement methods (Byrne & Breland, 1989; Clayton & Byrne, 1993; Dickson, 1993; 
Jiang et al., 2019). These developments have been greatly aided by efforts such as the Global Ocean Acidifica-
tion Observing Network (Brewer, 2013; Tilbrook et al., 2019), which supported communities around the world 
to make high quality measurements, especially in coastal regions. Also, the recent advent of the biogeochemical 
Argo program with pH sensors has dramatically increased the amount of available data in the last few years, 
especially in the open seas (Claustre et  al.,  2020). But the temporal coverage of these data is very limited, 
preventing an assessment of OA changes over multiple decades. For the saturation state Ωar or the concentration 
of the carbonate ion in seawater, the situation is even worse, as they were historically not measured directly. Even 
though photospectrometric methods to measure the concentration of the carbonate ions have been introduced 
(Byrne & Yao, 2008) and are increasingly being used, there are too few measurements to assess changes in time.

For these reasons, observation-based OA trend studies have used pH, [H +], and Ωar computed from the more 
frequently measured variables of the ocean carbonate system, namely the partial pressure of CO2 (pCO2) and total 
alkalinity (Alk) (Bates, 2007; Bates et al., 2014; Jiang et al., 2019; Lauvset & Gruber, 2014; Lauvset et al., 2015). 
Most studies so far have applied this approach for local to regional studies, relying primarily on the data from the 
few existing long-term time series sites (Bates, 2007; Bates et al., 2014; Olafsson et al., 2010) or the few regions 
where sufficient observations exist to establish trends directly (Kim et al., 2014; Leseurre et al., 2022; Sutton 
et al., 2014). These studies unequivocally demonstrated that the ocean is acidifying, revealing highly signifi-
cant long-term decreases in pH and Ωar at all sites and regions. But the community lacks an observation-based 
global-scale analysis that permits researchers to put these local and regional trends into context and also allows 
them to assess regional differences.

A first attempt to establish global trends in OA based solely on observations was made by Lauvset et al. (2015) 
who used measured pCO2 and empirical estimates of Alk to estimate trends in surface ocean pH. They found 
significant pH decreases in ∼70% of all large-scale biomes and a mean rate of decrease of 0.018 ± 0.004 decade −1 
for 1991–2011. But their study did not include Ωar, had insufficient data in several key regions such as the 
Southern Ocean, required a large amount of spatial aggregation leading to a very low resolution, and was 
limited in time to two decades. Building on this work and its own synthesis of the data from various time series 
sites across the world's oceans, the Intergovernmental Panel on Climate Change (IPCC) concluded in its special 
report on the Ocean and Cryosphere (Bindoff et al., 2019), that “pH in open ocean surface water has changed 
by a virtually certain range of −0.017 to −0.027 pH units per decade since the late 1980s.” IPCC's Working 
Group 1 report in AR6 confirmed, in essence, this very large range for the global mean rate, and also discussed 
the spatial variability around this mean trend (Canadell et al., 2021). An alternative approach was taken more 
recently by Jiang et  al.  (2019) who combined a climatological seawater CO2 product with model results to 
obtain trends in the OA parameters. But by relying on a model for establishing the trends, this estimate cannot 
really be considered observation-based. Most recently, Iida et al. (2021) used observations of Alk and pCO2 
to determine the long-term surface ocean trends in various OA parameters from 1993 to 2018. Differing from 
previous approaches, they first extrapolated Alk to the global ocean, then used this together with the observed 
pCO2 to estimate dissolved inorganic carbon (DIC) at the location and times where pCO2 was measured, and 
then extrapolated the resulting DIC field with linear regression models to the globe over the entire recon-
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struction period. They suggested that the global mean surface ocean pH had decreased at a rate of −0.018 per 
decade, and Ωar at a rate of −0.082 per decade. Their reported uncertainties were very small (±0.0001 for pH 
and ±0.001 for Ωar), as they considered only the uncertainty of the trend, thus not considering the uncertain-
ties of the reconstructed pH and Ωar fields. These unconsidered uncertainties are likely very substantial, since 
linear regression models are challenged in their ability to correctly capture the time-space variability of DIC. 
Thus, while there is a pressing need for an observation-based assessment of the trends and drivers of OA on 
a global scale, the existing analyses are insufficient to fulfill this need. This gap is even more evident when 
compared to the huge volume of literature on long-term trends and variability in surface ocean pCO2 (Fay & 
McKinley, 2013; Fay et al., 2021; Gloege et al., 2022; Landschützer et al., 2014, 2016; Rödenbeck et al., 2015; 
Tjiputra et al., 2014).

To close this gap, we present a global-scale analysis of the trends and drivers in surface ocean pH, [H +], and Ωar 
using an updated version of the OceanSODA-ETHZ observation-based product (Gregor & Gruber, 2021). This 
updated product combines in situ observations and satellite data and covers four decades (1982–2021) at a spatial 
resolution of 1° × 1°, and at monthly resolution in time, and thus provides not only much higher resolution than 
the previous analysis by Lauvset et al. (2015), but also doubles the length of the analyzed time period. Since the 
OceanSODA-ETHZ product includes also an estimate of the concentration of DIC, it permits us to analyze also 
the main drivers for the changes in [H +], pH, and Ωar.

2.  Materials and Methods
2.1.  OceanSODA-ETHZ Data Set

Our analyses are based on the OceanSODA-ETHZ product (Gregor & Gruber, 2021), which is an observation-based, 
global gridded data set with monthly data for all parameters of the marine carbonate system parameters at a reso-
lution of 1° × 1°. The version used here was updated from the published version by including data for the years 
2020 and 2021 and is available through the National Centers for Environmental Information (NCEI, accession 
0220059) (Gregor & Gruber, 2023). OceanSODA-ETHZ was derived from the pCO2 observations provided by 
Surface Ocean CO2 ATlas (Bakker et al., 2016) and the Alk observations provided by the Global Ocean Data 
Analysis Product (Olsen et al., 2016) with a two-step machine learning approach (clustering and regression). This 
approach maps the observed distribution of pCO2 and Alk to the global ocean using a range of independent vari-
ables as predictors, relying to a substantial degree on satellite observations. We provide here a short description 
of the main steps and the required input data together with a summary of the uncertainties.

For both pCO2 and Alk, the observations are first clustered regionally to capture areas of similar variability in the 
target variable. Thereafter, data in each cluster are fitted using an ensemble of machine-learning approaches. For 
pCO2, data are fitted using either a feed-forward neural network or gradient boosted trees, and for Alk, support 
vector regression was used. The predictors common to Alk and pCO2 are, sea-surface temperature, sea-surface 
salinity. For Alk, we further include nutrient variables, and for pCO2 chlorophyll-a, mixed layer depth, and u and 
v-wind components. The clustering step is performed 16 times, thus creating an ensemble of 16 members. Each 
clustering member is slightly different due to the random initialization of the clustering algorithm and the fact 
that clustering variables are continuous rather than discrete.

