Supporting Information for "Four decades of trends and drivers of global surface ocean acidification"

Danling Ma¹, Luke Gregor¹, and Nicolas Gruber¹

¹Environmental Physics, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zürich, Switzerland.

Contents of this file

- 1. Figures S1 to S7
- 2. Tables S1 to S6

Introduction This file contains additional information in support of the main paper. With regard to the tables, this files contains the details with regard to (i) the evaluation of the trends computed from the OceanSODA-ETHZ product with results from timeseries sites (Table S1), (ii) mean values and long-term trends of the different parameters relevant for ocean acidification for each considered biome (Tables S2 and S3), (iii) determination of the role of the different driver mechanisms for each biome (Tables S4 and S5), and (iv) the comparison of the magnitude of the interannual variability of the OceanSODA-ETHZ product in comparison to others (Table S6). With regard to the figures, this file contains (i) maps of the components of the sDIC trends (Fig. S1), (ii) maps of the expected increases based on anthropogenic CO₂ only (Fig. S2), (iii) an error budget for the trends (Fig. S3), (iv) maps of the trends for a wider set of parameters of relevance for ocean acidification (Fig. S5), (vi) maps of the changes in the drivers needed to assess the different drivers for the trends (Fig. S6), and (vii) a zonal mean plot of the lever of interannual variability of pCO₂ across different pCO₂ products (Fig. S7).

Corresponding author: Nicolas Gruber, nicolas.gruber@env.ethz.ch

			pH (dec	ade ⁻¹)	Ω_{ar} (dec	cade ⁻¹)	
Station	Location	Period	Trend	Literature	Trend	Literature	Reference
	THOU FU INOU UN	1983-2012	-0.014 ± 0.000	-0.017 ± 0.001	-0.066 ± 0.006	-0.095 ± 0.007	(Bates et al., 2014)
CING	32.U N, 04.U W	1983-2020	-0.016 ± 0.000	-0.019 ± 0.001	-0.060 ± 0.004	-0.090 ± 0.010	(Bates & Johnson, 2020)
TOU	OO OON TEO OONT	1988-2007	-0.014 ± 0.001	-0.019 ± 0.002	-0.095 ± 0.013		(Dore et al., 2009)
ПОП	ZZ.8 IN, 138.U W	1988-2012	-0.015 ± 0.001	-0.016 ± 0.001	-0.098 ± 0.009	-0.084 ± 0.011	(Bates et al., 2014)
ESTOC	29.0°N, 15.5°W	1995-2012	-0.016 ± 0.001	-0.018 ± 0.002	-0.072 ± 0.014	-0.115 ± 0.023	(Bates et al., 2014)
Iceland Sea	68.0°N, 12.7°W	1983-2012	-0.019 ± 0.001	-0.014 ± 0.005	-0.056 ± 0.006	-0.018 ± 0.027	(Bates et al., 2014)
Irminger Sea	64.3°N, 28.0°W	1983-2012	-0.018 ± 0.000	-0.026 ± 0.006	-0.046 ± 0.007	-0.080 ± 0.040	(Bates et al., 2014)
Munida	45.7°S, 171.5°E	1998-2012	-0.019 ± 0.001	-0.013 ± 0.003	-0.122 ± 0.024	-0.085 ± 0.026	(Bates et al., 2014)
CARIACO	10.5°N, 64.7°W	1995-2012		-0.025 ± 0.004		-0.066 ± 0.028	(Bates et al., 2014)
$137^{\circ}E$ tropics	5-10°N, 137.0°E	1983-2017	-0.013 ± 0.000	-0.012 ± 0.008	-0.065 ± 0.005	-0.081 ± 0.050	(Ono et al., 2019)
137°E subtropics	20-22°N, 137.0°E	1983-2017	-0.016 ± 0.000	-0.017 ± 0.007	-0.080 ± 0.005	-0.113 ± 0.040	(Ono et al., 2019)
137°E Kuriosho	26-30°N, 137.0°E	1983-2017	-0.017 ± 0.001	-0.019 ± 0.008	-0.090 ± 0.006	-0.121 ± 0.050	(Ono et al., 2019)

