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Abstract
   

   
Understanding the evolution of Arctic sea-ice is crucial due to its climatic and

socio-economic impacts. Usual descriptors (e.g., sea-ice extent, sea-ice age, and ice-

free duration) quantify changes but do not account for the full seasonal cycle. Here,

using satellite observations of sea-ice concentration over 1979-2023, we perform a

k-means clustering of the Arctic sea-ice seasonal cycle, initializing with equal quantile

separation and using Mahalanobis distance. We identify four optimal seasonal cycle

clusters:  open-ocean (no  ice  year-round),  permanent  sea-ice  (full  coverage with a

minimum  of  70%  sea-ice  concentration),  and  two  clusters  showing  ice-free

conditions,  namely  partial  and  full  winter  freezing.  The  latter  has  larger  sea-ice

concentration in winter, more abrupt melting and freezing periods, and a shorter ice-

free season than the former. The probability of belonging to the open-ocean cluster

increased by 1.6% per decade mostly due to cluster spatial expansion on the Eurasian

side.  The  permanent  sea-ice  decreased  by  1.5%  per  decade  with  a  likelihood

reduction in the Canadian side. The partial and full winter freezing clusters do not

exhibit any trend but spatial shifts occur. We further diagnose cluster transitions and

subsequently infer regions of stabilization and destabilization. The East Siberian and

Laptev seas are destabilizing (losing their typical permanent sea-ice seasonal cycle)

while the Kara and Chukchi seas have stabilized (experiencing a new typical seasonal

cycle, corresponding to the partial winter-freezing cluster). This work provides a new

way  to  describe  Arctic  regional  changes  using  a  statistical  framework  based  on

physical behaviours of sea-ice.

Keywords
Arctic sea-ice, seasonal cycle, machine learning, clustering, climate change, satellite 
dataset, regionalization
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Introduction

The Arctic region has experienced rapid changes over recent decades that are

expected to intensify in the future (Shu et al., 2022). For a global warming of 1°C, the

Arctic has warmed by about 2.5 °C. In a 4°C warmer world, the Arctic is projected to

be from 7°C to 10°C warmer (IPCC, 2021; their  Figure SPM.5).  One of the main

mechanisms behind this Arctic amplification is the retreat of sea-ice, giving way to an

open-ocean  that  captures  more  solar  radiation,  an  effect  called  surface  albedo

feedback (Pithan and Mauritsen, 2014; Goosse et al., 2018). The observed Arctic sea-

ice loss has been attributed to human influence primarily because of greenhouse gas

emissions dominated by carbon dioxide and methane (Eyring et al.,  2021 in IPCC,

their section 3.4.1.1).

The decline of the Arctic sea-ice has profound implications for the regional

environment  and  for  almost  four  million  people  living  beyond  the  Arctic  circle.

Reduced  ice  cover  increases  light  availability,  which  can  enhance  phytoplankton

blooms (Vancoppenolle et al., 2013). This, in turn, reshapes the food web structure

(Ardyna and Arrigo, 2020) and has significant consequences for fisheries, potentially

impacting catch levels and spatial distribution (Stock et al., 2017). The formation and

melting of sea ice also largely influences nearly all aspects of life for marine mammals

in  the  Arctic.  A  delay  in  winter  sea-ice  formation  can  trigger  marine  mammals'

unusual mortality events, as it has been the case in 2018 in the Bering Sea (Siddon et

al., 2020). Indigenous hunting opportunities that are dependent on the presence of

sea-ice have decreased and shifted in time (Huntington et al., 2017). Besides, new

ice-free  regions  could  open  industrial  shipping  routes  and  offshore  oil  and  gas

exploration  with  associated  risks  of  oil  spills,  marine  mammal  strikes  and  noise

pollution and lead to tension between nations (Galley et al., 2013; Huntington et al.,

2020). 

The sea-ice retreat not only affects the Arctic locally but also plays a pivotal

role in the global Earth's radiative budget (Forster et al., 2021 in IPCC, their section

7.4.2.3)  and a  potential  role  in the modulation of  remote large-scale oceanic  and
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atmospheric circulation, known as Arctic teleconnections (Deser et al., 2015; Cohen

et  al.,  2020;  Simon  et  al.,  2021;  Smith  et  al.,  2022).  Therefore,  describing  the

evolution  of  the  Arctic  sea  ice  on  a  dynamic  basis  is  important  due  to  its  fast

evolution,  which  has  implications  for  both  local  and  global  climate  and  socio-

economic systems.

Different methods have been classically used in the literature to describe the

recent changes in Arctic sea-ice. Most of them are based on the analysis of sea-ice

concentration (SIC), which is obtained from satellite measurements since 1979 over

the full Arctic region. In comparison, observational datasets of sea-ice thickness are

available  only  for  less  than  two  decades  and  are  still  associated  with  large

uncertainties (Ricker et al. 2017). The sea-ice area (SIA; integral sum of the product of

SIC and area of all grid cells) or the sea-ice extent (SIE; integral sum of the areas of all

grid  cells  with  at  least  15%  ice  concentration)  enable  to  highlight  years  with

exceptionally  low September sea-ice cover,  such as 2012 and to a smaller  extent

2007, 2016 and 2020 (Parkinson and Comiso, 2013; Petty et al., 2018; Gulev et al.,

2021 in IPCC, their Figure 2.20; Bushuk et al., 2024) or quantify long-term trends. For

instance, the September SIE exhibits a decreasing trend of - 12.8 ± 2.3% per decade

over  the  period  1979  to  2018  (SROCC,  IPCC,  2019;  Meier  and  Stroeve,  2022).

However, trends of SIA or SIE only inform about changes in regime from ice to open-

ocean and do not consider changes in sea-ice features.