Gregor and Gruber (2021) reported that the cluster-regression method estimates the observed open ocean pCO2 
and Alk with global near-zero biases and root mean squared errors of 12 μatm and 13 μmol kg −1, respectively. 
Taking into account also the measurement and representation errors, the total uncertainty was estimated to be 
about 14 μatm and 21 μmol kg −1, respectively. This uncertainty represents the quality with which an individual 
observation can be estimated by the machine learning approach. This error would largely vanish when computing 
averages over large regions, since it is of random nature. Thus, in order to estimate the uncertainty of large-scale 
means, we need to focus on the structural errors in the pCO2 and Alk estimates, as they do not converge to zero. 
We estimate these structural errors from the standard deviation of the 16 ensemble members, arriving at global 
average errors of 5.5 μatm and 4.6 μmol kg −1 for pCO2 and Alk, respectively.

The OceanSODA-ETHZ product used then the mapped pCO2 and Alk estimates to compute the target quantities 
of our study, that is, [H +], pH, Ωar, and DIC, by solving the marine carbonate system:

Ω𝑎𝑎𝑎𝑎, pH,
[

H+
]

, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷 . . . = PyCO2SYS(𝑝𝑝CO2, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴 𝐴𝐴𝐴 [PO4], [Si(OH)4])� (1)
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where PyCO2SYS is the employed software (Humphreys et al., 2020), and where T is sea-surface temperature, S 
is sea-surface salinity, and where [PO4] and [Si(OH)4] are the surface ocean concentrations of the nutrients silicic 
acid and phosphate.

For the dissociation constants of the marine carbonate system, we used the Mehrbach et al.  (1973) constants 
refitted by Dickson and Millero  (1987), as this gives the lowest uncertainty when pCO2 and Alk are used as 
input (Raimondi et  al., 2019). For the remaining choices, we used the default settings of PyCO2SYS, mean-
ing the borate-to-salinity relationship of Uppström  (1974) and the sulfate dissociation constants of Dickson 
et al. (1990). Sea-surface temperature (T) was taken from the National Oceanic and Atmospheric Administration 
(NOAA) Optimal Interpolation sea surface temperature (SST) V2 High-Resolution Data set (OISSTv2; Reynolds 
et  al., 2007), while sea-surface salinity (S) is a combination of the European Space Agency Climate Change 
Initiative (ESA-CCI) sea surface salinity (SSS) product for 2010 to 2020 (Boutin et al., 2018) and Simple Ocean 
Data Assimilation (SODA v3.4.2; Carton et al., 2018) where the ESA-CCI product is not available. Silicic acid 
and phosphate concentrations were taken from the World Ocean Atlas 2018 (Boyer et al., 2018).

Following many previous studies (e.g., Bates et al., 2014; Lauvset et al., 2015) and the recommendations of the 
CO2 handbook (Dickson et al., 2007), we use here the total scale for pH, which includes the contribution of sulfate 
ions (Dickson, 1993). In contrast, we report for [H +] its free concentration, which is equivalent to pH on the free 
scale (Clayton & Byrne, 1993), that is, without the contribution of the sulfate ions. To highlight this difference, 
we subsequently denote [H +] and pH on the free scale with [H +]F and pHF, respectively. The use of the free 
concentration for [H +] is motivated by the fact that this is the relevant quantity with regard to biological impacts. 
Although the differences between pH and pHF and between [H +] and [H +]F, respectively, are notable with regard 
to their absolute values, our choice has no impact on the reported trends, since there are no significant differences 
between the trends on the different scales. We use the saturation state of Ωar as the second metric to quantify the 
evolution of OA (Mucci, 1983; Takahashi et al., 2014). Although aragonite is ∼50% more soluble than calcite, 
the trends for its two saturation states tend to be nearly identical. Results for all other OA relevant properties, 
such as those of DIC, Alk, pCO2, 𝐴𝐴

[

CO
2−

3

]

 , and of the Revelle factor are computed, too, and will be shown in the 
appendices.

2.2.  Analyses of Trends and Their Uncertainties

Trends are calculated on annual averages using ordinary least squares (OLS) regression. The total uncertainty of 
the trend, σtotal was estimated by considering two main sources of errors, that is, (a) the error of the trend, σtrend, 
and (b) the error of the underlying data, σdata. This gives:

𝜎𝜎total = 𝜎𝜎trend + 𝜎𝜎data,� (2)

where we add these two errors linearly, since we do not know how independent the two error sources are.

The error of the trend, σtrend, is estimated from the square root of the variance of the slope coefficient. This coef-
ficient is calculated from the covariance matrix of the OLS solution: 𝐴𝐴 (𝐗𝐗′

𝐗𝐗)
−1

⋅𝑀𝑀𝑀𝑀𝑀𝑀 , where X is a matrix of the 
predictors and MSE is the mean squared error of the fit.

The error of the data, σdata, was estimated from the spread of the ensemble of estimates that we have available 
in the OceanSODA-ETHZ product. As explained above, this error is non-random in nature and thus is a better 
representation of the uncertainty associated with the machine-learning-based estimates compared to the use of 
root mean squared errors vis-a-vis the observations. While we can use this ensemble spread right away for pCO2 
and Alk, we need to propagate these uncertainties to the other computed parameters of the marine carbonate 
system. To this end, we first created a total of 64 ensemble members by randomly selecting one of the 16 ensem-
ble members for pCO2 and one of the 16 for Alk without repetition and then recomputing all derived variables 
from this combination. In the global mean, this resulted in standard deviations across the ensemble of about 0.014 
and 0.0022 for Ωar and pH, respectively. The long-term trends were then calculated for each ensemble member 
and for each 1°  ×  1° pixel. The standard deviation is taken across all 64 ensemble members for each pixel, 
resulting in a map of the standard deviations of the trend. These pixel-level standard deviations are then averaged 
globally and for each region (area-weighted).

To assess the robustness of this approach to compute the trend uncertainty, we compare it with an independent 
ensemble approach, which is available for pCO2. Concretely, we take advantage of the ensemble of six pCO2 
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estimates available in the Fay et al. (2021) SeaFlux product, which has been constructed by independent methods 
ranging from neural networks to linear regression models. We consider, however, only 5 of the 6 available prod-
ucts, since we excluded the JMA-MLR product of Iida et al. (2021). This is because this product has a pCO2 trend 
that is outside the three-times interquartile range of the other products and thus would have skewed our results.

2.3.  Driver Decomposition of Trends

To quantify and understand the drivers of the trends in Ωar and [H +]F, we decompose them into contributions 
from trends in the underlying drivers, that is DIC, Alk, T, and freshwater (FW). The freshwater driver includes 
both the direct effect of changes in salinity on Ωar and pH, as well as the indirect effect caused by changes in the 
surface ocean DIC and Alk due to the net freshwater balance (Landschützer et al., 2018; Lovenduski et al., 2007). 
To this end, we remove the freshwater component from the DIC and Alk driver by normalizing these two param-
eters to a constant salinity of 34.5 (Landschützer et al., 2018; Sarmiento & Gruber, 2006). The resulting quantities 
are denoted by sDIC and sAlk. We further decompose sDIC into an anthropogenic and a natural component, that 
is, sDIC = Cant + Cnat (Gruber et al., 2023; McNeil & Matear, 2013). Cant captures the changes in sDIC driven 
solely by the anthropogenic increase in atmospheric CO2 and the resulting uptake of anthropogenic CO2 by the 
surface ocean. The Cnat component represents the changes in sDIC driven by changes in circulation, solubility, 
and biology.