Region	$\frac{\text{DIC}}{(\mu \text{mol kg}^{-1} \text{ dec}^{-1})}$	fCO2 $(\mu atm dec^{-1})$	$[\mathrm{H}^+]_F$ (nmol kg ⁻¹ dec ⁻¹)	pH (dec^{-1})	Revelle factor (dec^{-1})	Ω_{ar} $({ m dec}^{-1})$	$[\mathrm{CO}_3^{2-}]$ (µmol kg ⁻¹ dec ⁻¹)
GLOBAL	8.3 ± 0.8	16.6 ± 1.0	0.250 ± 0.016	-0.0166 ± 0.0010	0.156 ± 0.011	-0.071 ± 0.006	-4.6 ± 0.4
NP'ICE	6.8 ± 2.2	15.7 ± 2.0	0.300 ± 0.040	-0.0200 ± 0.0040	0.250 ± 0.040	-0.050 ± 0.011	-3.4 ± 0.7
SSdS.dN	5.4 ± 1.1	15.9 ± 1.2	0.278 ± 0.023	-0.0170 ± 0.0013	0.197 ± 0.027	-0.048 ± 0.007	-3.2 ± 0.4
SSLS.dN	8.2 ± 0.8	17.0 ± 0.8	0.258 ± 0.012	-0.0180 ± 0.0008	0.147 ± 0.012	-0.069 ± 0.006	-4.6 ± 0.4
SdLS.dN	8.1 ± 0.8	16.8 ± 0.8	0.239 ± 0.011	-0.0166 ± 0.0007	0.125 ± 0.007	-0.081 ± 0.005	-5.3 ± 0.3
PEQU'W	9.5 ± 1.5	16.0 ± 1.1	0.212 ± 0.015	-0.0150 ± 0.0010	0.091 ± 0.009	-0.065 ± 0.008	-4.2 ± 0.5
PEQU'E	8.8 ± 2.5	20.0 ± 2.6	0.290 ± 0.040	-0.0171 ± 0.0021	0.165 ± 0.033	-0.098 ± 0.020	-6.2 ± 1.2
SdLS.dS	8.6 ± 0.8	16.6 ± 1.0	0.243 ± 0.016	-0.0164 ± 0.0010	0.144 ± 0.011	-0.080 ± 0.007	-5.2 ± 0.4
NA'ICE	8.0 ± 4.0	15.9 ± 1.9	0.300 ± 0.040	-0.0210 ± 0.0070	0.280 ± 0.050	-0.055 ± 0.013	-3.6 ± 0.8
SSdS.VN	6.5 ± 1.7	15.5 ± 1.2	0.260 ± 0.023	-0.0172 ± 0.0015	0.165 ± 0.028	-0.045 ± 0.009	-3.0 ± 0.6
SSTS'AN	8.7 ± 0.7	15.7 ± 0.8	0.229 ± 0.012	-0.0161 ± 0.0008	0.132 ± 0.011	-0.065 ± 0.006	-4.3 ± 0.4
SdTS'AN	10.3 ± 0.8	16.3 ± 0.9	0.215 ± 0.013	-0.0154 ± 0.0009	0.102 ± 0.009	-0.068 ± 0.007	-4.4 ± 0.4
AEQU	6.5 ± 1.2	15.9 ± 1.1	0.219 ± 0.015	-0.0149 ± 0.0010	0.108 ± 0.011	-0.077 ± 0.009	-5.1 ± 0.5
SdLS.VS	10.8 ± 1.2	16.2 ± 0.9	0.224 ± 0.013	-0.0154 ± 0.0009	0.121 ± 0.009	-0.072 ± 0.007	-4.6 ± 0.4
SdLS.QNI	8.7 ± 1.0	15.8 ± 0.9	0.221 ± 0.013	-0.0155 ± 0.0009	0.113 ± 0.009	-0.073 ± 0.007	-4.8 ± 0.4
SSLS.OS	8.1 ± 0.9	16.3 ± 0.8	0.265 ± 0.014	-0.0176 ± 0.0009	0.191 ± 0.013	-0.067 ± 0.005	-4.4 ± 0.4
SSdS.OS	7.1 ± 0.5	17.6 ± 0.9	0.325 ± 0.017	-0.0189 ± 0.0010	0.293 ± 0.018	-0.062 ± 0.004	-4.1 ± 0.3
SO'ICE	6.0 ± 0.6	15.0 ± 1.5	0.295 ± 0.023	-0.0165 ± 0.0013	0.282 ± 0.025	-0.049 ± 0.005	-3.3 ± 0.3

Table S2. Trends of key variables of the ocean carbonate system for the four-decade period 1982 through 2021. All trends are reported per decade (dec⁻¹).

om 1982-2021.
2014) fr
ε McKinley,
Fay &
ach biome (
system for ϵ
carbonate
urface ocean
of the s
parameters
or the
ı values fo
hted mear
Area weig
Table S3.