Two main diagnostics have been proposed to document these changes. First,

the age of sea-ice categorizes sea-ice into three types: open-water, first-year ice and

multi-year ice (Kwok et al., 2007; Regan et al., 2023). Maslanik et al. (2011) show a

strong decrease in the proportion of multiyear ice in the Arctic Ocean during the

1980-2011 period, especially in the Canadian sector. A second diagnostic deals with

the  duration  of  the  ice-free  period,  and  quantifies  the  timing  of  the  transition

between the freezing and melting seasons. The recent Arctic sea-ice reduction has

resulted in a longer ice-free season (~ 5-10 days per decade), due to both earlier ice

retreat and later ice advance (Stammerjohn et al., 2012; Stroeve et al., 2014; Lebrun

et al., 2019), especially in the Chukchi, East Greenland and northeast Barents seas

(Markus et  al.,  2009;  Parkinson,  2014;  Johnson & Eicken,  2016).  However,  these
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diagnostics do not consider the full seasonal cycle of sea-ice, and thus do not inform

on the sea-ice dynamics including melting and growth behaviour.

These three ways of describing the variations in Arctic SIC (trend of SIE, type

of sea-ice, ice-free duration),  without considering directly the full  sea-ice seasonal

cycle,  have nonetheless  highlighted  changes  in  the  shape of  the  sea-ice  seasonal

cycle: (i) the trend in SIE depends on the season, being maximum in late summer (Fox-

Kemper et al., 2021 in IPCC, their Figure 9.13; Meier and Stroeve, 2022), (ii) Arctic

sea ice has shifted to younger ice between 1979 and 2018 (IPCC, 2019) and (iii) the

trend of later ice advance is expected to eventually double that of earlier retreat over

this century, shifting the ice-free season into autumn (Lebrun et al., 2019). Here, in

this  paper,  we describe  the  evolution of  the  Arctic by  delimiting spatio-temporal

regions having a common type of seasonal cycle. 

Regionalizations of the Arctic have been proposed previously. Parkinson et al.,

(1978) divided the Arctic into 8 regions based on either geographical boundaries or

physical criteria (e.g.; the Central Arctic encompassing the largest mass of perennial

sea-ice or the Greenland Sea which allows for the only deep-water connection within

the  Arctic  Basin).  This  regionalization  was  expanded  by  splitting  regions  into

individual seas to distinguish the behaviour of the Arctic coastal regions, resulting in

considering  up to  15  or  18  regions  (Meier  et  al.,  2007;  Peng  and Meier,  2018).

Besides,  five  climatic  regions  of  the  Arctic  have  been  defined  using  multiannual

averages of a number of meteorological elements computed for the first half of the

20th century: Atlantic, Siberian, Pacific, Canadian and Baffin Bay regions (Przybylak,

2002, 2007). Other regionalizations have been used to assess the influence on lower

latitude climates of Arctic sea-ice loss from specific areas (5 to 7 regions; Levine et al.,

2021;  Delhaye  et  al.,  2024).  However,  the  criteria  for  the  boundaries  of  these

proposed regions are hard to determine and somewhat arbitrary. The originality of

our analysis also resides in the fact that we regionalize the Arctic based on physical

criteria of the dynamics of the sea-ice seasonal cycle, therefore without imposing pre-

defined regions.  To do so,  we set  up a  clustering  method (unsupervised machine

learning).

Dynamical  regionalizations  determined  from  clustering  methods  applied  to
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ocean  temperature  profiles  have  been  shown to  be  an  efficient  tool,  to  capture

coherent  physical  changes  of  e.g.  the  water  column  during  an  El  Niño  event

(Houghton and Wilson, 2020) or heat distribution in the North Atlantic (Maze et al.,

2017). The same conceptual methodology has also been applied to the polar regions.

In  the  Antarctic,  Wachter  et  al.  (2021)  described  the  spatio-temporal  sea-ice

variability  and  documented  significant  spatial  shifts  during  1979-1998 and 1999-

2018 by means of 10 clusters based on the seasonal cycle of sea-ice. In the Arctic,

Valko  (2014)  proposed  a  regionalization  based  on  geographic  and  geopolitical

indicators, ending up with respectively two and three clusters, and Johannessen et al.

(2016)  identified  6  major  regions  by  clustering  annual  average  of  surface  air

temperature. The boundaries of the defined clusters coincide with the outlines of the

continents  and  the  averaged  position  of  the  sea-ice  edge.  However,  no  spatio-

temporal regionalization based on the clustering of the Arctic seasonal cycle of sea-

ice has been proposed so far.

In  this  paper,  we identify  for  the first  time spatio-temporal  regions of  the

Arctic based on the natural variability of  the seasonal cycle of Arctic sea-ice.  We

apply a k-means clustering method to determine regions based on their belonging to

a given type of seasonal cycle, the regions having borders evolving in time. In section

2, the dataset, domain of interest and clustering method are detailed. The results of

the clustering are displayed in section 3, first analyzing the clustering outputs of the

Arctic sea-ice seasonal cycle,  then examining the probability for a given region to

belong to each cluster, and finally investigating the temporal evolution of the clusters

by introducing a new diagnostic labelling the decadal and multidecadal shift of the

Arctic sea-ice features. Conclusions and discussion follow in section 4.