Neglecting the contributions from other minor drivers such as nutrients, we thus decompose the variations in the 
trends of Ωar and [H +]F to five main driving components: anthropogenic sDIC (Cant), natural sDIC (Cnat), sAlk, 
temperature (T) and freshwater (FW). Considering only the first-order terms of a Taylor expansion and using the 
product rule, this gives the rate of change of Ωar:

𝑑𝑑Ω𝑎𝑎𝑎𝑎

𝑑𝑑𝑑𝑑
=

∑

𝑋𝑋=[𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎,𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠 ]

⎛

⎜

⎜

⎜

⎜

⎝

𝑑𝑑𝑑𝑑𝑋𝑋

𝑑𝑑𝑑𝑑
⋅Ω𝑎𝑎𝑎𝑎 ⋅ Δ𝑋𝑋

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
change in sensitivity

+ 𝜔𝜔𝑋𝑋 ⋅

𝑑𝑑Ω𝑎𝑎𝑎𝑎

𝑑𝑑𝑑𝑑
⋅ Δ𝑋𝑋

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
mass effect

+ 𝜔𝜔𝑋𝑋 ⋅Ω𝑎𝑎𝑎𝑎 ⋅
𝑑𝑑Δ𝑋𝑋

𝑑𝑑𝑑𝑑
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

change in driver

⎞

⎟

⎟

⎟

⎟

⎠

,� (3)

where X is one of the five drivers, ΔX is the change in the driver (from 1982 through 2021), and ωX is the relative 
sensitivity of Ωar to each driver, that is, ωX = 1/Ωar·∂Ωar/∂X. Note that this definition of ωX differs from that of 
Egleston et al. (2010) who defined it as the sensitivity of X to Ωar. The time derivatives on the right-hand side of 
Equation 3 are determined from the slopes of the linear regressions.

The same decomposition is applied for [H +]F, that is,

𝑑𝑑
[

H+
]

𝐹𝐹

𝑑𝑑𝑑𝑑
=

∑

𝑋𝑋=[𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎,𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠 ]

⎛

⎜

⎜

⎜

⎜

⎝

𝑑𝑑𝑑𝑑𝑋𝑋

𝑑𝑑𝑑𝑑
⋅

[

H+
]

𝐹𝐹
⋅ Δ𝑋𝑋

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
change in sensitivity

+ 𝜔𝜔𝑋𝑋 ⋅

𝑑𝑑
[

H+
]

𝐹𝐹

𝑑𝑑𝑑𝑑
⋅ Δ𝑋𝑋

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
mass effect

+ 𝜔𝜔𝑋𝑋 ⋅

[

H+
]

𝐹𝐹
⋅

𝑑𝑑Δ𝑋𝑋

𝑑𝑑𝑑𝑑
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

change in driver

⎞

⎟

⎟

⎟

⎟

⎠

,� (4)

where βX is the relative sensitivity of [H +]F to each driver X, that is, 𝐴𝐴 𝐴𝐴𝑋𝑋 = 1∕
[

H+
]

𝐹𝐹
⋅ 𝜕𝜕

[

H+
]

∕𝜕𝜕𝜕𝜕 . The relative 
sensitivities β and ω are calculated with the PyCO2SYS program (Humphreys et al., 2020; Lewis et al., 1998) 
for each grid point, using the long-term average conditions as input. The temperature sensitivities are assumed 
to be constant for the entire range of DIC and Alk, with a value of 0.0052°C −1 for Ωar and a value of 0.0354°C −1 
for [H +]F.

The surface ocean concentration of Cant and its rate of change is estimated by assuming that surface ocean DIC 
increases proportionally with the increase in atmospheric CO2 (Gruber et al., 2023). We determine this propor-
tionality by computing first the amount of Cant the surface ocean would have if it had remained in transient equi-
librium with the overlying atmosphere, that is, the 𝐴𝐴 𝐴𝐴

𝑒𝑒𝑒𝑒

𝑎𝑎𝑎𝑎𝑎𝑎
 component. We then adjust this component to account for 

the fact that the increase in surface Cant is increasingly delayed, leading to a growing disequilibrium term, that is, 
𝐴𝐴 𝐴𝐴

𝑑𝑑𝑑𝑑𝑑𝑑−𝑒𝑒𝑒𝑒

𝑎𝑎𝑎𝑎𝑎𝑎
 , which is also proportional to the rise in atmospheric CO2 (see Matsumoto and Gruber (2005) and Gruber 

et al. (2019) for a more in-depth discussion). Concretely, Cant is given by: Cant = 𝐴𝐴 𝐴𝐴
𝑒𝑒𝑒𝑒

𝑎𝑎𝑎𝑎𝑎𝑎
 —𝐴𝐴 𝐴𝐴

𝑑𝑑𝑑𝑑𝑑𝑑−𝑒𝑒𝑒𝑒

𝑎𝑎𝑎𝑎𝑎𝑎
 . We determine 𝐴𝐴 𝐴𝐴

𝑒𝑒𝑒𝑒

𝑎𝑎𝑎𝑎𝑎𝑎
 

at each surface location by evaluating Equation 1 whereby the in situ pCO2 is replaced with atmospheric CO2 
from the NOAA marine boundary layer product (Dlugokencky et al., 2021). We take the disequilibrium term 
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𝐴𝐴 𝐴𝐴
𝑑𝑑𝑑𝑑𝑑𝑑−𝑒𝑒𝑒𝑒

𝑎𝑎𝑎𝑎𝑎𝑎
 from a hindcast simulation with the ocean component of the Community Earth System Model (Clement & 

Gruber, 2018; Hauck et al., 2020). The trend in the natural component, Cnat, is computed by subtracting Cant from 
sDIC, that is, Cnat = sDIC – Cant, whereby all components are salinity normalized to 34.5.

2.4.  Time of Emergence

The Time of emergence (ToE) is defined as the time it takes for a signal to arise from the “noise” of natural 
climate variability (Keller et al., 2014):

ToE = 𝑁𝑁∕𝑆𝑆𝑆� (5)

where N is the “noise,” estimated from the standard deviation of the detrended monthly data, and S is the “signal,” 
that is, the annual trend. We thus take here the perspective that the ToE is a measure when the system of interest 
goes outside the range of prior (seasonal and interannual) variability, a metric that is particularly relevant to 
marine organisms. The TOE has units of years.

