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Abstract The ocean oxygen (O2) inventory has declined in recent decades but the estimates of O2 trend are
uncertain due to its sparse and irregular sampling. A refined estimate of deoxygenation rate is developed using
machine learning techniques and biogeochemical Argo array. The source data includes historical shipboard
(bottle and CTD‐O2) profiles from 1965 to 2020 and biogeochemical Argo profiles after 2005. Neural network
and random forest algorithms were trained using approximately 80% of this data and the remaining 20% for
validation. The training data is further divided into 5‐fold decadal groups to perform cross validation and
hyperparameter tuning. Through different combinations of algorithm types and predictor variable sets, an
ensemble of gridded monthly O2 data sets was generated with similar skills (root‐mean‐square error ∼13–
18 μmol/kg and R2∼ 0.9). The largest errors are found in the oxycline and frontal regions with strong lateral and
vertical gradients. The mapping was repeated with shipboard data only and with both shipboard and Argo data.
The effect of including Argo data on the estimated global deoxygenation trends has a major impact with an 56%
increase while reducing the uncertainty by 40% as measured by the ensemble spread. This study demonstrates
the importance of new biogeochemical Argo arrays in relatively data‐poor regions such as the Southern Ocean.

Plain Language Summary Oxygen is an essential molecule existing in the seawater. Its
concentrations are declining in many parts of the oceans. The causes of the decline are not fully understood but it
is thought to be linked to the recent warming of the surface ocean and its impact on the physics and chemistry of
the seawater. It is difficult to accurately estimate how much oxygen has been lost from the oceans based on
historical measurements because of sparse sampling density and irregular timing of measurements. This study
assesses the skill of machine‐learning based estimates of oxygen in the global oceans, with the specific aim of
synthesizing historical ship‐based measurements and new autonomous data from robotic floats. By combining
these data, we were able to determine the rate of oxygen loss at finer temporal and spatial regions. Our results
show that including float data substantially increases the estimate of oxygen loss while reducing its uncertainty.

1. Introduction
Historical observations from past decades have shown growing influences of anthropogenic perturbations on
marine ecosystems and biogeochemistry (Friedland et al., 2020; Gruber et al., 2021; Pershing et al., 2015; Seidov
et al., 2018). Dissolved oxygen is essential for all multicellular life and its concentration can shape the habitats of
marine organisms, cycling of nutrients and trace elements, and the redox states of the seawater. There is a growing
consensus in the scientific community that the global ocean O2 inventory has declined in recent decades. Esti-
mates of the oceanic oxygen inventory decline are in the range of 0.5%–3.3% over the period of 1970–2010,
equivalent of − 0.48 ± 0.35% per decade, for the upper 1,000 m (Bindoff et al., 2019 and references therein).
Assessing the global and regional O2 inventories requires filling data gaps because the historical O2 measure-
ments are irregular in time and sparse in space. The wide range in the estimates of ocean deoxygenation can be due
to the different interpolation methods, different data quality control standards, and different data sources.

There are three major groups of O2 observations including two types of shipboard measurements and biogeo-
chemical Argo floats. First, bottle O2 profiles are typically measured by modified Winkler titration method with a
precision of about 1 μmol/kg. Most modern oxygen chemical titration measurements are based on Carpenter's
whole bottle titration method and an amperometric or photometric end‐point detection with a precision of about
0.5–1 μmol/kg (Carpenter, 1965). Older bottle data prior to 1965 may have larger measurement uncertainties.
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Secondly, Conductivity‐Temperature‐Depth (CTD) instruments have been equipped with O2 sensors since the
late 1980s, and they are periodically calibrated to the bottle data (Culberson et al., 1991).

Argo is an international program that measures seawater temperature and salinity using a fleet of robotic in-
struments that drift with the ocean currents and periodically sample the water column by moving up to the surface,
with a typical depth and cycle time of 2,000 m and 10 days (Roemmich et al., 2019). Biogeochemical‐Argo
(BGC‐Argo) aims to develop the global network of biogeochemical sensors mounted on Argo floats including
O2, NO3, pH and bio‐optical properties (Bittig et al., 2019; Johnson et al., 2013; Sarmiento et al., 2023). Chemical
sensors for measuring biogeochemical data require post‐deployment quality control and calibration (Maurer
et al., 2021). There are real‐time, real‐time adjusted and delayed mode data. In‐situ calibration using atmospheric
reanalysis/in‐air measurement and empirical algorithms can bring accuracy to within 3 μmol/kg for O2.