2. Data and Clustering Method

2.1 Sea-ice concentration (SIC)

The National  Snow and Ice  Data  Center  (NSIDC)  provides  gridded sea ice

concentration (SIC) fields on a 25 km polar stereographic projection obtained from

passive microwave satellite measurements on daily temporal resolutions. We use the
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climate data record (CDR) product (Meier et al., 2021), which is based on the most

recent  approach  combining  the  NASA  team  (NT;  Cavalieri  et  al.,  1984)  and  the

bootstrap (BT; Comiso et al., 1986) algorithms. Because of the tendency of passive

microwave  measurements  to  underestimate  concentration,  the  CDR  chooses  the

higher concentration between the NT and BT algorithms and assigns it to each grid

cell. The pole hole - the region around the North Pole where satellite measurements

are unavailable - is filled from the average concentration of the circle of surrounding

adjacent  grid  cells.  The  size  of  the  pole  hole  has  diminished  over  time  due  to

advancements  in satellite  technology.  We utilize daily  data from January 1979 to

December  2023, using linear interpolation for  the few missing data and compute

mean  values  every  5  days.  The  29  February  of  every  bissextile  year  is  removed

before  computing the 5-day  mean.  We choose this  5-day temporal  resolution as

similar results are found for a daily temporal resolution whereas a monthly temporal

resolution shows small differences in the spatial distribution of clusters.

2.2 Studied domain

The study considers the ocean above 55°N. The description of the domain is

based on the delimitation provided by NSIDC (Meier et al., 2023) and encompasses

15 classically predefined regions (Figure 1). The bathymetric data is derived from the

GEBCO 2024 Grid (GEBCO Compilation Group, 2024).
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Figure 1: Geographical decomposition of the Arctic Ocean (defined as ocean above

55°N) into 15 regions following Meier et al. (2023). Bathymetry contours -100 m and

-2000 m are drawn with a dotted line.

2.3 Clustering set up

We  consider  all  oceanic  grid  cells  above  55°N  having  a  non-zero  sea-ice

seasonal cycle. Hence, the number of considered grid cells depends on the year. Grid

cells with a zero sea-ice seasonal cycle are reintroduced after the clustering in order

to define an open-ocean cluster.  This enables a clear separation between regimes

with and without sea-ice. The input data of our clustering are all the seasonal cycles

of every considered grid cell during the considered period. In practice, we are thus

working with a matrix with rows containing every considered grid cell of the period

1979-2023,  here called  points  (1123710 elements)  and columns containing every

time step for one year, here 5-day mean (73 elements). 

We  implement  a  k-means  clustering  algorithm,  which  is  an  unsupervised
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machine learning method that groups data into subsamples sharing common features

(Jain  et  al.,  2010).  It  has  the  advantage  of  being  non-parametric  as  our  data

distribution is strongly non-Gaussian. Indeed, SIC is bounded between 0 and 1 with

high occurrences of values close to 0 and 1. It is an iterative method that minimizes a

cost function being the sum of the squared distance between each seasonal cycle and

its nearest cluster center (also called centroid). The initialization of centroids using k-

means++ concept (the first centroid is chosen randomly, the second is the farthest-

away, the third the farthest-away of the first and second, and so on) has been tested

and is partly influencing our results.  Therefore, we choose a different initialization

strategy.  We  initialize  the  centroids  based  on  seasonal  cycles  of  equal  quantile

separation. The quantiles are calculated over all the seasonal cycles considered in this

study. For a clustering involving two clusters, the initializations are the two seasonal

cycles of 33% and 66% quantiles of all seasonal cycles; for a clustering involving three

clusters,  the  initializations  are  the  three  seasonal  cycles  of  0.25,  0.5,  and  0.75

quantiles,  and  so  on.  This  favours  initial  centroids  far  from  each  other  to  avoid

iterating over a local minimum and the clustering is thus deterministic (i.e., it does not

present any random aspect). 

Figure 2: Correlation matrix of the 5-day mean sea-ice concentration above 55°N
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The  clustering  algorithm  is  based  on  the  calculation  of  distances.  The

Euclidean distance is often used in similar methods, yet, here, we choose to use the

Mahalanobis distance to constrain the clustering with physical information. All  the

combinations of 5-day mean SIC have a positive correlation (as shown in Figure 2 by

the correlation matrix for the period 1979-2023. Notably, a strong correlation exists

between spring and autumn (June and November), while the weakest correlations are

between summer and winter (March and September, minimum correlation is 0.31). As

data are correlated, a privileged direction exists when plotting the SIC for all grid cells

and all years of a given date (5-day mean) against another date. We consider this

physical  relation  by  using  the  Mahalanobis  distance  (which  we  defined  as  an

Euclidean scalar product normalized by the inverse of the correlation matrix) in the

clustering algorithm. A 5-day mean SIC strongly correlated with another  (such as

spring  and  autumn)  has  a  reduced  distance  compared  with  Euclidean  distance.

Therefore, using the Mahalanobis distance helps the clustering algorithm to follow

the direction of the correlation and capture the elongated shapes of clusters.

We  note  that,  as  we  want  to  conserve  the  physical  information  of  the

variability intensity for each 5-day mean SIC, we do not normalize the distance by the

covariance  matrix  (as  usually  done  for  the  Mahalanobis  distance)  but  by  the

correlation matrix that only takes into account relation between different 5-day mean

SIC. As a result,  a 5-day mean SIC with weak variability (as in winter) will  have a

smaller impact on the total seasonal cycle than a 5-day with larger variability (as in

summer). Therefore, we do not modify the relative weight (based on the variability) of

each 5-day mean SIC.