3.  Results and Discussions
3.1.  Evaluation

The rate of pH change estimated from OceanSODA-ETHZ generally agrees well with the reported rates from 
time series sites around the globe (Table S1 in Supporting Information S1). However, many time series sites have 
reported trends over much shorter periods, typically, only two decades, making the comparisons less robust owing 
to a stronger imprint of shorter variability on the long-term trends. We thus focus the evaluation of our trend esti-
mates with those stemming from the longest-running (>30 years) and best-sampled time series sites in the ocean, 
namely the Hawaii Ocean Time-series (HOT) (Dore et al., 2009) in the North Pacific (22.5°N, 158.5°W) and the 
Bermuda Atlantic Time series Study (BATS) in the North Atlantic (31.5°N, 64.5°W) (Bates & Johnson, 2020; 
Bates et al., 2014) (Figure 1). This evaluation is particularly insightful since the data from these two time series 
sites were not used for the training of the machine-learning algorithm in OceanSODA-ETHZ. Neither site meas-
ured pH or Ωar, but DIC and Alk, from which we computed pH and Ωar following the same procedures as used 

Figure 1.  Evaluation of trends in the OceanSODA-ETHZ product with observations from (a, c) the Hawaii Ocean Time-series (Dore et al., 2009) in the North Pacific 
(left column) and the Bermuda Atlantic Time series Study in the North Atlantic (Bates & Johnson, 2020; Bates et al., 2014) (b, c). Shown are the OceanSODA-ETHZ 
estimates and the surface ocean observations for (a, b) pH (total scale) and for (c, d) Ωar. The lines represent the results of the trend analyses on the basis of ordinary 
least squares linear regressions. The observation data for the time series sites were computed from the reported dissolved inorganic carbon and Alk measurements.
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for OceanSODA-ETHZ. We also recomputed the long-term trends in order to ensure maximum comparability 
with our estimates. To this end, we first deseasonalized the data from the time series stations using a harmonic fit 
(Gruber et al., 2002) and then computed the trend in the same manner as done for OceanSODA-ETHZ.

For BATS and the period covered by this site, that is, 1992–2021, we compute for OceanSODA-ETHZ a decadal 
rate of change for pH of −0.0174 ± 0.0004 decade −1, statistically indistinguishable from the trend we determined 
from the reported time series data (Figure 1). By including data from the nearby Station “S” (Gruber et al., 2002), 
Bates and Johnson (2020) were able to extend this record back in time, reporting for 1983–2020 a slightly more 
negative trend of −0.0190 ± 0.0010 decade −1 (Table S1 in Supporting Information S1), a bit more negative than 
our estimate for the same period (−0.0157 ± 0.0003) (Figure 1). The trends for Ωar are slightly more differ-
ent, but still in agreement within the respective uncertainties. While our estimate for the period 1992–2021 of 
−0.061 ± 0.005 decade −1 is again statistically indistinguishable from the trend we computed from the time series 
data (−0.063 ± 0.010 decade −1), Bates and Johnson (2020) found for the combined Station “S” and BATS sites 
over the 1983–2020 period a trend of −0.090 ± 0.010 decade −1, which is quite a bit more negative than ours 
(Figure 1, Table S1 in Supporting Information S1). However, we note that Bates and Johnson (2020) used a differ-
ent method to estimate trends, such that some of the differences are also the result of methodological differences.

Our pH trend estimate for the HOT site (1989–2021) of −0.0182 ± 0.0005 decade −1 is nearly identical to that we 
computed from the reported time series data (−0.0180 ± 0.0006 decade −1). But, as was the case at BATS, there is 
lesser agreement on the trend in Ωar. For OceanSODA-ETHZ, we find a trend of −0.083 ± 0.005 decade −1, while 
for the time series data, the trend amounts to −0.089 ± 0.006 decade −1.

The evaluation of the trends at the other time series sites (Table S1 in Supporting Information S1), often of 
much shorter duration, confirms the overall excellent agreement. But this comparison also suggests that the 
OceanSODA-ETHZ has a slight tendency for underestimating long-term trends, especially for Ωar. This could be a 
consequence of the cluster-regression approach that we employed in ensemble mode to create OceanSODA-ETHZ, 
as this machine-learning method tends to suppress variations and trends (Gregor & Gruber, 2021). Still, these 
evaluations suggest that OceanSODA-ETHZ reproduces the observed long-term trends at the time series stations 
with high fidelity, giving us confidence in the use of this product to assess long-term trends in OA across the 
global ocean (Chau et al., 2022).

3.2.  Long-Term Trends

The temporal evolution of the reconstructed global surface mean Ωar, pH, and [H +]F from the OceanSODA-ETHZ 
product confirms the expected strong trends induced by OA over the four decades from 1982 through 2021 
(Figure 2). Averaged over the global ice-free ocean, surface Ωar decreased by nearly 10% over these four decades, 
and pH experienced a drop of ∼0.06 units. At the same time, [H +]F increased proportionately by slightly more 
than 1  nmol  kg −1. This translates into highly significant average trends of −0.071  ±  0.006  decade −1 for Ωar 
(R 2 = 0.98; p ≪ 0.01) and −0.0166 ± 0.0010 decade −1 for pH (R 2 = 0.99; p ≪ 0.01) (see Table 1). For [H +]F the 
average rate of increase amounts to 0.250 ± 0.016 nmol kg −1 decade −1. In Table 1 we report also the trends for a 
range of additional parameters of the surface ocean carbonate system, such as surface ocean pCO2 and the Revelle 
factor. In Table S2 of the Supporting Information S1, we provide the trends of these variables for a large number 
of biogeochemical provinces (Fay & McKinley, 2014). The global trends are rather robust and not sensitive to the 
choice of the exact beginning or ending years. For example, shortening the record to 30 years and computing the 
trends by shifting the beginning year from 1982 to 1992 yields variations in the trends of <7%.

The uncertainties of the trends reported above and in the tables (Table 1 and Table S2 in Supporting Informa-
tion S1) reflect the total uncertainties (σtotal). We computed those by summing the errors associated with the 
determination of the regression slope, that is, σtrend, and the errors induced by systematic errors associated with 
the underlying data, that is, σdata (see Equation 2). We find that the data-related errors are, on average, about 3–4 
times larger than the trend-related errors, thus accounting for about 80% of the total uncertainty (Figure S3 in 
Supporting Information S1). Thus, an accurate estimation of the data-related errors is key for estimating the total 
uncertainty of the trend in the OA-related parameters. For estimating these data-related errors, we relied on a 
commonly used ensemble approach, taking advantage of the ensemble nature of OceanSODA-ETHZ. However, 
since all our ensembles are based on the same statistical approach, they might underestimate the data-related 
errors. We thus tested our approach by comparing its results with those obtained from a full ensemble of pCO2 

 19449224, 2023, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

B
007765 by Ifrem

er C
entre B

retagne B
lp, W

iley O
nline L

ibrary on [06/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Global Biogeochemical Cycles

MA ET AL.

10.1029/2023GB007765

8 of 19

estimates in the SeaFlux product of Fay et al. (2021). Across the 5 retained ensemble members in SeaFlux, we 
find for pCO2 a trend of 16.7 ± 1.5 μ atm decade −1 (1990–2018), while that estimated through our approach is 
17.0 ± 0.8 μ atm decade −1 for the same period (see Figure S3 in Supporting Information S1). Thus, there might 
be indeed a tendency for our uncertainty estimates to be biased low. But lacking a standardized methodology 

to estimate such uncertainties, we accept our total uncertainty estimates of 
slightly less than ±10% as our best estimate.

Our global mean surface pH trend supports the trend estimated by Lauvset 
et al. (2015) of −0.018 ± 0.004 decade −1 for the period 1991 through 2011, 
we can now provide a much more accurate estimate covering 96% of the 
global sea-ice-free surface ocean as opposed to the 70% coverage available 
to Lauvset et  al.  (2015). Our estimate permits us also to reduce the range 
given by IPCC (Bindoff et al., 2019), that is, −0.017 to −0.027 decade −1, by 
nearly tenfold. Our global pH trend matches also well those given by a range 
of Earth System Models (Kwiatkowski et al., 2020). Finally, our trend is also 
fully consistent with that reported by Iida et al. (2021) of −0.018 ± 0.0001 
decade −1, although, we provide a much more thorough and robust uncertainty 
estimate. Our Ωar trend is not as strong as that reported by Iida et al. (2021) 
(−0.082 ± 0.001 decade −1), but if they had accounted for the uncertainty in 
their product, it is likely that our two estimates also would not be significantly 
different.