197.6	111.8	127.2	191.4	224.4	240.9	212.0	214.7	111.7	140.2	206.2	244.3	237.0	227.2	228.8	164.2	111.0	94.2
4.75	2.71	3.07	4.61	5.44	5.87	5.13	5.14	2.70	3.35	4.89	5.81	5.71	5.40	5.52	3.92	2.67	2.27
3.11	1.70	1.95	2.99	3.59	3.92	3.40	3.37	1.69	2.13	3.18	3.84	3.79	3.55	3.65	2.51	1.68	1.42
10.5	14.1	13.1	10.3	9.3	8.8	9.6	9.8	14.1	12.5	10.1	9.1	9.1	9.5	9.2	11.4	14.2	15.5
8.08	8.13	8.08	8.10	8.08	8.06	8.03	8.09	8.14	8.11	8.10	8.09	8.06	8.08	8.08	8.11	8.08	8.07
6.74	7.03	7.33	6.49	6.50	6.51	7.28	6.57	6.61	6.84	6.44	6.38	6.64	6.53	6.44	6.70	7.52	7.74
359	324	355	338	357	367	415	359	299	334	346	362	378	366	356	339	358	359
2303	2204	2218	2261	2269	2264	2281	2325	2232	2292	2362	2391	2328	2380	2295	2298	2281	2295
2025	2045	2043	1991	1951	1922	1983	2022	2079	2097	2071	2045	1993	2059	1971	2068	2131	2171
GLOBAL	NP-ICE	NP-SPSS	NP-STSS	NP-STPS	PEQU-W	PEQU-E	SP-STPS	NA-ICE	NA-SPSS	NA-STSS	NA-STPS	AEQU	SA-STPS	IND-STPS	SSTS-OS	SO-SPSS	SO-ICE
	GLOBAL 2025 2303 359 6.74 8.08 10.5 3.11 4.75 197.6	GLOBAL 2025 2303 359 6.74 8.08 10.5 3.11 4.75 197.6 NP-ICE 2045 2204 324 7.03 8.13 14.1 1.70 2.71 111.8	GLOBAL 2025 2303 359 6.74 8.08 10.5 3.11 4.75 197.6 NP-ICE 2045 2204 324 7.03 8.13 14.1 1.70 2.71 111.8 NP-ICE 2043 2218 355 7.33 8.08 13.1 1.95 3.07 127.2	GLOBAL 2025 2303 359 6.74 8.08 10.5 3.11 4.75 197.6 NP-ICE 2045 2204 324 7.03 8.13 14.1 1.70 2.71 111.8 NP-ICE 2043 355 7.33 8.08 13.1 1.97 2.71 111.8 NP-SPSS 2043 2218 355 7.33 8.08 13.1 1.95 3.07 127.2 NP-STSS 1991 2261 338 6.49 8.10 10.3 2.99 4.61 191.4	GLOBAL 2025 2303 359 6.74 8.08 10.5 3.11 4.75 197.6 NP-ICE 2045 2204 324 7.03 8.13 14.1 1.70 2.71 111.8 NP-ICE 2043 2218 355 7.33 8.08 13.1 1.97 2.71 111.8 NP-SPSS 2043 2218 355 7.33 8.08 13.1 1.95 3.07 127.2 NP-STSS 1991 2261 338 6.49 8.10 10.3 2.99 4.61 191.4 NP-STPS 1951 2269 357 6.50 8.08 9.3 3.59 5.44 224.4	GLOBAL202523033596.748.0810.53.114.75197.6NP-ICE204522043247.038.1314.11.702.71111.8NP-SPSS204322183557.338.0813.11.953.07127.2NP-STSS199122613386.498.1010.32.994.61191.4NP-STPS195122693576.508.089.33.595.44224.4PEQU-W192222643676.518.068.83.925.87240.9	GLOBAL202523033596.748.0810.53.114.75197.6NP-ICE204522043247.038.1314.11.702.71111.8NP-SPSS204322183557.338.0813.11.953.07127.2NP-SPSS199122613386.498.1010.32.994.61191.4NP-STSS195122693576.508.089.33.595.44224.4NP-STPS192222643676.518.068.83.325.44224.4PEQU-W192222643676.518.068.83.925.87240.9PEQU-E198322814157.288.039.63.405.13212.0	GLOBAL202523033596.748.0810.53.114.75197.6NP-ICE204522043247.038.1314.11.702.71111.8NP-SPSS204322183557.338.0813.11.953.07127.2NP-STSS199122613386.498.1010.32.994.61191.4NP-STSS195122693576.508.089.33.594.61191.4NP-STPS195122693576.508.089.33.595.44224.4PEQU-W192222643676.518.068.83.355.40240.9PEQU-E198322814157.288.039.63.405.13212.0SP-STPS202223253596.578.099.83.375.14214.7	GLOBAL202523033596.748.0810.53.114.75197.6NP-ICE204522043247.038.1314.11.702.71111.8NP-SPSS204322183557.338.0813.11.953.07127.2NP-STSS199122613386.498.1010.32.994.61191.4NP-STSS195122693576.508.089.33.595.44224.4PEQU-W192222643676.518.068.89.33.595.44224.4PEQU-W192222814157.288.039.63.405.14224.6PEQU-W192222814157.288.039.63.405.14214.7NA-ICE207922814157.288.099.83.375.14214.7	GLOBAL202523033596.748.0810.53.114.75197.6NP-ICE204522043247.038.1314.11.702.71111.8NP-SPSS204322183557.338.0813.11.953.07127.2NP-SPSS204322183557.338.0813.11.953.07127.2NP-STSS199122613386.498.1010.32.994.61191.4NP-STPS195122693576.508.089.33.595.44224.4PEQU-W192222643676.518.068.83.325.87240.9PEQU-E198322814157.288.039.63.405.13212.0SP-STPS202223253596.518.099.83.375.14214.7NA-ICE207922323596.618.141.692.70111.7NA-ICE207922323596.618.141.411.692.70111.7NA-ICE207922323596.618.14121.11.692.70111.7NA-ICE207922323346.818.1112.52.14214.7NA-ICE209722223346.818.1112.52.133.35140.2	GLOBAL202523033596.748.0810.53.114.75197.6NP-ICE204522043247.038.1314.11.702.71111.8NP-SPSS204322183557.338.0813.11.953.07127.2NP-SPSS204322183557.338.0813.11.953.07127.2NP-STSS199122613386.498.1010.32.994.61191.4NP-STPS195122693576.508.089.33.595.44224.4PEQU-W192222643676.518.068.83.305.87240.9PEQU-E1983222814157.288.039.63.405.13212.0SP-STPS202223253596.518.039.63.375.14214.7NA-ICE207923253596.518.1414.11.692.70111.7NA-ICE207922322396.618.1414.11.692.70111.7NA-STSS209722323466.848.1112.52.133.35140.2NA-STSS209723623466.448.1112.52.133.35140.2NA-STSS207123623466.448.1010.13.184.89206.2	GLOBAL202523033596.748.0810.53.114.75197.6NP-ICE204522043247.038.1314.11.702.71111.8NP-SPSS204322183557.338.0813.11.953.07127.2NP-SPSS204322183557.338.0813.11.953.07127.2NP-STSS199122613386.498.1010.32.994.61191.4NP-STPS195122693576.508.089.33.595.44224.4NP-STPS192222643676.518.068.83.305.13212.0PEQU-W192222643676.518.099.63.405.13214.7PEQU-E1983222814157.288.039.63.405.13214.7NA-ICE207922322396.518.1414.11.692.70111.7NA-ICE207922323346.618.1112.52.133.35140.2NA-SPS209722923346.818.1112.52.133.35140.2NA-SPS207123623466.448.1112.52.133.35140.2NA-SPS207123623466.448.1010.13.184.89206.2NA-SPS204523913626	