 The number of clusters needs to be specified for the k-means clustering. We

define  the  optimal  number  of  clusters  based  on  the  Silhouette  coefficient

(Rousseeuw, 1987; Houghton and Wilson,  2020) that measures the quality of the

clustering when seeking for  compact and well-separated clusters.  We rely on the

Silhouette_sample function from the python package sklearn.metrics (Pedregosa et

al., 2011), which calculates the Silhouette coefficient for every point as (b - a) / max(a,

b)  where  a  is  the  mean  intra-cluster  distance  and  b is  the  mean  nearest-cluster
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distance for each point. Each point is labelled as being in a cluster using the k-means

clustering (with correlation-based Mahalanobis distance), while the distance used in

the  calculation  of  a and  b is  the  Euclidean  distance.  The  larger  the  Silhouette

coefficient is (bounded between -1 to 1), the farthest the centroids are from each

other and the more grouped are the points of the same cluster. We have computed

the clustering and its associated Silhouette for a number of clusters ranging from 2 to

20 (Figure 3). As the distribution of the Silhouette coefficient is asymmetric, we sort

this sensitivity test  using the median. The maximum median Silhouette coefficient

gives an optimal number of clusters, which is 3 in our case (Figure 3). Therefore, after

reintroducing the open-ocean grid cell for each year, we end up with four clusters

(three optimal clusters obtained using the Silhouette coefficient for non-zero seasonal

cycle of sea-ice and the open-ocean cluster reintroduced manually).

Figure 3: Boxplot of the Silhouette coefficient for a number of clusters from 2 to 20.

The box  extends  from the  first  quartile  (25%)  to  the  third  quartile  (75%)  of  the

Silhouette coefficient. The whiskers indicate the 1st and 99th percentiles. The green-

dashed  and  orange-solid  lines  indicate  the  mean  and  median  values  (50%),

respectively.
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3. Results

3.1 Clustering outputs

One of the two outputs of  the clustering method is  the centroids (optimal

cluster centers), which correspond to the four types of seasonal cycles (Figure 4a).

They exhibit the expected physical behavior that, due to the thermal inertia of the ice

and indirect processes  involving the ocean and atmosphere,  the maximum sea-ice

coverage (in March) follows the minimum solar insolation by around 3 months, and

the  minimum sea-ice  coverage  (in  September)  occurs  around  3  months  after  the

maximum solar insolation (Parkinson et al. 1987). 

The four types of seasonal cycles present different features. The ‘open-ocean’

cluster has a SIC equal to zero all year round, which was sought for our analysis and

represents year-long ice-free conditions. The second cluster, referred to as ‘partial

winter-freezing’, has a quasi-sinusoidal shape with a mean SIC ranging from ~70% in

March to no-ice in summer (early August to mid-October). The ‘full winter-freezing’

cluster is bound to a SIC of 100% from mid-November to April and to almost no-ice

by mid-September. For this cluster, the sea-ice completely melts in 5 months (from

April to September) and totally freezes up in 2 months (from mid-September to mid-

November).  The  full  winter-freezing  cluster  has  more  abrupt  seasonal  changes

compared  to  the  partial  winter-freezing  cluster.  The  permanent  sea-ice  cluster

corresponds to regions that are sea ice covered all year round, with only a partial

melting between May and October, peaking at its minimum in late August (mean SIC

around 70%). The three clusters with sea-ice have different starting dates of melting

(May for the permanent sea-ice cluster,  April  for  the full  winter-freezing one and

March for  the partial  winter-freezing  one)  and for  freeze up (late-August  for  the

permanent  sea-ice  cluster,  October  for  the  full  winter-freezing  cluster  and  mid-

October for the partial winter-freezing cluster). The resulting ice-free period duration

is thus around 2 months for the full  winter-freezing cluster and 3 months for the

partial winter-freezing cluster.
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This clustering analysis shed light on sea-ice precursors. In our optimal data

separation analysis, it appears that when considering areas totally covered by ice in

winter,  the starting date  of  melting is  a  good predictor  for  ice-free  conditions in

summer.  Considering  a  given  location  fully  ice-covered  in  a  given  winter,  our

clustering results suggest that when the sea ice starts to melt in April, the seasonal

cycle will follow the full winter-freezing cluster and be ice-free the next summer. In

contrast, when the melting starts one month later (in May) the seasonal cycle will

follow the permanent sea-ice cluster and the considered location will not be ice-free

in  summer.  Besides,  the  freezing  date  for  areas  free  of  ice  could  differentiate

between the partial winter-freezing and full winter freezing clusters and subsequently

predict full ice conditions in the following winter. In our clustering, a freezing starting

in October totally  freezes in winter which is not the case if  the freezing starts in

November, having a maximum of about 70% SIC in March. Therefore, it appears that,

for ice-free conditions in summer, the starting date of freezing is a good predictor for

the apparition of full ice conditions in the next winter.
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Figure 4: (a) Four types of seasonal cycles determined by the clustering and (b) their

corresponding regions for the years 1979 (left) and 2023 (right). The dotted thin and

thick lines are the mean SIC of 0.15 and 0.8 for the period 1979-2023, respectively.

The second output of the clustering method is the connection of each grid

point to a given cluster. The clustering method associates the sea-ice seasonal cycle

of each year and each grid cell  to the nearest seasonal  cycle type (based on the

smallest  Mahalanobis  distance  between  the  seasonal  cycle  of  the  point  and  the

seasonal  cycle of  the centroids).  Without giving any information to the clustering

algorithm on the spatial and temporal dependency between the seasonal cycles, we
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retrieve spatially  consistent  and continuous  patterns (Figure  4b).  The clusters  are

sorted going toward the pole as follows: the open-ocean cluster, the partial winter-

freezing cluster,  the full  winter-freezing cluster and the permanent sea-ice cluster.

The first three clusters exhibit wavy bands surrounding the pole, and the permanent

sea-ice cluster sits over the pole. More details on the description of the regions will

follow based on our probabilistic framework (section 3.2.2).