Spatially, there are large variations in the rates of the Ωar and pH declines 
over the past four decades (Figures 2b and 2d) (see also Tables S3 and S4 in 

Variable Unit Mean value
Trend ± uncertainty 

(decade −1)

Ωar (−) 3.11 −0.071 ± 0.006

Ωcalc (−) 4.75 −0.111 ± 0.009

pH (−) 8.08 −0.0166 ± 0.0010

𝐴𝐴
[

H
+
]

𝐹𝐹
  (nmol kg −1) 6.74 0.250 ± 0.016

DIC (μmol kg −1) 2,025 8.3 ± 0.8

pCO2 (μatm) 359 16.6 ± 1.0

Revelle factor, γDIC (−) 10.5 0.156 ± 0.011

𝐴𝐴
[

CO
2−

3

]

  (μmol kg −1) 198 −4.6 ± 0.4

Note. All trends are computed from annual data of the OceanSODA-ETHZ 
product and are given per decade. The uncertainties contain both the errors 
of the trend slope (σtrend) and the errors of the data (σdata) (see Equation 2).

Table 1 
Mean Values and Global Long-Term Trends of a Suite of Parameters of the 
Surface Ocean Carbonate System for the Period 1982 Through 2021

Figure 2.  Temporal and spatial structure of the long-term trends in global aragonite saturation state (Ωar), pH, and [H +]F from 1982 to 2021 using OceanSODA-ETHZ 
data (Gregor & Gruber, 2021). (a) Global area-weighted trend for Ωar (solid line), along with the estimated anthropogenic trend (dashed line) based on the estimated 
increase in Cant. (b) Global map of the 40-year average trend of Ωar, expressed as a trend per decade. (c) As (a) but for pH (left axis) and [H +]F (right axis) with the 
estimated anthropogenic increase being shown for the latter only. (d) As (b), but for pH. Note that the global average trends plotted in (a) and (c) are computed over the 
colored areas shown in (b) and (d), representing 96% of the global sea-ice-free surface area. The triangle and circle in (b) and (d) indicate the locations of the two time 
series Hawaii Ocean Time-series and Bermuda Atlantic Time series Study used to evaluate the OceanSODA-ETHZ product in detail (see Figure 1). The uncertainties of 
the estimated annual mean fields are ±0.014 for Ωar and ±0.0022 for pH, that is, too small to be plotted.
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Supporting Information S1). For Ωar, the largest trends are found in the tropical and subtropical Pacific Ocean, 
including the eastern tropical Pacific region (Figure 2b), with rates of Ωar decreases that are, on average, 50% 
higher than in the global mean. In contrast, Ωar drops much less in the North Pacific and North Atlantic and parts 
of the Southern Ocean. Here, rates tend to be only half those of the global mean. This gives overall a factor of 
four difference in rates across the global ocean, highlighting the importance of the regional perspective when 
investigating OA.

The spatial distribution of the rate of decline in pH tends to be the mirror image of that of Ωar (Figure 2d), 
although the range of the trends is smaller. The highest rates of decline are found in the Southern Ocean and in 
the high latitudes of the North Atlantic and North Pacific. Rates are here, expressed in the logarithmic pH units, 
about 15% higher than in the global mean. The lowest rates of change are found in the subtropical gyres, with 
rates that are about 25% lower than the global mean. Another striking pattern is that the trends in the Pacific tend 
to be larger than those in the Atlantic for the same latitude. A region that breaks the mirror image, that is, where 
both Ωar and pH show large changes, is a small equatorial band in the eastern and central Pacific.

The spatial distribution of the trends in the other parameters of the surface ocean carbonate system (shown in 
Figure S5 in Supporting Information S1) fall into a set of trend pattern that resembles the trends of pH ([H +], 
pCO2, Revelle factor), that is, highest rates of change in the high latitudes or into a set of pattern that resembles 
the trends of Ωar (carbonate ion concentration, [𝐴𝐴 CO2−

3
 ]), that is, highest rates of change in the low latitudes. This 

is largely a consequence of the relationships of these parameters with each other, for example, the carbonate ion 
concentration is a direct determinant of Ωar, and pCO2 is highly correlated with pH and [H +]. The similarity of 
the trend pattern of the Revelle factor with that of pH is, however, initially surprising, since as a metric of the 
buffering capacity of the surface ocean, its value tends to be related to the concentration of the carbonate ion 
(Sarmiento & Gruber, 2006). This can be resolved by considering that the Revelle factor scales with the inverse 
of [𝐴𝐴 CO2−

3
 ], such that we also expect the trend of the Revelle factor to scale with the inverse of the trend of [𝐴𝐴 CO2−

3
 ]. 

This results in the high latitudes having the largest trends in the Revelle factor, since this is where the trend in [
𝐴𝐴 CO2−

3
 ] is the smallest.

The distinct spatial variations of the rates of change of OA had been discussed in the literature only sparingly 
so far. Lauvset et al. (2015) also found trends that varied considerably across the analyzed biomes, but given the 
large uncertainties of their regional trends, they refrained from discussing them in detail. They did point to the 
systematic differences between the Atlantic and Pacific, however. A systematic difference we can confirm here. In 
its global assessment, IPCC AR6 (Canadell et al., 2021) discussed the regional differences as well, pointing out, 
for example, that the central and eastern upwelling zones of the Pacific exhibited a faster pH decline of −0.022 
to −0.026 decade −1 (see also Sutton et al. (2014)) compared to the western tropical Pacific, where the trends are 
only in the range of −0.010 to −0.013 decade −1 (see also Ishii et al. (2020)). This strong east-west gradient in 
the tropical Pacific is fully confirmed by our results (Figure 2d). IPCC AR6 further suggested for the subtropical 
gyres pH trends ranging from −0.016 to −0.019 decade −1, which is a smaller range than that we find (−0.013 to 
−0.019 decade −1). In contrast, IPCC AR6 suggests subpolar latitudes values ranging from −0.003 decade −1 to 
−0.026 decade −1, while our work suggests a substantially smaller range (−0.017 to −0.020 decade −1). We inter-
pret these differences to be primarily the result of the relatively small number of time series sites that were used 
by the IPCC for their assessment. We are not aware of any study that investigated the spatial pattern of the trend 
in Ωar in a systematic manner, although IPCC AR6 (Canadell et al., 2021) mentioned the regional differences.