GLOBAL202523033596.748.0810.53.114.75197.6NP-ICE204522043247.038.1314.11.702.71111.8NP-SPSS204322183557.338.0813.11.953.07127.2NP-SPSS204322183557.338.0813.11.953.07127.2NP-SPS199122613356.498.1010.32.994.61191.4NP-STPS199122693576.508.089.33.595.44224.4NP-STPS192222643676.518.068.83.925.87240.9PEQU-E1983222814157.288.099.63.405.14214.7PEQU-E198322322396.578.099.63.405.14214.7NA-ICE207123223346.618.1414.11.692.70111.7NA-ICE209722923346.648.1010.13.184.89206.2NA-ICE209722923346.648.1010.13.184.89214.7NA-STPS209722923346.648.1010.13.184.89206.2NA-STPS209723923346.548.1010.13.184.89206.2NA-STPS20972392334 <td< td=""><td>GLOBAL202523033596.748.0810.53.114.75197.6NP-ICE204522043247.038.1314.11.702.71111.8NP-ICE204322043577.338.0813.11.953.07127.2NP-STSS199122613357.338.0813.11.953.07127.2NP-STSS199122613356.498.1010.32.994.61191.4NP-STSS199122693576.508.089.33.595.44224.4NP-STPS192222643676.518.068.83.405.13212.0PEQU-E198322814157.288.099.63.405.14214.7NA-ICE207922322396.518.099.63.405.14214.7NA-ICE207122322396.518.099.63.405.14214.7NA-ICE207122322396.518.1414.11.692.70111.7NA-ICE207123223346.818.11112.52.13214.3NA-ICE207123623346.818.1112.52.10111.7NA-ICE207123623346.818.1414.11.692.612.62NA-ICE207123623346.838.099.1<</td><td>GLOBAL202523033596.748.0810.53.114.75197.6NP-ICE204522043247.038.1314.11.702.71111.8NP-ICE204322043247.038.1314.11.702.71111.8NP-SPSS204322183557.338.0813.11.95307127.2NP-STSS199122613386.498.1010.32.994.61191.4NP-STSS199122693576.508.089.33.595.44224.4NP-STPS192222643676.518.099.63.40224.4PEQU-W192222814157.288.099.63.405.14214.7PEQU-E198322322396.578.099.83.375.14214.7NA-STPS207922322396.578.099.83.375.14214.7NA-STSS207122322396.578.099.11.6214.7NA-STSS2071235223916.578.099.13.184.89214.7NA-STSS207123523346.548.1010.13.184.89214.7NA-STSS207123523346.548.1010.13.184.89206.2NA-STSS207123623346.548.099</td><td>GLOBAL202523033596.748.0810.53.114.75197.6NP-ICE204522043247.038.1314.11.702.71111.8NP-ICE204322183557.338.0813.11.953.07127.2NP-SPSS204322183557.338.0813.11.953.07127.2NP-STSS199122613356.498.1010.32.994.61191.4NP-STPS195122693576.508.089.33.595.44224.4NP-STPS192222814157.288.039.63.405.14214.7PEQU-W192222323596.518.099.63.405.14214.7NA-ICE2079223223346.518.1414.11.692.70111.7NA-ICE207922323346.548.111.252.133.35140.2NA-STSS207122323346.548.111.252.13214.7NA-STSS207123623346.548.101.111.692.70111.7NA-STSS207123623346.548.111.252.13234.7NA-STSS204523913656.448.101.013.184.89206.2NA-STSS204523913656.448.10</td><td>GLOBAL202523033596.748.0810.53.114.75197.6NP-ICE204522043247.038.1314.11.702.71111.8NP-ICE204522043557.338.0813.11.953.07127.2NP-STSS199122183557.338.0813.11.953.07127.2NP-STSS199122613386.498.1010.32.994.61191.4NP-STPS199122613576.508.089.33.595.442240.9NP-STPS193322814157.288.039.63.405.13212.0PEQU-W192223253596.578.099.83.375.14214.7NA-STPS2079223223946.618.141.411.692.70111.7NA-STPS207123623346.848.1112.52.133.35140.2NA-STPS207123623346.848.1010.13.184.89206.2NA-STPS204523913666.538.099.13.765.41274.3NA-STPS204523913626.538.099.13.795.14214.7NA-STPS204523913666.538.099.13.765.41237.0SA-STPS20592380366</td></td<>	GLOBAL202523033596.748.0810.53.114.75197.6NP-ICE204522043247.038.1314.11.702.71111.8NP-ICE204322043577.338.0813.11.953.07127.2NP-STSS199122613357.338.0813.11.953.07127.2NP-STSS199122613356.498.1010.32.994.61191.4NP-STSS199122693576.508.089.33.595.44224.4NP-STPS192222643676.518.068.83.405.13212.0PEQU-E198322814157.288.099.63.405.14214.7NA-ICE207922322396.518.099.63.405.14214.7NA-ICE207122322396.518.099.63.405.14214.7NA-ICE207122322396.518.1414.11.692.70111.7NA-ICE207123223346.818.11112.52.13214.3NA-ICE207123623346.818.1112.52.10111.7NA-ICE207123623346.818.1414.11.692.612.62NA-ICE207123623346.838.099.1<	GLOBAL202523033596.748.0810.53.114.75197.6NP-ICE204522043247.038.1314.11.702.71111.8NP-ICE204322043247.038.1314.11.702.71111.8NP-SPSS204322183557.338.0813.11.95307127.2NP-STSS199122613386.498.1010.32.994.61191.4NP-STSS199122693576.508.089.33.595.44224.4NP-STPS192222643676.518.099.63.40224.4PEQU-W192222814157.288.099.63.405.14214.7PEQU-E198322322396.578.099.83.375.14214.7NA-STPS207922322396.578.099.83.375.14214.7NA-STSS207122322396.578.099.11.6214.7NA-STSS2071235223916.578.099.13.184.89214.7NA-STSS207123523346.548.1010.13.184.89214.7NA-STSS207123523346.548.1010.13.184.89206.2NA-STSS207123623346.548.099	GLOBAL202523033596.748.0810.53.114.75197.6NP-ICE204522043247.038.1314.11.702.71111.8NP-ICE204322183557.338.0813.11.953.07127.2NP-SPSS204322183557.338.0813.11.953.07127.2NP-STSS199122613356.498.1010.32.994.61191.4NP-STPS195122693576.508.089.33.595.44224.4NP-STPS192222814157.288.039.63.405.14214.7PEQU-W192222323596.518.099.63.405.14214.7NA-ICE2079223223346.518.1414.11.692.70111.7NA-ICE207922323346.548.111.252.133.35140.2NA-STSS207122323346.548.111.252.13214.7NA-STSS207123623346.548.101.111.692.70111.7NA-STSS207123623346.548.111.252.13234.7NA-STSS204523913656.448.101.013.184.89206.2NA-STSS204523913656.448.10	GLOBAL202523033596.748.0810.53.114.75197.6NP-ICE204522043247.038.1314.11.702.71111.8NP-ICE204522043557.338.0813.11.953.07127.2NP-STSS199122183557.338.0813.11.953.07127.2NP-STSS199122613386.498.1010.32.994.61191.4NP-STPS199122613576.508.089.33.595.442240.9NP-STPS193322814157.288.039.63.405.13212.0PEQU-W192223253596.578.099.83.375.14214.7NA-STPS2079223223946.618.141.411.692.70111.7NA-STPS207123623346.848.1112.52.133.35140.2NA-STPS207123623346.848.1010.13.184.89206.2NA-STPS204523913666.538.099.13.765.41274.3NA-STPS204523913626.538.099.13.795.14214.7NA-STPS204523913666.538.099.13.765.41237.0SA-STPS20592380366

