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Uncertainty and construction method of selected ocean products 19 

A group of products related to the physical, chemical, and biological activities that 20 

influence the ocean carbonate system were collected as potential pH predictors (Table 21 

1). These products were constructed using different methods in previous research. The 22 

seawater temperature and salinity product were constructed based on measurements 23 

from the World Ocean Database (WOD) using the ensemble optimal interpolation 24 

method with the dynamic ensemble (EnOI-DE) provided by CMIP5 historical 25 

simulations (Cheng et al., 2016; Cheng et al., 2020). The temperature product was 26 

claimed with an uncertainty of about ±0.05°C in the recent few decades, and the 27 

uncertainty of salinity product was about ±0.001~±0.005 at different depths (present as 28 

figures in Cheng et al., 2016 and Cheng et al., 2020; 29 

https://journals.ametsoc.org/view/journals/clim/33/23/full-jcliD200366-f5.jpg and 30 

https://journals.ametsoc.org/view/journals/clim/29/15/full-jcli-d-15-0730.1-f8.jpg). 31 

The climatological Alk product was constructed from Global Ocean Data Analysis 32 

Project version 2.2019 (GLODAPv2019) measurements using a neural network 33 

(NNGv2) method, with the RMSE of 3–6.2 µmol kg−1 (Broullón et al., 2019). The 34 

climatological DIC product was constructed from GLODAPv2019 and the Lamont–35 

Doherty Earth Observatory (LDEO) datasets using a feedforward neural network 36 



(dubbed NNGv2LDEO) method, with a RMSE of 3.6–13.2 µmol kg−1 (Broullón et al., 37 

2020). The climatological dissolved oxygen, nitrate, phosphate, and silicate product 38 

was constructed based on measurements from the World Ocean Database, using an 39 

objective analysis method that generated a first-guess field and then carried out a 40 

correction at all gridpoints as a distance-weighted mean of all gridpoint difference 41 

values that lie within the area around the gridpoint defined by the influence radius 42 

(Gracia et al., 2020a; Gracia et al., 2020b). The producer claimed an average DO bias 43 

of 0.4±4.7 µmol kg-1 below 500 m depth and 1.4±10.9 µmol kg-1 above 500 m depth. 44 

The average biases of nutrient concentration were -0.02±0.07 µmol kg-1 for phosphate, 45 

-0.22±0.95 µmol kg-1 for nitrate, and -0.3±3.8 µmol kg-1 for silicate below 500 m depth, 46 

and were 0.01±0.12 µmol kg-1 for phosphate, 0.2±1.8 µmol kg-1 for nitrate, and 0.8±3.6 47 

µmol kg-1 for silicate above 500 m depth. The Sea surface height (SSH), mixed layer 48 

depth (MLD), and W velocity of ocean current from the ECCO2 cube92 product were 49 

constructed by least squares fit of a global full-depth-ocean and sea-ice configuration 50 

of the Massachusetts Institute of Technology general circulation model to the available 51 

satellite and in-situ data (Menemenlis et al., 2008). The basin-wide median bias error 52 

of the MLD product is -6.6 m and the RMSE is 40 m, and the RMSE of the SSH product 53 

is 9.2 cm. The ERA5 sea level pressure and surface pressure were constructed by the 54 

Integrated Forecasting System (IFS) Cy41r2 model (Hersbach et al., 2020). The 55 

standard deviation of ERA5 sea level pressure and surface pressure are within 1 hPa 56 

and 0.8 hPa in the recent three decades. The NOAA Greenhouse Gas Marine Boundary 57 

Layer Reference xCO2 product is constructed by extending measurements from a subset 58 

of sites from the NOAA Cooperative Global Air Sampling Network, with an uncertainty 59 

within 1 μmol mol-1 in most regions (Lan et al., 2023, 60 

https://gml.noaa.gov/ccgg/mbl/mbl.html). The bi-monthly Multivariate El 61 

Niño/Southern Oscillation index (MEI) was calculated by the first seasonally varying 62 

principal component of six atmosphere–ocean (COADS) variable fields in the tropical 63 

Pacific basin (Wolter et al., 2011). The Arctic Oscillation index was calculated as the 64 

first leading mode from the Emperical Orthogonal Function analysis of monthly mean 65 

height anomalies at 1000-hPa of the Northern Hemisphere or 700-hPa of the Southern 66 

Hemisphere (CPC, 2002). The Southern Oscillation Index was calculated based on the 67 

differences in air pressure anomaly between Tahiti and Darwin, Australia (CPC, 2005). 68 