3.2 Probability to belong to a cluster

3.2.1 Calculation 

As  a  given  seasonal  cycle  can  be  in  between  two or  more seasonal  cycle

centroids, we calculate the probability P of a grid point to belong to each cluster. We

define the vectors x and c(k), corresponding respectively to the SIC observed at a grid

cell over a year (i.e., 73 intervals of 5 days) and the cluster centroid k. These are of

dimension (73x1) and are written as:

 (1)

The Mahalanobis distance scalar between the point x and the centroids k is defined

as follows:

(2)

with , the correlation matrix of dimension (73x73)

The probability P reads:

(3) 

with the total number of clusters (4 in our case). P ranges from 0 to 1 and the sum

over the fours clusters of  P  equals 1. In other words, the probability of being in a

cluster  is  set  by the distance of  one seasonal  cycle  to a  seasonal  cycle  centroid,
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normalized by the  sum of  the distance to all  clusters.  This  means that  we use a

“fuzzy” k-means clustering where the assignment is soft (each data point can be a

member of multiple clusters)  in contrast  to a hard or  crisp assignment (each data

point is assigned to a single cluster; Jain et al., 2010).

We call the total probability, Pt, the normalized area weighted probability over

all grid cells. We sum, for each year, the probability weighted by the area of each grid

cell over all grid cells divided by the sum of the probability weighted by the area of

each grid cell over all clusters and all grid cells. Pt can be written as:

               (4) 

3.2.2 Map of probability 

After attributing each point to a probability of belonging to each cluster per

year (using equation (3)), we average this probability over three periods of 15 years

(Figure 5). During the first period (1979-1993), the Nordic Seas, the Bering Sea and

the Gulf of Alaska belonged solely to the open-ocean cluster (free of ice). The central

Arctic belongs to the permanent sea-ice cluster. The edge of the 0.3 probability of

belonging to the permanent sea-ice clusters of the period 1979-1993 follows the

border of the Marginal Ice Zone (0.8 SIC) located in the Central Arctic. The belt shape

between the Central Arctic and the open-ocean belongs to more than one cluster. In

the first order, these regions have an almost equal probability of belonging to one of

the four clusters. 

In  the  subsequent  periods  (1994-2008  and  2009-2023),  the  open-ocean

cluster continuously expanded in the Barents Sea, East Greenland Sea and Labrador

Sea.  In  these  same  regions,  the  other  three  clusters  (partial  winter-freezing,  full

winter-freezing and permanent sea ice clusters) retract. No major cluster changes are

seen in the Bering Sea, Kara Sea, southern Hudson Bay and Canadian Archipelago.

The permanent  sea-ice  cluster  exhibits  substantial  change,  with  intense  shrinking

from the Pacific side  of  the central  Arctic,  losing  areas  in  a  belt  shape from the
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Beaufort Sea to the Laptev Sea. This indicates increasingly frequent summer ice-free

conditions during the 1979-2023 period.

Figure 5: Map of the probability of each cluster:  open-ocean (first column), partial

winter-freezing (second column), full  winter-freezing (third column) and permanent

sea-ice (fourth column). Rows correspond to three periods of 15 years: 1979-1993

(top row), 1994-2008 (middle row) and 2009-2023 (bottom row). The dotted thin and

thick lines are the mean SIC of 0.15 and 0.8 for the period 1979-2023, respectively.

The circle sitting over the north pole is the pole hole (see section 2.1).

Therefore, over the whole period (1979-2023) the open-ocean cluster resides

predominantly in the southern part of the Arctic and the permanent sea-ice cluster in

the central Arctic. These two clusters have no or weak seasonal changes (constant

zero for open-ocean cluster and variation between 100% and 70% SIC for permanent

sea-ice). To better shape our understanding of seasonal cycles which strongly change

(from no ice to 70% SIC for the partial winter freezing clusters and to 100% SIC for

the full winter freezing cluster), we distinguish which areas are mainly associated with
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each of these two clusters by plotting the difference of probability between these

two clusters for the whole period (Figure 6). It displays spatially consistent regions,

albeit  with  weak  probability  differences  (less  than  10%).  From  north  to  south,

between these two clusters, the Central Arctic is dominated by the partial winter-

freezing cluster, and then a belt connecting the Baffin Bay to the Kara Sea (except the

Chukchi  Sea)  is  dominated  by  the  full  winter-freezing  cluster.  This  inner  belt,

dominated by the full winter freezing cluster, is attached to the coastal Arctic. Further

south, this cluster is surrounded by an outer belt from Barents to Hudson Bay and by

the Chukchi  Sea dominated by the partial  winter-freezing  cluster.  This  outer  belt

corresponds to the edge of the open-ocean cluster.

Thus, the full winter freezing cluster is slightly more likely to occur in coastal

areas  than  the  partial  winter  freezing  cluster.  This  spatial  repartition  might  be

explained  by  the  difference  in  year-round  shapes  of  the  seasonal  cycles:  quasi-

sinusoidal for partial winter freezing and asymmetric for full winter freezing. Indeed,

Eisenman (2010) demonstrates that the coastlines, by blocking the sea-ice growth,

drive the asymmetric seasonal cycle's shape while sea-ice free to grow and melt (not

being blocked by land) has a sinusoidal shape. Our results corroborate this finding,

albeit  in the second order.  In the first  order,  the quasi-sinusoidal  and asymmetric

shapes of the respective clusters (partial  and full  winter  freezing)  share the same

areas.
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Figure 6: Map of the probability of the full winter-freezing cluster minus the partial

winter-freezing cluster  averaged over the period 1979-2023. The dotted thin and

thick lines are the mean SIC of 0.15 and 0.8 for the period 1979-2023, respectively.