3.3.  Drivers of the Long-Term Trends

The driver decomposition Equations 3 and 4 confirms the expectation that the majority of the decreasing trend 
in Ωar and increasing trend in [H +]F is driven by the anthropogenic increase in atmospheric pCO2 causing an 
increase in surface ocean Cant (dashed lines in Figures 2a and 2c). This conclusion is in line with IPCC's assess-
ments (Bindoff et al., 2019; Canadell et al., 2021) as well as with prior work (Lauvset et al., 2015; Lauvset & 
Gruber, 2014). However, hidden behind the dominant role of Cant are substantial and relevant contributions from 
the other drivers. A first indication of this comes from the global trend in Ωar in Figure 2a, which is decreasing 
somewhat less rapidly than expected from the anthropogenic trend alone (compare dashed with solid lines). The 
estimated trend based on the increase in surface ocean Cant amounts to −0.087 decade −1 (Table S4 in Support-
ing Information S1), about 20% larger than the observed trend of −0.071 decade −1. This differs markedly from 
the trends in pH and [H +]F, which agree remarkably well with the anthropogenic trend (Table S4 in Supporting 
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Information S1). A second indication comes from the full driver decomposition in Figures 3a and 3b, which 
shows that changes in natural CO2, temperature, and to a somewhat smaller degree also sAlk, contribute substan-
tially to the trends, especially for [H +]F. We discuss these two indications in sequence.

According to our decomposition, the main reason for the smaller-than-expected long-term trend in Ωar is the 
substantial compensation by natural CO2 (Cnat) (Figure 3a). This means that in the OceanSODA-ETHZ product, 
the concentration of sDIC is not increasing as fast as predicted from the increase in anthropogenic CO2 (Cant) 

Figure 3.  Decomposition of the global mean rate of change of (a) Ωar and (b) [H +]F over the period 1982–2021 into their main drivers following Equations 3 and 4 
in the main text. The considered drivers are: salinity normalized dissolved inorganic carbon (sDIC) separated into its anthropogenic CO2 (Cant) and natural CO2 (Cnat) 
components, sea surface temperature (SST), salinity normalized alkalinity (sAlk), and freshwater (FW). Also shown for each driver are the contributions of the three 
mechanisms: change in the driver sensitivity (blue), change in the carbonate system variable (yellow), and change in the driver itself (red). Also shown here are maps 
showing the relative contribution of (c) sDIC to the rate of change of Ωar, (d) sDIC to the trend of [H +]F, (e) SST to the trend in Ωar, and (f) SST to the trend in [H +]F 
aggregated to each biome.
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because of a loss in Cnat (see also Figure S1 in Supporting Information S1). Thus this smaller-than-expected 
increase in sDIC causes a lower rate of decrease of the carbonate ion concentration predicted from the increase 
in Cant alone, hence causing a lower rate of decrease of Ωar. Changes in sAlk are relatively minor (generally 
less than 4 μmol kg −1 over the entire 4 decades, see Figure S5b in Supporting Information S1), and its small 
global decrease enhances the decrease in Ωar (Figure 3a and Table S4 in Supporting Information S1). In contrast, 
warming and the freshwater component act to compensate for the anthropogenic CO2-driven decrease in Ωar, but 
their contribution is small (Figure 3a). Similarly, the mass effect slows the rate of decrease of Ωar. In summary, 
the contribution of the non-sDIC components is small, so that it is the decrease in Cnat, that is, the reduction 
in  the  concentration of natural CO2 in the surface ocean that causes global mean Ωar to decrease less rapidly than 
predicted from the rise in atmospheric CO2 alone. A similar reduction of Cnat in the surface ocean has recently 
been identified by Keppler et al. (2023) on the basis of machine-learning-based reconstructions of the spatiotem-
poral evolution of DIC. They suggest that this reduction at the surface is compensated by an increase at depths 
below 200 m, such that the total ocean inventory of Cnat did not change.

The decomposition of the trends for [H +]F reveals a different picture (Figure 3b). While the strong increase in 
[H +]F driven by Cant is also compensated by the decrease in Cnat, the other components, are contributing substan-
tially to the driving up of the trend in [H +]F (Figure 3b). The most important driver is temperature, which contrib-
utes ∼15% to the rate of increase in [H +]F. But also the [H +] mass effect and the increased sensitivity contribute 
to the rise in [H +]F. Taken together, a different balance emerges for the trend in [H +]F compared to that of Ωar. For 
[H +]F, the slowing trend induced by the loss of Cnat is nearly entirely compensated for by the accelerating trend 
induced by surface ocean warming, so that the overall trend is remarkably close to that predicted by Cant alone. 
In other words, the loss of Cnat tends to mask the quite substantial accelerating contribution of ocean warming on 
the trend of [H +]F. Temperature plays a much less important role in driving trends of Ωar, because the temperature 
effects on the dissociation constants relevant for the computation of Ωar tend to cancel each other.

Thus for both trends, we find an important modification of the purely anthropogenic CO2 trend by surface ocean 
warming and the loss of Cnat, albeit with different relative roles. Before we discuss this finding further, we need 
to ensure that it is robust. This is especially critical since we estimate the trend in Cnat by difference from the trend 
in sDIC and Cant. Of particular concern is our estimate of the disequilibrium component, which we use to adjust 
the equilibrium estimate of Cant for the fact that even in the absence of any climate variability surface ocean sDIC 
is not following perfectly the increase in atmospheric CO2 owing to the slowness of air-sea gas exchange and 
limited surface residence times (Matsumoto & Gruber, 2005). Globally, the mean air-sea disequilibrium is actu-
ally very well-constrained since it is directly related to the oceanic uptake of anthropogenic CO2, which is known 
to be within about ±15% on the basis of multiple approaches (DeVries, 2014; Gruber et al., 2019, 2023; Hauck 
et al., 2020; Mikaloff Fletcher et al., 2006; Sabine et al., 2004). It turns out that even adopting an uncertainty for 
the air-sea disequilibrium of Cant of ±30% would not alter our conclusion that Cnat has decreased over the last four 
decades. We thus consider this conclusion as robust.

The diagnosed loss of Cnat from the surface ocean slowing down the rate of change of Ωar and [H +]F can also 
be rationalized from a process perspective, especially since it is connected to surface ocean warming. First, one 
expects a loss of Cnat from the surface ocean in response to the reduced CO2 solubility associated with surface 
warming (Weiss, 1974). Second, upper ocean warming has been linked to the observed increase in upper ocean 
stratification (Sallée et al., 2021), which tends to make the biological pump more efficient, causing a reduction in 
surface ocean DIC (Sarmiento & Gruber, 2006).

The important contribution of ocean warming to the long-term trend in [H +]F becomes also very clear when 
investigating this decomposition on a regional basis, here shown just for the contribution from sDIC, that is, 
the sum of natural and anthropogenic CO2 (Figures 3c and 3d), and for temperature (Figures 3e and 3f). While 
the contribution of warming to the trend in Ωar is less than a few percent, this number is about 8% for [H +]F, on 
average. The highest contributions are found in the North Atlantic and the western Pacific, that is, the regions that 
experienced the highest rates of surface warming in the last few decades (Johnson & Lyman, 2020).

Still, the majority of the long-term trend for both [H +]F and Ωar across all regions stem from the increase in sDIC 
(Figures 3c and 3d). This means that the distinct spatial differences in the rates of change in [H +]F and Ωar seen 
in Figure 2 and shown as zonal means in Figures 5c and 5f are caused by the product of the spatial pattern of the 
sensitivities βDIC and ωDIC, respectively, with the trend in Cant, whose spatial pattern is given by the inverse of the 
sensitivity γDIC (Egleston et al., 2010) (Figure 4). This means that one can understand the trends in [H +]F and Ωar 
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as being proportional to the ratio of βDIC/γDIC and ωDIC/γDIC, respectively (see also Orr (2011) for a detailed discus-
sion). All of these sensitivities are reflections of how well the surface carbonate chemistry is able to buffer the 
increase in surface ocean CO2, which depends on temperature, and especially the ratio of DIC and Alk (Egleston 
et al., 2010; Sarmiento & Gruber, 2006).