Calculations of basin‐scale O2 inventory requires statistical gap‐filling methods to estimate O2 for the location
and time where direct measurements are not available. Such gap‐filling techniques include objective analysis such
as the multi‐pass Barnes method (Barnes, 1964) and optimal interpolation or kriging (Wunsch, 1996). Irregular
and uneven distribution of observational data are known to cause increased uncertainties and underestimation of
trends in the data‐poor regions (Ito et al., 2023). Recently, machine learning (ML) has become a powerful tool in
climate and ocean sciences (Chen et al., 2019; Gloege et al., 2021; Reichstein et al., 2019). In marine biogeo-
chemistry, ML has been used to generate the maps of partial pressure of carbon dioxide (Chen et al., 2019; Gloege
et al., 2021; Landschützer et al., 2013; Moussa et al., 2016; Sharp et al., 2022; Zeng et al., 2015), oxygen (Sharp
et al., 2023), alkalinity (Broullón et al., 2019), dissolved iron (Huang et al., 2022), phytoplankton concentrations
(Chen et al., 2020) and nutrients (Sauzède et al., 2017). Typically, data gaps are filled by some form of nonlinear
regression models trained by available observational data. The underlying assumption is that there are significant,
regional relationships between biogeochemical variables and other input data such as temperature, salinity,
pressure and/or geographic coordinates. With a large amount of training data, ML algorithms can learn detailed
relationships from existing observations. Once the algorithm is trained and validated, it can be used to reconstruct
gridded biogeochemical fields. Sharp et al. (2023) recently developed gridded maps of global O2 distribution from
2004 to 2022 using two ML approaches including two‐layer Neural Network (NN) and Random Forest (RF)
regression models. They found a global deoxygenation trend of − 0.82 ± 0.11% per decade from 2004 to 2022
based on the ML technique and Argo‐O2 and GLODAP observational data sets. This estimate is larger than that
assessed by Bindoff et al. (2019) of − 0.48 ± 0.35% per decade over a different period (1970–2010) but these
estimates overlap within the uncertainties.

Since the mid‐2000s, a significant number of O2 profiles are measured by biogeochemical Argo floats and its
share is increasing. The calibration of Argo‐O2 data is still under development, especially for the response time
of optode sensors in the upper ocean oxycline (Bittig & Körtzinger, 2017). Despite these potential biases and
uncertainties, there can be significant advantage gained by including the quality‐controlled Argo‐O2 data to
better estimate the O2 inventory by combining it with historical shipboard observations. The objective of this
study is two‐fold. First, we aim to develop four‐dimensional (3‐dimensional space and time) reconstructions of
gridded O2 data sets using multiple ML approaches. This work is different from Sharp et al. (2023) who
focused on the Argo O2 profiles after 2004. This study covers a significantly longer period from January 1965
using the combination of Argo‐O2 and historical shipboard observations. This study documents the develop-
ment of the ML based O2 mapping, leading to the formation of an ensemble of O2 reconstructions selected from
a large number of trained algorithms with different input variable sets and ML parameters. Secondly, we aim to
quantify the impact of including Argo‐O2 data. Separate sets of ML‐based O2 ensembles are formed based on
the shipboard data only (without Argo) and with the shipboard and Argo‐O2 data. The comparison of deox-
ygenation trends and the ensemble spread quantifies the potential impacts on the estimates of deoxygenation
trends.

2. Methods
This methods section first describes the data sources for dissolved oxygen and other input variables in Section 2.1.
We then provide the description of the ML approaches in Section 2.2 followed by the experimental design and
workflow in Section 2.3.
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2.1. Data Sources

Figure 1 shows the distribution of shipboard and Argo‐O2 measurements
based on World Ocean Database 2018 (WOD18, Boyer et al., 2018) for the
period of January 1965–December 2020, downloaded in October 2023. The
displayed profile count includes those profiles that passed the quality control
step as discussed below. WOD18 is an international collaboration among
national data centers, oceanographic research institutions and investigators to
provide a comprehensive data set of quality‐controlled oceanographic vari-
ables. The preprocessing of the data includes data quality checks indicated by
the WOD18 quality control (QC) flags of 0 through 9. This study uses the
accepted values (QCflag = 0) only. Data with the QC flags of 1 through 9 are
not used in this study as they are outliers or questionable data with several
different criteria. The number of profiles taken each year/month fluctuates
significantly. Prior to 1990, most O2 profiles are taken by ship‐based bottle
measurements. After the 1990s, the number of CTD‐O2 profiles increased and
became a major O2 data source. Since the mid‐2000s, the number of Argo‐O2