Table S4. Trends of Ω_{ar} (units per decade) decomposed into mechanisms (Mech.) for each driver. The regions are biomes from (Fay & McKinley, 2014), where the ice-covered biomes are not presented. We decompose sDIC into anthropogenic (C_{ant}) and natural (C_{nat}) components, where the latter is the residual of sDIC minus the anthropogenic component. We also show the actual trend for the variable (Trend) and the sum of the decomposed components (Σ). The mechanisms are taken from Eq 2., where m.e. indicates the mass effect.

Region	Trend	Σ	Mech.	C_{ant}	C_{nat}	sDIC	sAlk	Temp	\mathbf{FW}
			ΔX	-0.0869	0.0158	-0.0711	-0.0051	0.0028	0.0020
GLOBAL	-0.0711	-0.0712	ω_X	-0.0039	0.0005	-0.0034	0.0000	-0.0000	-0.0000
			Ω_{ar} m.e.	0.0044	-0.0006	0.0038	-0.0001	-0.0001	0.0000
			ΔX	-0.0736	0.0269	-0.0467	-0.0054	0.0022	0.0005
NP-SPSS	-0.0479	-0.0491	ω_X	-0.0025	0.0005	-0.0019	-0.0003	-0.0000	-0.0000
			Ω_{ar} m.e.	0.0032	-0.0008	0.0024	0.0002	-0.0001	-0.0000
			ΔX	-0.0844	0.0243	-0.0601	-0.0167	0.0040	0.0032
NP-STSS	-0.0689	-0.0697	ω_X	-0.0028	0.0006	-0.0022	-0.0012	-0.0000	-0.0000
			Ω_{ar} m.e.	0.0031	-0.0007	0.0024	0.0012	-0.0001	-0.0002
		_	ΔX	-0.1074	0.0272	-0.0801	-0.0055	0.0036	0.0003
NP-STPS	-0.0809	-0.0818	ω_X	-0.0033	0.0003	-0.0030	-0.0007	-0.0000	-0.0000
			Ω_{ar} m.e.	0.0035	-0.0004	0.0032	0.0007	-0.0001	-0.0002
			ΔX	-0.0740	0.0092	-0.0648	-0.0115	0.0045	0.0069
PEQU-W	-0.0647	-0.0652	ω_X	-0.0035	0.0006	-0.0029	0.0000	-0.0000	-0.0000
			Ω_{ar} m.e.	0.0033	-0.0006	0.0027	-0.0000	-0.0001	-0.0000
			ΔX	-0.1074	0.0019	-0.1055	0.0079	0.0012	-0.0024
PEQU-E	-0.0981	-0.0975	ω_X	-0.0038	-0.0035	-0.0073	-0.0002	0.0000	-0.0000
			Ω_{ar} m.e.	0.0045	0.0038	0.0083	0.0002	0.0004	-0.0001
			ΔX	-0.0978	0.0180	-0.0798	-0.0039	0.0026	0.0014
SP-STPS	-0.0795	-0.0796	ω_X	-0.0038	0.0003	-0.0035	-0.0002	-0.0000	-0.0000
			Ω_{ar} m.e.	0.0042	-0.0004	0.0038	0.0002	-0.0001	-0.0001
			ΔX	-0.0635	0.0261	-0.0374	-0.0139	0.0032	0.0023
NA-SPSS	-0.0452	-0.0457	ω_X	-0.0027	0.0008	-0.0019	-0.0002	-0.0000	-0.0000
			Ω_{ar} m.e.	0.0034	-0.0010	0.0024	-0.0001	-0.0001	-0.0000
			ΔX	-0.0873	0.0229	-0.0644	-0.0078	0.0037	0.0035
NA-STSS	-0.065	-0.0652	ω_X	-0.0033	0.0009	-0.0024	-0.0002	-0.0000	-0.0000
			Ω_{ar} m.e.	0.0034	-0.0009	0.0025	0.0002	-0.0002	-0.0001
			ΔX	-0.0842	0.0103	-0.0739	-0.0033	0.0044	0.0057
NA-STPS	-0.0676	-0.0673	ω_X	-0.0034	0.0007	-0.0027	0.0000	-0.0000	-0.0000
			Ω_{ar} m.e.	0.0034	-0.0007	0.0027	-0.0000	-0.0001	-0.0001
			ΔX	-0.1254	0.0393	-0.0862	0.0074	0.0039	-0.0036
AEQU	-0.0774	-0.0783	ω_X	-0.0055	0.0023	-0.0032	0.0006	-0.0000	-0.0000
			Ω_{ar} m.e.	0.0059	-0.0024	0.0034	-0.0007	-0.0002	0.0003
			ΔX	-0.0621	-0.0018	-0.0640	-0.0172	0.0025	0.0076
SA-STPS	-0.0719	-0.071	ω_X	-0.0049	0.0015	-0.0034	0.0003	-0.0000	0.0000
			Ω_{ar} m.e.	0.0049	-0.0015	0.0034	-0.0003	-0.0001	0.0002
			ΔX	-0.0940	0.0205	-0.0735	-0.0064	0.0035	0.0026
IND-STPS	-0.0734	-0.0737	ω_X	-0.0047	0.0013	-0.0033	0.0002	-0.0000	0.0000
		-	Ω_{ar} m.e.	0.0048	-0.0013	0.0034	-0.0002	-0.0001	0.0001
			ΔX	-0.0771	0.0155	-0.0616	-0.0095	0.0021	0.0021
SO-STSS	-0.0667	-0.0664	ω_X	-0.0047	0.0008	-0.0039	0.0004	-0.0000	-0.0000
			Ω_{ar} m.e.	0.0055	-0.0009	0.0046	-0.0006	-0.0001	0.0001
			ΔX	-0.0707	0.0033	-0.0674	0.0058	0.0004	-0.0006
SO-SPSS	-0.0616	-0.0605	ω_X	-0.0041	0.0002	-0.0040	0.0008	-0.0000	-0.0000
			Ω_{ar} m.e.	0.0058	-0.0002	0.0055	-0.0011	-0.0000	0.0001