3.3 Time evolution of the clusters

3.3.1 Trend of the probability to belong to a cluster

We  analyze  the  evolution  of  the  total  probability  to  belong  to  a  cluster

(normalized area-weighted probability), calculated using equation (4). The probability

of  belonging to the open-ocean cluster  is  around 45%,  to the permanent  sea-ice

cluster is around 25% and to the partial winter-freezing cluster is around 17 % and to

the full winter-freezing cluster is around 14%. Note that the absolute value reflects

our choice of domain, here above 55 °N. 
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Figure 7: Evolution of the total probability (see Equation (4)) to belong to each cluster.

However,  the  time  evolution  of  these  clusters  is  in  direct  relation  to  the

dynamics of the Arctic sea-ice. The probability to belong to the partial and full winter-

freezing clusters  remains nearly  constant.  This  apparent  stationary behavior  hides

some  spatial  variations  (Figure  5).  A  linear  regression  analysis  indicates  that  the

trends for the other two clusters are statistically significant, with a p-value less than

0.05 using  a Wald Test  with a  t-distribution.  The probability  of  belonging to the

permanent  sea-ice  cluster  overall  declines  by  around  1.5%  per  decade  with  an

acceleration  around  the  1997-2012  period.  The  probability  for  the  open-ocean

cluster  shows a strong linear trend of about 1.6% per decade,  showing a shift in

dynamics  from seasonal  ice  to  year-round ice-free,  especially  in  the Barents  Sea,

Greenland Sea and the Labrador Sea. Therefore, most of the probability loss over the

last 45 years from the permanent sea-ice cluster is compensated by a gain of the

open-ocean cluster, and to a smaller extent, of the full winter-freezing cluster.
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Figure 8: (a) Time series of the total area covered by each of the four clusters. (b)

Times series of the area covered by three categories: packed ice, the Marginal Ice

Zone (MIZ) and the open-ocean 

To investigate the changes in coverage of each cluster,  we define the total

area of a cluster being the sum over each grid cell having as maximum probability the

cluster. We compared the evolution of the total area corresponding to each of our 4

clusters (Figure 8a) with the times series of the decomposition corresponding to a

more classical method (Figure 8b), in which the sea ice cover is separated into the

packed ice category (0.8 < SIC < 1), the Marginal Ice Zone (MIZ; 0.15 < SIC < 0.8) and

the remaining, open-ocean category (SIC< 0.15; Aksenov et al. 2017). The thresholds
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of 0.15 and 0.8 to define the MIZ are convenient to represent a category with loose

and packed ice but somehow arbitrary and other definitions of the MIZ have been

proposed in the literature based on dynamical  considerations (e.g.  Sutherland and

Dumont 2018). 

Both  classification  methods  highlight  distinct  aspects  of  Arctic  sea  ice

dynamics. The traditional classification method captures key trends, particularly the

loss of pack ice, which has been decreasing sharply, especially after the early 2000s.

Notably, the increasing trend in open ocean areas is pronounced starting around the

2000s  when  considering  SIC  below  15%.  As  also  shown  in  several  studies  (e.g.

Cocetta  et  al.,  2024)  The  area  of  the  MIZ  has  expanded,  peaking  around  2014,

suggesting a transition of formerly packed ice into a more fragmented, seasonal state.

Our  clustering  approach  includes  an  explicit  open-ocean  cluster  to  track  ice-free

regions, revealing a steady increase in its extent, particularly after 2000. Similarly, the

permanent sea-ice cluster shows a marked decline, while the partial and full winter-

freezing clusters remain relatively stable. This classification provides a more nuanced

perspective on the shifting nature of Arctic sea ice.

Looking at the years with marked extremes in September sea ice extent (2007,

2012, 2016 and 2020; see introduction), we see the sea-ice loss signature only in the

permanent  sea-ice  cluster  (suggesting  a  loss  of  year-round  ice  cover).  Therefore,

when considering the full seasonal cycle, these years were exceptional only for the

permanent sea-ice cluster. 
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3.4.2 Regime stability and transition

In order to describe the grid-cell evolution of the Arctic sea-ice over the period

1979-2023,  we  further  classify each  grid  cell  into  four  labels:  stable,  unstable,

destabilization, and stabilization. First, we define a stable regime as a sequence when

the cluster having the maximum probability stays the same for at least 10 years in a

row, allowing for a tolerance of one year to belong to a different cluster within that

period. If this condition is not fulfilled, this is an unstable regime. Sensitivity tests

have been performed on this definition, and the results do not change when we apply

small definition changes (i.e., 9 to 11 years minimum length of the same cluster with

zero to 2 years of tolerance). Second, we label each grid cell as follows:

1. Grid cells being in a unique stable regime over the whole period (1979-

2023) are labelled stable;

2. Grid cells belonging to a stable regime until the end of the period and

being in an unstable regime before are labelled stabilization;

3. Grid cells being in a stable regime before being in an unstable regime

until the end of the period are labelled destabilization;

4. Grid cells being in either an unstable regime during the whole period or

one or several stable regimes between periods of unstable regimes are

labelled  unstable.
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Figure 9: Evolution of clusters at the location denoted by the star (a) and the triangle

(b) in Figure 10. The stable regime is delimited by a black rectangle. These locations

have been chosen to illustrate the destabilization and stabilization label of the Arctic

sea-ice evolution, respectively.
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Figure 10: Map of the four labels (stable, stabilization, unstable, and destabilization)

used to describe the evolution of Arctic clusters based on sea-ice seasonal cycles.

The star and triangle markers indicated the two localizations used to illustrate the

destabilization and stabilization in Figure 9, respectively.