profiles has steadily increased. Argo‐O2 data is obtained from the Argo
Global Data Assembly Center (GDAC) including the time, location, quality
control flags, and descriptions of calibration methods for each O2 sensor. The
entire archive of BGC Argo floats was downloaded in October 2023. We
specifically searched for floats containing delayed‐mode O2 profiles using
two standard methods of bias correction including in‐air pO2 measurement
with atmospheric reanalysis data (Bushinsky & Emerson, 2015; Johnson
et al., 2015) and climatological air‐sea disequilibrium of surface O2 (Take-
shita et al., 2013). There are 1,366 BGC‐Argo floats that satisfy this condition
globally, and from these floats, O2 data points with acceptable QC flag
indicated as QC flag of 1, 2 or 8 are selected (1 = “good data”, 2 = “probably

good data” and 8= “estimated data”). BGC‐Argo and its calibration methods are still evolving. Sensor calibration
bias for Argo‐O2 observations can also include finite response time of optode sensors, which may cause systemic
bias in the oxycline regions (Bittig et al., 2014, 2018).

Including all three platforms, approximately 1 million (963,412) quality‐controlled O2 profiles are used in this
study with 69% bottle, 17% CTD‐O2 and 14% Argo‐O2 measurements from 1965 to 2020. Figure 2 shows the
year‐by‐year temporal evolution of the profile counts from the three sources globally and in five open‐ocean
basins including the Atlantic, Pacific, Indian, Southern and Arctic Ocean. There are profiles taken in the mar-
ginal seas and coastal waters, that are not included in this basin‐scale breakdown.

Globally, there are 10–20 k O2 profiles per year, but their measurement platforms have evolved over time. Bottle
data dominated during the earlier periods but it has been declining after 1990. The decline of bottle profile count
was partially compensated by the increase of CTD‐O2 profiles after 1990s and then Argo‐O2 profiles after 2010s.
The Atlantic and Pacific Oceans have the largest number of profiles (213 and 253 k respectively), exhibiting
similar evolution as the global data. The profile counts in the Indian (55 k) and Southern Ocean (43 k) signifi-
cantly increased in the last decade owing to the Argo‐O2 profiles. In contrast, Arctic profiles (46 k) mainly come
from before 1990s and are highly skewed toward the Atlantic sector.

As a part of pre‐processing, the original WOD18 standard‐depth profiles with 102 depth levels are placed into
monthly bins which are 1° × 1° longitude‐latitude grid cells. We focus on the upper 47 levels for 0–1,000 m of the
water column. Argo‐O2 data is interpolated onto the same standard depths, and placed into the 1° × 1° longitude‐
latitude grid cells. The binning was performed separately for shipboard and Argo‐O2 data, allowing them to be to
mapped them together or separately. We focus on the five major ocean basins including Atlantic, Pacific, Indian,
Southern and Arctic Oceans according to the definition of ocean basins taken from the World Ocean Atlas 2018
(WOA18; Garcia et al., 2018). The basin boundaries are shown in Figure 3. The definition of the Indian Ocean
includes the Bay of Bengal.

The target analysis period is after 1965 when the modern oxygen titration method is established by Carpen-
ter (1965). Prior to 1987, only the bottle O2 data is selected for the shipboard profiles due to the concern that very

Figure 1. Sampling density (a, b) Logarithm (base 10) of the cumulative
profile count within each 1° × 1° longitude‐latitude cell for oxygen (O2)
based on theWorld Ocean Database 2018 (Boyer et al., 2018) downloaded in
October 2023. The color saturates at 2 (more than 100 profiles) per cell since
1965 (c) The cumulative profile count for the BGC‐Argo O2 data. These
profile counts only includes the profiles that passed the quality control step.
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early CTD‐O2 data may contain larger uncertainties. After 1987, the bottle and CTD‐O2 profiles are averaged
within the 1° × 1° bins weighted by the profile counts.

2.2. Machine Learning Algorithms

This study aims to extract regional relationships that allow filling data gaps in O2 using surrogate (predictor)
variables such as temperature (T), salinity (S), and pressure using ML approaches. As a basis for the surrogate
variables, optimally interpolated monthly gridded T/S fields are obtained from the Hadley Center EN version 4
data set (hereafter, EN4, Good et al., 2013). It is a global gridded data set from 1900 to present at the horizontal

Figure 2. Yearly evolution of the O2 profile count. The number of quality‐controlled profiles are displayed as a function of
time as “stacked” bar chart where Bottle profile count (blue) is placed at the bottom, upon which CTD profile count (orange)
is placed. Argo‐O2 profile count (green) is placed on the top without overlap. The vertical axis is in the units of thousands of
profiles per year. The definition of ocean basin is taken from the basin mask of the World Ocean Atlas 2018 (Garcia
et al., 2018).