				C^{ant}	C^{nat}	sDIC	sAlk	Temp	\mathbf{FW}
Region	Trend	Σ	Mech.						
			ΔX	0.2510	-0.0438	0.2073	0.0106	0.0381	0.0037
GLOBAL	0.2502	0.2853	β_X	0.0083	-0.0010	0.0073	-0.0003	-0.0000	-0.0000
			[H ⁺] m.e.	0.0195	-0.0025	0.0170	-0.0003	0.0019	0.0000
			ΔX	0.3274	-0.1165	0.2109	0.0171	0.0561	0.0012
NP-SPSS	0.2777	0.314	β_X	0.0085	-0.0020	0.0066	0.0009	-0.0000	-0.0001
			[H ⁺] m.e.	0.0201	-0.0045	0.0156	0.0021	0.0033	0.0003
			ΔX	0.2333	-0.0695	0.1638	0.0418	0.0601	0.0071
NP-STSS	0.2575	0.3006	β_X	0.0054	-0.0012	0.0042	0.0026	-0.0000	-0.0001
			[H ⁺] m.e.	0.0130	-0.0026	0.0104	0.0061	0.0036	0.0010
			ΔX	0.2543	-0.0634	0.1910	0.0135	0.0449	0.0011
NP-STPS	0.2392	0.274	β_X	0.0050	-0.0004	0.0045	0.0013	-0.0000	-0.0001
			[H ⁺] m.e.	0.0126	-0.0011	0.0115	0.0029	0.0026	0.0008
			ΔX	0.1673	-0.0208	0.1464	0.0217	0.0512	0.0114
PEQU-W	0.2124	0.2477	β_X	0.0049	-0.0008	0.0040	-0.0000	-0.0000	-0.0001
			[H ⁺] m.e.	0.0145	-0.0026	0.0119	-0.0001	0.0012	0.0001
			ΔX	0.3000	-0.0031	0.2969	-0.0188	0.0159	-0.0055
PEQU-E	0.2852	0.3278	β_X	0.0080	0.0064	0.0144	0.0002	0.0000	-0.0000
			[H ⁺] m.e.	0.0169	0.0144	0.0313	0.0006	-0.0076	0.0004
			ΔX	0.2540	-0.0460	0.2080	0.0063	0.0336	0.0021
SP-STPS	0.2427	0.2744	β_X	0.0070	-0.0006	0.0064	0.0002	-0.0000	-0.0000
			[H ⁺] m.e.	0.0164	-0.0016	0.0148	0.0006	0.0021	0.0003
			ΔX	0.2321	-0.0992	0.1329	0.0545	0.0738	0.0085
NA-SPSS	0.2604	0.2973	β_X	0.0077	-0.0024	0.0053	0.0006	-0.0000	-0.0001
			[H ⁺] m.e.	0.0185	-0.0064	0.0121	0.0030	0.0062	0.0005
			ΔX	0.2281	-0.0602	0.1678	0.0172	0.0500	0.0067
NA-STSS	0.229	0.2634	β_X	0.0059	-0.0016	0.0043	0.0005	-0.0000	-0.0000
			[H ⁺] m.e.	0.0151	-0.0042	0.0109	0.0011	0.0045	0.0004
			ΔX	0.1870	-0.0229	0.1641	0.0064	0.0506	0.0095
NA-STPS	0.2155	0.2488	β_X	0.0048	-0.0009	0.0039	-0.0000	-0.0000	-0.0001
		_	[H ⁺] m.e.	0.0137	-0.0025	0.0112	0.0000	0.0029	0.0003
ADOL	0.010		ΔX	0.2923	-0.0906	0.2017	-0.0143	0.0470	-0.0062
AEQU	0.2187	0.2457	β_X	0.0082	-0.0034	0.0048	-0.0010	-0.0000	-0.0000
			$[H^+]$ m.e.	0.0222	-0.0092	0.0129	-0.0021	0.0039	-0.0010
	0.00.41	0.0500	ΔX	0.1496	0.0041	0.1537	0.0366	0.0316	0.0141
SA-STPS	0.2241	0.2563	β_X	0.0080	-0.0024	0.0056	-0.0006	-0.0000	0.0000
			[H '] m.e.	0.0199	-0.0060	0.0139	-0.0011	0.0030	-0.0005
IND CTDC	0.0000	0.0507	ΔX	0.2196	-0.0474	0.1723	0.0133	0.0426	0.0049
IND-STPS	0.2208	0.2527	β_X	0.0071	-0.0021	0.0051	-0.0003	-0.0000	0.0000
			[H'] m.e.	0.0191	-0.0050	0.0130	-0.0007	0.0023	-0.0004
SU 6466	0.2654	0 202		0.2009	0.0000	0.2000	0.0244	0.0360	0.0000
20-2122	0.2004	0.303	P_X [H ⁺] m c	0.0119	-0.0019	0.0100	-0.0014	0.0000	0.0000
			ΔX	0.0200	-0.0041	0.0217	-0.0024	0.0021	-0.0004
SO-SDSS	0.325	0 3656		0.0004	-0.0103	0.5419	-0.0200	-0.0000	-0.0023
oo-n- oo	0.320	0.0000	$\begin{bmatrix} P_X \\ [H^+] \\ m c \end{bmatrix}$	0.0100	0.0007	0.0100	-0.0031	0.000	0.0000
	1		[[11] m.e.	0.0545	-0.0018	0.0327	-0.0058	0.0004	-0.0007