   

As shown Figure 10, the stable region predominantly covers the central part of

the Arctic Ocean, including the area around the North Pole, and extends towards the

northern parts of the Canadian Archipelago, following most of the regions covered by

permanent sea-ice cluster,  as well  as the ocean regions in the open-ocean cluster.

The Hudson Bay and part of the Bering Sea are also labelled stable, although these
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regions have almost equal probability to belong to the four clusters (from 0.27 to

0.23 depending on the cluster) but the highest probability remains the partial winter-

freezing clusters for the whole period in these two regions. The northern Chukchi and

Laptev seas correspond to the destabilization region, where there was previously a

stable regime of permanent sea-ice cluster and no settled dominant cluster at the end

of  the  period.  Therefore,  the  previously  permanent  sea-ice  cluster  has  not  been

replaced by a single cluster but a mix of clusters. The unstable region corresponds to

the  northern  Barents-Kara  Seas,  Baffin  Bay,  elongated  areas  in  the  eastern  East

Siberian Sea, the Beaufort, the Chukchi Seas, and the Bering Sea. The stabilization

region forms a band from the southern parts of the Kara Sea to the Labrador Sea. It is

also present in parts of Hudson Bay, the Chukchi Sea and the Bering Sea.

To quantify the year of transition, we introduce ‘the first year of stabilization’

as the first year when the stable regime occurs until the end of the whole period (Fig.

11a), and ‘the year of destabilization’ as the last year of the stable regime (Fig. 11b).

To track cluster shifts, we plot the dominant cluster occurring in the stable regime for

the stabilization (Fig. 11c) and the destabilization (Fig. 11d). Stabilization first occurs

in the 1979-1990s along the 0.15 SIC contour from the Barents Sea to the Baffin Bay

toward open-ocean clusters.  During the same early period,  the Chukchi Sea and

northern Hudson Bay,  and around the 2000s the Kara Seas stabilizes  toward the

partial winter-freezing cluster. Very sparse regions in the central Arctic along the 0.8

SIC contour show a stabilization toward permanent sea-ice at the beginning of the

period. On the Pacific side, a later year of stabilization (around 2015) occured in the

Bering Sea toward the open-ocean cluster.  In  the destabilization region (northern

Chukchi  to  the  Laptev  Seas),  the  first  year  of  destabilization  shows  a  smooth

increasing value when moving northward (Fig. 11b).

The dominant cluster (the cluster having the maximum probability) during the

stable regime is displayed Figure 11c and 11d.  The destabilization always comes

from the loss of permanent sea-ice and stabilization comes mostly from the arrival of

the  open ocean or  partial  winter  freezing  but  rarely  from the permanent  sea-ice

cluster.
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In summary, the four labels illustrate how different regions of the Arctic have

experienced changes in stability. The zone from the northern Chukchi to the Laptev

Seas has already lost  their  typical  seasonal  cycle  (destabilization) with the loss of

permanent  sea-ice  and the  Barents-Kara  Seas  and Chukchi  Sea  have now a  new

typical seasonal cycle (stabilization) associated with the extension of the open-ocean.

Figure  11:  First  year  of  stabilization  (a)  and  destabilization  (b)  and  associated

dominant cluster for the stable regime of the stabilization (c) and destabilization (d).

The star and triangle markers indicated the two localizations used to illustrate the

destabilization and stabilization in Figure 9, respectively.
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4. Conclusion and Discussion

This  paper  explores  the  use  of  data  science  methods  to  study  the

spatiotemporal  evolution of sea-ice in the Arctic over the period 1979-2023. The

methodology is based on the clustering (machine learning method) of the full sea-ice

seasonal cycle, instead of classic usual descriptors used in previous studies (e.g., sea-

ice extent, sea-ice age and ice-free duration). It shows that the Arctic sea-ice changes

are optimally described by four clusters of seasonal cycles: the open-ocean cluster

(with  no  ice  during  the  whole  year),  the  permanent  sea-ice  cluster  (total  sea-ice

coverage  with  a  minimum of  70% sea-ice  concentration  in  September),  and  two

clusters  showing  ice-free  conditions  in  late  summer,  namely  the  partial  winter-

freezing cluster and the full winter-freezing cluster. The full winter-freezing cluster

has a larger sea-ice concentration in winter, displays a more abrupt summer melting

and winter freezing and has a shorter ice-free season than the partial winter-freezing

one. The central Arctic belongs to the permanent sea-ice cluster.  Over the 1979-

2023 period, the probability to belong to the open-ocean cluster has increased by

1.6%/decade and the probability to belong to the permanent sea-ice seasonal cycle

has decreased by 1.5%/decade. In the first order, the area between the Central Arctic

and the open-ocean does not belong to a unique cluster but to a mix of the four

clusters.  Little  trend is  seen for  the likelihood of  belonging  to the  partial  winter-

freezing cluster and the full winter-freezing cluster but spatial shifts are seen. We also

introduce another diagnostic which labels the regime changes of the Arctic sea-ice.

The zone from the northern Chukchi to the Laptev Seas has already lost their typical

seasonal cycle (destabilization) with the loss of permanent sea-ice and the Barents-

Kara  Seas  and Chukchi  Sea  have now a  new typical  seasonal  cycle  (stabilization)

associated with the extension of the open-ocean cluster.

The k-means clustering of the sea-ice seasonal cycle we applied to the Arctic

shares similarities with the analysis of Wachter et al. (2021) for the Antarctic. The

main differences however reside in our use of Mahalanobis distances, to account for

the correlation between the months, and the initialization based on equal separation

of quantiles for the centroids, to avoid any random aspect in the clustering algorithm.