In the case of the trends in [H +]F (and pH), the high sensitivity of βDIC at the high latitudes (Figure 4b), largely 
driven by temperature, overwhelms the impact of the higher rates of change in Cant in the low latitudes owing to 
higher buffer capacities (Sabine et al., 2004) (or lower γDIC, Figure 4c), such that the highest rates of changes in 
[H +]F (pH) are found in the high latitudes. For Ωar, the situation is reversed. Here the high buffer capacity of the 
low latitudes (small γDIC, Figure 4c) with the corresponding higher rates of accumulation of Cant overwhelms the 
effect of ωDIC, which has the highest (absolute) sensitivity in the high latitudes as well (Figure 4a). The net result 
is that the highest rates of change in Ωar occur in the low latitudes. This also means that the highest decreases in 
Ωar occur in the regions where Ωar is highest, while for [H +]F, the highest increases occur where [H +]F is already 
high, that is, where pH is lowest (Figures 5a and 5d). The former can be largely understood from the fact that the 
highest rates with which 𝐴𝐴

[

CO
2−

3

]

 is titrated away from the invasion of Cant through the short-circuit reaction CO2 + 
𝐴𝐴 CO

2−

3
  + H2O = 2𝐴𝐴 HCO3

− (Sarmiento & Gruber, 2006) occurs in the regions where 𝐴𝐴
[

CO
2−

3

]

 is most abundant, that 
is, where Ωar is highest. The latter is directly the inverse, that is, the regions where most of the invading Cant is 
not titrated away but rather stay in its acid form through reaction with water to form H2CO3 is where 𝐴𝐴

[

CO
2−

3

]

 (and 
hence also Ωar) is the lowest, and where [H +]F is highest (or pH lowest).

3.4.  Interannual Variability

In addition to the long-term trends, both Ωar and [H +]F are subject to a substantial amount of interannual vari-
ability (Figure 5), with Ωar revealing a much more variable pattern than [H +]F. The interannual variability for 
[H +]F is primarily confined to the equator, with distinct negative [H +]F anomalies found around 1983, 1987, 1992, 

Figure 4.  Maps depicting the average sensitivities of parameters of the surface ocean carbonate system to changes in dissolved inorganic carbon. (a) The sensitivity of 
Ω, that is, ωDIC (b) the sensitivity of [H +]F, that is, βDIC, (c) the sensitivity of pCO2, that is, γDIC. (d) The inverse of the pCO2 sensitivity, that is, 1/γDIC. The sensitivities 
represent the average for the period 1982–2021.
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1998, 2002, etc., that is, years characterized by El Niño events in the tropical eastern Pacific. These negative 
[H +]F anomalies are likely caused by the near cessation of upwelling during these events, thus bringing much 
less high DIC/low Alk (low [H +]F) waters to the surface, keeping surface [H +]F low (and pH high). Even though 
these events are also characterized by higher than normal sea-surface temperatures, this effect appears to be 
overwhelmed by the low DIC concentrations that characterize El Niño events (R. Feely et al., 2006; McKinley 
et al., 2004). Positive anomalies in [H +]F occur during La Niña events, for example, in the years 1988–1989, 
1998–1999, 2008–2009, 2010–2011, 2016–2017, when upwelling is strong, bringing large amounts of high DIC/
low Alk waters to the surface (Sutton et al., 2014).

The Ωar anomalies at equatorial latitudes are the opposite of those of [H +]F, that is, Ωar tends to be anomalously 
high during El Niño events and anomalously low during La Niña events. The drivers are the same as those for 
[H +]F, that is, variations in the strength of upwelling that tend to bring high DIC/low Alk (low Ωar) waters to the 
surface.

Figure 5.  Hovmoeller (latitude-time) diagrams of the zonally averaged anomalies from 1982 through 2021 together with their long-term averages and zonal mean 
trends. (a) Zonal average of the long-term mean Ωar. (b) Hovmoeller diagram of the zonally averaged anomalies of Ωar. The anomalies were computed relative to the 
long-term mean shown in (a). (c) Zonal average of the long-term linear trend in Ωar (solid line) together with the trend estimated solely on the basis of the estimated 
increase in anthropogenic CO2 (dashed line). (d) As (a), but for [H +]F. (e), as (b) but for [H +]F. (f), as (c) but for [H +]F.
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The Hovmoeller plot for Ωar reveals also a substantial amount of interannual variability in the extratropics, espe-
cially when compared to [H +]F (contrast Figure 5b with panel e). The variability in the zonal mean comes from all 
ocean basins. It is most likely related to the interaction of transport/mixing and biological production that tends to 
change Ωar in opposite direction. Their effect is not dampened by co-variations with temperature, since temper-
ature plays a relatively marginal role in controlling Ωar. This situation tends to differ for [H +]F, where surface 
warming/cooling often dampens the effects of transport/mixing and biological production, leading to a relatively 
low level of spatio-temporal variability (see also Jiang et al. (2019)).

These spatiotemporal variations in Ωar and in [H +]F occur against very different mean concentration gradients 
(Figures 5a and 5d). The long-term mean of Ωar varies by more than a factor of 2 across latitudes, with typical 
values in the high latitudes of around 2, and values of around 4 in the low latitudes (Figure 5a). In contrast, [H +]
F varies less with latitude, and has, in particular, multiple maxima and minima. Zonal maxima of [H +]F occur at 
the equator and at around 60° in both hemispheres (Figure 5d). [H +]F is at its zonal minima in the subtropical 
gyres and in the Arctic. This difference stems from very different balances controlling the distribution of these 
two parameters. The distribution of Ωar is governed by that of the carbonate ion concentration, which is set by 
the difference between Alk and DIC (Sarmiento & Gruber, 2006). And the latter two parameters are controlled 
by biology, transport, and mixing, causing strong gradients in space (and time) of DIC and Alk. In contrast, the 
distribution of pH is very closely related to that of pCO2, which is controlled primarily by the interaction with 
the atmosphere, which tends to equalize the spatial distribution (see discussion in Sarmiento and Gruber (2006)). 
Since gas exchange is too slow to achieve this equilibrium, gradients remain. Their magnitudes are related to the 
degree of equilibration versus the degree to which biology, transport, and mixing disturb this equilibrium. These 
differences in the mean state between Ωar and in [H +]F are then also directly projected into very different levels 
of variability between the two parameters (Figures 5b and 5e), and also different spatial variations in the trends 
(Figure 2).

3.5.  Time of Emergence

Across the global ocean, the times of emergence (ToE) for both Ωar and pH estimated from OceanSODA-ETHZ 
are on the scale of years to decades (Figure 6), with the ToE of pH generally being only half as long as that of 
Ωar. The ToE of Ωar ranges from about 5 years to nearly 50 years, while that of pH ranges from a few years to 
around 20 years only. In the global weighted mean, the ToE for Ωar is 25 years, while that for pH is 9 years. This 
difference is largely a consequence of the higher level of (seasonal) variability in Ωar compared to that of pH 
relative to their respective trends.