Table S5. The same as Table S4 but for $[H^+]$ in nmol \cdot kg⁻¹ \cdot decade⁻¹.

Table S6. Comparison of interannual variability among seven pCO₂ products from the lowest to highest relative to OceanSODA-ETHZ: OceanSODA-ETHZ (Gregor & Gruber, 2021), CSIR-ML6 version 2019a (Gregor et al., 2019), CMEMS-FFNN (Denvil-Sommer et al., 2019), NIES-FNN (Zeng et al., 2015), MPI-SOMFFN (Landschützer et al., 2016), JMA-MLR (Iida et al., 2021), and Jena-MLS (Rödenbeck et al., 2013). Interannual variability in other data sets is scaled proportionally to that of OceanSODA-ETHZ, which is set to 1 by default.

Product	Scaled interannual variability
OceanSODA-ETHZ	1.00
CSIR-ML6 version 2019a	1.10
CMEMS-FFNN	1.31
NIES-FNN	1.56
MPI-SOMFFN	2.14
JMA-MLR	2.36
Jena-MLS	3.21

.35 -0.90 -0.45 0.00 0.45 0.90 1.35 sDIC trends (μmol kg⁻¹ decade⁻¹)

Figure S1. Maps of the trends of salinity normalized DIC (sDIC) and of its components for the period 1982 through 2021. (a) sDIC trends based on OceanSODA-ETHZ (Gregor & Gruber, 2021) (b) Trends in the disequilibrium term of anthropogenic CO₂, i.e., C_{ant}^{dis-eq} , calculated from simulations with the CESM-ETHZ model. (c) Trend in surface ocean anthropogenic CO₂ if it followed the atmospheric perturbation perfectly, i.e., the equilibrium component of C_{ant} , C_{ant}^{eq} , computed from the change in atmospheric pCO₂. (d) Expected trend in surface ocean anthropogenic CO₂, taking into account the disequilibrium term, i.e., $C_{ant} = C_{ant}^{eq} - C_{ant}^{dis-eq}$. (e) The trend of the natural sDIC component without the disequilibrium term of C_{ant} , calculated by the residual of the trends in sDIC (panel a), and the trends in C_{ant}^{eq} (panel c), i.e., $C'_{nat} = \text{sDIC} - C_{ant}^{eq}$. (f) The trend of the natural sDIC component including the disequilibrium term of C_{ant}

Figure S2. Expected increases in (a) Ω_{ar} and (b) $[\mathrm{H}^+]_F$ due to the accumulation of anthropogenic CO₂ only, i.e., the increase in $C_{ant} = C_{ant}^{eq} - C_{ant}^{dis-eq}$. (shown in Figure S1d).