These two choices enable to constrain the clustering with physical features.
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Our clustering approach is complementary to diagnostics involving the dates

of melting and freezing onsets,  which have been used to quantify changes in the

duration and shift of ice-free seasons at the pan or regional Arctic scales (Markus et

al.,  2009;  Stammerjohn  et  al.,  2012;  Parkinson  2014;  Johnson  &  Eicken,  2016;

Stroeve et al., 2014; Lebrun et al., 2019). Instead, our method enables us to target

regions experiencing a shift to a typical seasonal cycle representing longer and shifted

ice-free seasons, and retrieve the year of the shift. Another advantage is that we do

not  use  any  arbitrary  cutoff of  sea-ice  concentration.  Additionally,  our  diagnostic

delimits  regions with the same sea-ice seasonal  dynamics.  The major  limit  of  our

approach resides  in  the exact  grid  point  quantification of  the  real  seasonal  cycle

features, as we gather grid cells within a type represented by a single seasonal cycle

(the  centroid).  Considering  the  full  seasonal  cycle  gives  useful  information,  as  its

derivative gives the period of melting and growth.  Therefore, the two diagnostics

complement each other nicely.

By doing the diagnostic of the trend in the length of the sea-ice season for the

period 1979-2013, Parkinson (2014) shows that the length of  the ice season has

shortened in almost all the coastal regions (around -10 days/decade with a maximum

-30 days/decade in the northern Chukchi Sea and around -50 days/decade in the

northern Barents Sea),  the main exceptions being the Bering Sea, portions of the

Canadian Archipelago (around +10 days/decade)  and the central Arctic where the

sea-ice  season  duration  remain  unchanged  over  the  period.  Similar  features  are

obtained in  Lebrun et  al.,  (2019)  who considered the  period up to  2015.  This  is

consistent with our results showing a decrease in probability for the permanent sea-

ice cluster almost everywhere (especially in the Pacific side but not in the Bering Sea

and the Canadian Archipelago), leading to a shortening of the seasonal cycle. The year

of  loss  in  the  likelihood  to  belong  to  the  permanent  sea-ice  shows  a  smooth

displacement northward, being therefore in a destabilization state. Also, the seasonal

cycle from the Barents Sea to the Baffin Bay shifted from 1979-1990s toward the

open-ocean cluster. Moreover, we were able to demonstrate that in the 1979-1990s,

the Chukchi Sea and northern Hudson Bay, and around the 2000s’ the Kara Seas

stabilized toward the partial winter-freezing cluster.
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The clustering optimally splits the seasonal cycles having a summer opening

into two types: partial winter-freezing (a sinusoidal shape with a long ice-free period)

and full winter-freezing cluster (an abrupt shape with a short ice-free period). Our

clustering  results  suggest  that,  considering  a  given location fully  ice-covered in  a

given winter,  the next summer will be ice-free if the sea ice starts to melt in April,

and will not be ice-free if the melting starts in May.  And, considering a given ice-free

location in summer, the next winter will be fully ice-covered if the freezing starts in

October  which  is  not  the  case  if  the  freezing  starts  in  November.  Therefore,  it

appears that the starting date of melting and freezing could be key for predicting ice

conditions around 6 months in advance. This feature follows a physical behaviour of

sea-ice shown by Stammerjohn (2012) and Stroeve et al. (2016). They found strong

correlations between the dates of the spring sea-ice retreat and subsequent autumn

sea-ice advance (i.e., over the summer), indicating that an early sea-ice retreat is often

followed by a late autumn sea-ice advance and conversely, a late sea-ice retreat is

often  followed  by  an  early  autumn  sea-ice  advance.  Indeed,  consistent  with  our

clustering analysis, the partial winter-freezing cluster has an early sea-ice retreat (in

March) and late autumn sea-ice advance (mid-October) while the full winter-freezing

cluster has a late sea-ice retreat (in April)  and early autumn sea-ice advance (mid-

September).

Concerning  the  growth  and  melting  of  sea-ice,  Parkinson et  al.,  1999  and

Parkinson and Cavalieri, 2008 showed that the seasonal decay of sea ice extent is

gradual  during  early  summer  and  then  accelerates  during  the  remaining  summer

months,  whereas  wintertime  growth  is  most  rapid  in  early  winter.  A  standard

explanation suggests  that  this  asymmetry between  seasonal  growth and decay  is

caused  by  rapid  temperature  changes  driven  by  air  masses  from  the  Eurasian

continent [Peixoto and Oort, 1992]. Here this asymmetry in the seasonal cycle is seen

only for the permanent sea-ice cluster and full winter freezing cluster, suggesting that

the partial winter sea-ice is driven by another driver. 

In the first order, these partial and full winter freezing clusters are located in

the  same region  (a  belt  between  the  Central  Arctic  and  the  open-ocean).  In  the

second order (i.e with a probability difference of around 10% for the whole period),
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the  full  winter-freezing  cluster  (with  no sinusoidal  feature)  is  more  likely  present

along the Arctic coastline than the partial winter-freezing cluster (with a sinusoidal

feature). The reason for this spatial repartition could be explained by the fact that the

sinusoidal feature of the sea-ice seasonal cycle is linked to the ability of the ice to

freeze and expand freely, without being blocked by land, as suggested by Eisenman

(2010). 

The introduction in this paper of the clustering of the Arctic sea-ice seasonal

cycle, with its statistical aspect, can provide an approach to validate the dynamics of

sea-ice in climate models. Indeed, applying the clustering method described here to

models could inform if a given model has the same number of optimal clusters and

the types of seasonal cycles as the one obtained from observations. It could also be

used  to  answer  how  different  clusters  will  be  distributed  for  different  future

scenarios.  Overall,  this  methodology  is  transposable  to  other  variables  to  better

answer its past and future variability in a robust statistical framework.
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