The specific uncertainty of these index products is not provided. The GEBCO global 69 

bathymetric data was constructed using predicted depths based on the V32 gravity 70 



model (Sandwell et al., 2019). The monthly surface ocean pCO2 was constructed using 71 

the SOM-FFNN method based on regional-specific predictors selected by the stepwise 72 

FFNN algorithm, with a global RMSE of 17.99 μatm (Zhong et al., 2022). A 73 

climatological pCO2 product constructed by another SOM-FFNN model was also used, 74 

with the RMSE of 18.3 μatm (Landschützer et al., 2020). The Euphotic Depth product 75 

was constructed from remote sensing reflectance (RRS) data derived inherent optical 76 

properties using Lee algorithm (Lee et al., 2007), with an average percentage error of 77 

13.7%. The chlorophyll concentration product was constructed based on RRS at 2-4 78 

wavelengths between 440 and 670 nm with an uncertainty of 1-2%, using the algorithm 79 

of Hu et al. (2019) that combines an empirical band difference approach at low 80 

chlorophyll concentrations with a band ratio approach at higher chlorophyll 81 

concentrations. The photosynthetically available radiation (PAR) product was based on 82 

the observed Top-of-Atmosphere (TOA) radiances in the 400-700nm range that do not 83 

saturate over clouds using the algorithm of Frouin et al. (2002), with an RMSE of 3.6 84 

Einstein/m2/day. The product of the diffuse attenuation coefficient at 490 nm (Kd490) 85 

was calculated using an empirical relationship derived from in situ measurements 86 

of Kd490 and blue-to-green band ratios of RRS. The remote sensing reflectance 87 

product was derived from ocean color sensors based on the spectral distribution of 88 

reflected visible solar radiation upwelling from below the ocean surface and passing 89 

through the sea-air interface. The total absorption and backscattering products were 90 

calculated using the default global configuration of the Generalized Inherent Optical 91 

Property (GIOP) model (Werdell et al., 2013).  92 

Validation of cross-boundary method 93 

The cross-boundary method reduced the pH predicting error slightly, but improved 94 

the discontinuity problem in the SOM boundary effectively (Figure S1 a-d). However, 95 

the discontinuity problem was not completely solved and some boundary line existed 96 

in the spatial distribution, especially in the deeper ocean that pH measurements are 97 

much sparser (Figure S1 e-f). Even so, the performance of FFNN predicting was better 98 

when the cross-boundary method was applied. Compared with taking average in the 99 

boundary area, the cross-boundary method avoided subjectively modifying the 100 

boundary data. Correspondingly, this method may not solve the discontinuity problem 101 

perfectively in some situations. The cross-boundary method also decreased the 102 

predicting error slightly in vertical boundary areas (2 layers near the mixed layer depth). 103 

However, the improvement was minor in the vertical distribution, due to the natural 104 



existing substantial vertical gradient of seawater pH near the mixed layer depth (Figure 105 

S2). Overall, the cross-boundary method increases information about seawater pH 106 

variation out of boundaries in the neural network learning process, reducing the outliers 107 

near the SOM boundary and vertical boundary. 108 

 109 
Fig. S1. Validation of cross-boundary method for pH predicting in the SOM boundary. a-b): 110 
comparison of FFNN predicted pH with GLODAP in all SOM boundary areas; c-f): comparison 111 
of spatial distribution at 0 m and 1000 m in January 2020. 112 

 113 

 114 

 115 
  116 



Fig. S2. Validation of cross-boundary method for pH predicting in the vertical boundary. a) 117 
and b): comparison of FFNN predicted pH with GLODAP in all vertical boundary areas (2 layers 118 
near the mixed layer depth); c) and d): comparison of vertical distribution at different basin in 119 
January 2020. 120 

 121 

 122 

Table. S1. Predictors selected by the stepwise FFNN algorithm in the Mixed layer for period 123 
before August 2002. The predictors are arranged in order of relative importance, with the 124 
variables listed at the front of each province being more effective in reducing predicting errors 125 
when used as pH predictors. 126 

Province 
FFNN 

neurons 
Predictors 

P5 Equatorial Atlantic 25 Phosphate, Temp, SLP, DIC, Psurf, TA, pCO2, Wvel(in-situ), 

DO 

P8 Equatorial Pacific 10 pCO2, Depth, sLat, Temp, Sal, DIC, Wvel(in-situ), Nitrate 

P10 Subtropical South 

Atlantic 

20 pCO2, Silicate, Nitrate, Wvel(65m), Wvel(in-situ), 

Wvel(195m) 

P11 Subtropical South 

Pacific 

10 Phosphate, pCO2, Depth, sLat, Silicate, pCO2 clim, 

Wvel(5m), Wvel(105m) 

 127 
 128 
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