Supplementary Fig. 1: Multiple sequence alignment of 11 archaeal M42 peptidases illustrating a previously unreported insertion in Asgard and Thermoplasmata sequences. The unique ~20 residue insertion, specific to some Asgard species, is highlighted in orange. A shorter but similar insertion (9-10 residues), highlighted in green, was identified in certain Thermoplasmata sequences.

	150		160			170				ò							180								
Phorikoshii@BAA30637.1	E <mark>s</mark> k ee /	ED	MGV	KIC	ΤV	ΙT	WD	GR	LEF	RL							.GK	·		. н	RF	7 S	ΙA	FD	DRI
Phorikoshii@BAA30940.1	SSKEEF	EE	MGF	RVO	ΤV	GΕ	FΑ	PN	TI	RL							.NE			. H	R <mark>F 2</mark>	A T	PY	L D	DRI
Gimiplasmataarc@GCA020725925.1_00987	SNEEE	KA	MGV	RIC	ΝP	vv	ΡD	SC	S 1	Γ <mark>Μ</mark>	QKI	RIF	۰			. K	DGK	. к	SGS	DΤ	I <mark>a</mark> :	L G	KA	FD	DRI
Gimiplasmatalesarc@UCE91752.1	SNEEE	KA	MGV	RIC	ΝP	VМ	ΡD	SL	S 1	Γ <mark>Μ</mark>	ΤKI	RVF	۰			. R	DGK	. R	KGS	DT	I <mark>a</mark> :	L G	KA	FD	DRI
Heimdallarcharc@GCA018238585.1_00239	SNAEEA	ΚE	LGI	RIC	DP	IA	ΡН	SI	EI	I W	ERI	PRI	VK	G.	KD		GKE	DE	KSI	VK	LA	7 G	KA	FD	DRA
Hodarchaealearc@GCA015520535.1_01757	KNKEEV	ΈA	LGI	QIC	DP	ΙV	ΡD	SK	EI	LI	TRI	ΚEΙ	IK	CD.	SD		.GK	KQ	EKD	V T	LAI	1 G	KA	FD	DRI
Borrarchaealesarc@NHK31695.1	KSKKEV	ΈA	LGI	KLO	DP	AV	ΡD	ST	EI	L	KR	ΓQΙ	IK	D.	ΕD		TKK	ΚT	KKE	V T	L A :	E A	KG	FD	DRI
Thorarchaeacarc@GCA002825515.1_01215	SSAKEV	KD	LGI	RVO	DP	AV	PV.	AS	RI	ΓL	KR	[R F	EK	KN	ΕE	DM	DSK	ΕE	TRE	V T	LA	7 A	ΚA	FD	DRI
Lokiarchaeiaarc@MBN2157246.1	KSDKEV	KD	LGI	RIC	DV	AS	QY.	ΑI	r R1	Γ <mark>Μ</mark>	DR	F R F	KK	CD.	DD		.GK	ΕT	KSI	ΤK	I A	7 A	KA	F D	DRI
Phorikoshii@BAA29607.1	ESKEEF	LE	L.V	K PI	DF	AV	FΚ	КН	s١	7 <mark>L</mark>							.NG			. K	Y <mark>V</mark> S	S T	<mark>R</mark> G	L D	DRF
Phorikoshii@BAA29828.1	E <mark>k</mark> r ed i	ΕK	LGI	RPO	DF	IA	FD	PK	E	Y <mark>V</mark>	• •			• •	• •	• •	.N.	• •		• G	FVI	<mark>K</mark> S	H F	LD	DKA

Supplementary Fig. 2: New TET peptidases purification. Size exclusion chromatography purification of ThTET and HoTETb was carried out using a Superose 6 Increase 10/300 GL column. Other proteins were purified on a Superdex 200 10/300 GL column. All proteins eluted as high molecular mass complexes of c. 450 kDa. (a) Negative-stain electron microscopy observation of ThTET, HoTET, PSTETa, and MtTET revealed homogenous populations of hollow tetrahedral particles. (b) Typical TET structures were predicted for PSTETc (blue) and TaTET (pink) using AlphaFold3 (ipTM 0.88 and 0.91, respectively). Models were aligned with PhTET2 structure (PDB code 1Y0R, in green), with RMSD of 0.783 Å for PSTETc and 0.534 Å for TaTET.

Supplementary Fig. 3: Temperature, pH and metal ions influence on TET enzymatic activities. For each enzyme, optimal conditions regarding temperature (top), pH (middle) and divalent cations (bottom) were determined. Error bars indicate \pm s.d. with n=3.

Supplementary Fig. 4: Delineation of TET peptidases families in Archaea. Maximum-likelihood phylogeny obtained from an alignment of 1,826 sequences and 337 amino acid positions. The scale bar represents the average number of substitutions per site. Circles at the branches indicate ultra-fast bootstrap values >= 90 %. TET families were delineated based on the taxonomic distribution, the topology of the tree (i.e. branch lengths, node supports) and substrate specificities. Gray and red bars indicate enzymes characterized prior to or during this study, respectively.

Supplementary Fig. 5: Phylogeny of archaeal and bacterial M42 peptidase homologues. Maximumlikelihood phylogeny obtained from an alignment of 526 sequences and 337 amino acid positions. The scale bar represents the average number of substitutions per site. Circles at the branches indicate ultra-fast bootstrap values \geq 90 %. Archaeal and bacterial sequences are indicated in red and blue, respectively. The eleven group-classification for archaeal TET peptidases is represented.

Supplementary Fig. 6: (a) PSTETA AlphaFold 3 model (ipTM score 0.87) featuring the novel insertion identified in some Asgard sequences, here colored in blue. (b) Associated plDDT plot per residue. The dashed red line indicates the confidence threshold (plDDT > 70), above which predicted structures are generally considered reliable. The region of the novel insertion (between residues 166 and 185) is highlighted in blue.