The longest ToEs are found in the high latitudes of the Northern Hemisphere for both parameters, again largely 
caused by the high seasonal variations in these regions, but aided, in the case of Ωar by the small long-term trend 
in these regions (see Figure 2). Other regions of longer-than-average ToE are the eastern tropical Pacific (owing 
to strong interannual variability (Figure 5) and a circumpolar band around 40°S) (owing to high seasonal varia-
bility). The ToE of pH has a corresponding band of high ToE in the northern hemisphere, again largely reflecting 

Figure 6.  Maps depicting the time of emergence (ToE) for (a) Ωar and (b) pH. The ToE was estimated from the rates of change in Ωar and pH and variations in their 
respective monthly data (including the seasonal cycles), see Equation 5 in the main text.
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the strong seasonal cycle there. A remarkably low ToE is found in the Southern hemisphere, especially for pH, 
but this is primarily due to the very high trends there (see Figure 2).

Irrespective of the regional variations, the estimated ToEs of less than a few decades imply that over the majority 
of the surface ocean, the currently observed Ωar and pH are already outside the variability envelope defined by 
the data obtained at the beginning of our reconstructions in the early 1980s. This highlights the rapidity of the 
ongoing OA. This also implies that the development of OA can be easily detected amidst its natural variations in 
a time frame of a few decades for vast regions of the global oceans.

Our estimate of the ToE compares well with those that have been estimated from models so far (Friedrich 
et al., 2012; Keller et al., 2014; Rodgers et al., 2015; Schlunegger et al., 2019), although differences in the defini-
tion make direct quantifications difficult. For example, Friedrich et al. (2012) used the amplitude of the seasonal 
cycle as the metric of variance, whereas we use here the standard deviation of the deseasonalized data, that is, we 
consider primarily the level of interannual variability as the “noise” against which we aim to detect the signal. 
Schlunegger et al. (2019) and Rodgers et al. (2015) used the “noise” from an ensemble of models and compared 
that to the trend emerging from the ensemble mean, which is closer to our definition, but still different. Despite 
these important differences, our work here confirms prior assessments that the signals from OA emerge relatively 
fast, that is, on the order of years to decades, from the background noise. Our results also confirm prior findings 
that the equatorial Pacific has one of the longest ToEs (Rodgers et al., 2015). Previously not discussed was the 
difference between pH and Ωar, which we are now able to show.

3.6.  Caveats and Limitations

We note that the interannual variability of pH, [H +]F, and Ωar in the OceanSODA-ETHZ product may 
be underestimated. We base this potential caveat on the observation that the variability of the pCO2 data in 
OceanSODA-ETHZ is on the low end compared to that exhibited in six other surface ocean pCO2 products 
(Table S5 in Supporting Information  S1). Comparison of zonally averaged interannual variability of pCO2 
between the OceanSODA-ETHZ data set (lowest interannual variability of the seven products) and six other 
pCO2-products suggests that the largest discrepancy in their respective interannual variability estimates exists in 
the high latitudes (Figure S7 in Supporting Information S1). A systematically low interannual variability in the 
OceanSODA-ETHZ product would directly lead to a systematic underestimation of the ToE. Thus, we conclude 
that our ToE results may be biased low, although we suspect that this systematic underestimation of the variability 
would not alter the regional differences. A potential underestimation of the variability would also bias low our 
trend uncertainties. However, since the trend contribution to the overall uncertainty is relatively small (typically 
less than 20%), we expect this caveat to have a relatively minor impact on the results.

In addition, we also note that our driver decomposition could be biased since we use the same variables as predic-
tors for generating the fields in the first place and for diagnosing the decomposition in the second place. This 
is potentially problematic since the predictors are interdependent, especially SST and SSS. While this may not 
cause problems when predicting the distribution of the variables, it may be problematic when diagnosing the role 
of freshwater forcing and heating/cooling of the sea surface. We currently do not know how to address this, but 
we also do not have any evidence that this is an issue. Still, one needs to be aware of this potential caveat when 
analyzing the driver decomposition.

4.  Summary and Conclusions
Our analyses of the OceanSODA-ETHZ product suggest that global surface ocean Ωar and pH have declined over 
the past 4 decades at rates of −0.071 ± 0.001 and −0.0166 ± 0.0010 units per decade, respectively. Both trends 
are predominantly caused by the increase in atmospheric CO2 driving a trend in the surface ocean concentration 
of anthropogenic CO2. Thus, these trends are clearly attributable to human activities, that is, to the anthropogenic 
emissions of CO2 by the burning of fossil fuels and land-use change. But we also showed that a decrease in 
the surface ocean concentration of natural CO2 and ocean warming modulate the trends measurably. Especially 
noteworthy is the ∼15% enhancement of the pH trend by ocean warming. El Niño and La Niña related variations 
dominate interannual variability in both Ωar and pH, with Ωar varying more strongly. This, together with the 
stronger seasonal cycle leads to a substantially longer TOE for Ωar (several decades) compared to pH (around a 
decade).
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Our global trend analyses represent a major step forward relative to prior data-based assessments of the global 
trends in OA, which were based on a limited number of time series stations (Canadell et al., 2021), based on 
spatial aggregation of data over large-scale biomes (Lauvset et al., 2015) or using linear regression models only 
(Iida et al., 2021). Not only were we able to substantially reduce the uncertainties of the trends, but we also 
pointed out the substantial regional differences in the trends of the most important OA parameters with pH 
experiencing, on average, the highest rates of changes in the higher latitudes, while the largest changes in Ωar are 
found in the tropics. These regional differences need to be taken into account when assessing the impact of OA 
across the global surface ocean. For example, the especially high rates of change in Ωar in the eastern Pacific can 
bring warm-water corals in toward critical saturation thresholds (Hoegh-Guldberg et al., 2007) much faster than 
inferred from the globally averaged rate of change of Ωar. Our in situ and satellite observation-based analyses can 
provide also important evaluation constraints for model studies used to project OA into the future (Kwiatkowski 
et al., 2020). Of particular concern is again the spatial structure of the simulated changes, an aspect that has not 
been given a lot of attention so far. Thanks to the near-global coverage of satellite observations that our product 
is benefitting from, satellite-data-based estimates of OA are especially well positioned to provide the spatiotem-
poral dimension of OA at the global scale (Land et al., 2019; Shutler et al., 2020).

Understanding the long-term trends and variability of global acidification enables us to put local changes into 
the larger context of global trends and variability. Even though we emphasized here the role of other drivers, 
the main driver of OA is the increase in atmospheric CO2. Thus, unless the anthropogenic emissions of CO2 are 
massively curtailed, OA is bound to continue, increasing its threats on marine life (Bindoff et al., 2019; Kroeker 
et al., 2013).

Data Availability Statement
All data supporting this work are openly available. The updated version of OceanSODA-ETHZ used here 
is provided through the National Centers for Environmental Information of NOAA (NCEI) at https://doi.
org/10.25921/m5wx-ja34 (NCEI Accession 0220059) (Gregor & Gruber, 2023). Numerical values of the trends 
(netCDF) are available through the ETH Research Collection at https://doi.org/10.3929/ethz-b-000613669 (Ma 
et al., 2023).
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