Figure S3. Contribution of the different sources of error to the total error of the trend. Shown are the two considered components, i.e., the error of the trend, σ_{trend} (red) and the error of the underlying data, σ_{data} . The latter is estimated through an ensemble approach. Also shown as a blue dashed line is the estimated trend uncertainty for $f \text{CO}_2$ based on the SeaFlux ensemble. See main text for further details.

Figure S4. Map of the data-driven uncertainty of the long-term trend, i.e., the magnitude of σ_{data} . Data-driven trend uncertainty for (a) Ω_{ar} , (b) pH, (c) DIC, and (d) $[\text{H}^+]_F$.

Figure S5. Maps depicting the average trends of (a) sDIC, (b) sAlk, (c) Revelle factor, (d) fCO₂, (e) [H⁺]_F, (f) pH, (g) Ω_{ar} , and (h) [CO₃²⁻] from 1982 to 2021.

Figure S6. Maps showing the mean change (ΔX in Eq 2 and 3) in (a) sDIC, (b) sAlk, (c) temperature, (d) freshwater input, (e) sDIC_{ant:diseq}, and (f) sDIC_{nat:diseq} from 1982 to 2021. Note that the mean change is calculated with $\Delta X = \sum_{i=1}^{N} (X_i - X_0)/N$ where X is the driver, *i* is the time step (years), X_0 is the first time step in X and N is the total number of years (40). The pattern of the mean changes differ somewhat from the mapped trends shown in Figure S5, since it includes all temporal changes, while the trends just the depict the slopes of the linear regression, i.e., does not include the residuals.

Figure S7. Comparison of zonally averaged interannual variability of pCO₂ for the seven pCO₂ products shown in Table S6.

References

- Bates, N. R., Astor, Y. M., Church, M. J., Currie, K., Dore, J. E., González-Dávila, M., ... Santana-Casiano, J. M. (2014). A time-series view of changing surface ocean chemistry due to ocean uptake of anthropogenic CO₂ and ocean acidification. *Oceanography*, 27(1), 126–141.
- Bates, N. R., & Johnson, R. J. (2020). Acceleration of ocean warming, salinification, deoxygenation and acidification in the surface subtropical north atlantic ocean. *Communications Earth & Environment*, 1(1), 33.
- Denvil-Sommer, A., Gehlen, M., Vrac, M., & Mejia, C. (2019). Lsce-ffnn-v1: a twostep neural network model for the reconstruction of surface ocean pco 2 over the global ocean. *Geoscientific Model Development*, 12(5), 2091–2105.
- Dore, J. E., Lukas, R., Sadler, D. W., Church, M. J., & Karl, D. M. (2009). Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proceedings of the National Academy of Sciences, 106(30), 12235–12240.
- Fay, A., & McKinley, G. (2014). Global open-ocean biomes: mean and temporal variability. *Earth System Science Data*, 6(2), 273–284.
- Gregor, L., & Gruber, N. (2021). OceanSODA-ETHZ: a global gridded data set of the surface ocean carbonate system for seasonal to decadal studies of ocean acidification. *Earth System Science Data*, 13(2), 777–808.
- Gregor, L., Lebehot, A. D., Kok, S., & Scheel Monteiro, P. M. (2019). A comparative assessment of the uncertainties of global surface ocean CO₂ estimates using a machine-learning ensemble (CSIR-ML6 version 2019a)-have we hit the wall? *Geoscientific Model Development*, 12(12), 5113–5136.
- Iida, Y., Takatani, Y., Kojima, A., & Ishii, M. (2021). Global trends of ocean CO₂ sink and ocean acidification: an observation-based reconstruction of surface ocean inorganic carbon variables. *Journal of Oceanography*, 77(2), 323–358.
- Landschützer, P., Gruber, N., & Bakker, D. C. (2016). Decadal variations and trends of the global ocean carbon sink. *Global Biogeochemical Cycles*, 30(10), 1396–1417.
- Ono, H., Kosugi, N., Toyama, K., Tsujino, H., Kojima, A., Enyo, K., ... Ishii, M. (2019). Acceleration of Ocean Acidification in the Western North Pacific. *Geophysical Research Letters*, 46(22), 13161–13169. doi: 10.1029/2019GL085121
- Rödenbeck, C., Keeling, R. F., Bakker, D. C., Metzl, N., Olsen, A., Sabine, C., & Heimann, M. (2013). Global surface-ocean pCO₂ and sea-air CO₂ flux variability from an observation-driven ocean mixed-layer scheme. Ocean Science, 9(2), 193–216.
- Zeng, J., Nojiri, Y., Nakaoka, S.-i., Nakajima, H., & Shirai, T. (2015). Surface ocean CO₂ in 1990–2011 modelled using a feed-forward neural network. *Geoscience Data Journal*, 2(1), 47–51.