Figure 3. Basin definition. The five major basins are filled with different color. This definition is taken from the basin mask of
WOA18. Each basin is assigned a number. Here, we use Atlantic (1), Pacific (2), Indian (3, including Bay of Bengal of 56),
Southern (10) and Arctic (11) basins.
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resolution of 1° × 1° in longitude‐latitude grid and with 42 vertical depth levels (20 levels within the 0–1,000 m).
In supervised learning, a computer program is designed to learn the relationship between a large number of paired
input‐output examples. The output (predictand) variable is the O2 concentration, and the input (predictor) variable
can include physical variables and coordinates. The potential predictor variables include absolute salinity, con-
servative temperature, pressure, potential density, Brunt‐Väisälä frequency, longitude, latitude, time, and month.
Some of these variables are coordinates and others are derived from the EN4 data set. Using the Thermodynamic
Equation of State 2010 (TEOS‐10), conservative temperature (Θ) and absolute salinity (Sa) are calculated. Po-
tential density is a non‐linear function of Θ, Sa and pressure (depth) and is calculated following TEOS‐10. Tracer
transport in the interior ocean is primarily oriented along the potential density surfaces. While it can be computed
from Θ, Sa, and pressure, including potential density may improve the ML algorithm. Brunt‐Väisälä frequency
measures the local stratification, determined from the vertical density gradient. Since stratification can be linked
to turbulent mixing, Brunt‐Väisälä frequency may potentially improve the algorithm. Having said this, however,
it is not clear whether including all above variables will improve the estimation of O2. The performance may
depend on various factors including the choice of input variables and specific configuration of algorithms. Gregor
et al. (2019) showed biases and discrepancies between different methods to gap‐fill pCO2 data in regions where
training data is sparse. Applications ofML to ocean biogeochemistry often struggles in data‐sparse areas, and care
must be taken to choose the algorithms that are best fit to the specific problem (Brunton & Kutz, 2019).

Artificial neural networks and RF regression are commonly used algorithms for supervised learning, but they
have distinct characteristics and operate in different ways. Neural Networks (hereafter, NN) are composed of
interconnected nodes (neurons) arranged in layers including input, hidden, and output layers (LeCun et al., 1998).
NN is capable of representing complex, nonlinear relationships and can capture intricate patterns, but it requires a
large amount of training data. In contrast, RF (hereafter, RF) is an ensemble learning method that combines
multiple decision trees to make predictions (Ho, 1995; Kleinberg, 2000). RF can capture complex relationships,
but it may struggle with very subtle patterns. RF can handle missing data effectively by using surrogate splits,
which means it may outperform NN in data‐poor regions. In addition, RF can provide feature importances which
can help interpret the results.

In this study, we will employ the Scikit‐Learn version 1.3 (Pedregosa et al., 2011) for the Python implementation
of NN and RF regression models. For each type of algorithm, there are several free parameters (hyperparameters)
that cannot be learned from the data and must be selected before training. These parameters govern the learning
process and influence how the model learns the relationship between the predictor and predictand variables. In
practice, it's hard to know in advance which algorithm/hyperparameter set works better for a particular problem,
and it requires testing multiple algorithms to make a good model choice by experimentation. Examples of
hyperparameters include the number of nodes for each hidden layer in neural networks, the regularization
parameter, learning rate, or maximum features in RF. Hyperparameter tuning involves selecting the best com-
binations of these settings to achieve the best performance.

2.2.1. Train‐Test Split by Randomly Selecting Data From Specific Years

In oceanographic data, observations always contain some level of noise, which can come from sensor accuracy
and sampling uncertainty (spurious noise) as well as unexplained natural variability. Overfitting occurs when an
algorithm fits the noises in the training data rather than capturing the signal, and as a result, it negatively impacts
its ability to generalize to new, unseen data. Overfitting could occur when a model is too complex relative to the
size of the training data and the noise level. In this study, we employ two types of strategies that the algorithms are
not overfit by evaluating their ability to generalize unseen data. First, approximately 80% of the observed O2

profiles are selected to train the algorithms, and the remaining 20% are withheld as to measure how well the
trained algorithms can reconstruct the profiles that are not used during the training. Since oceanographic data is
correlated in time and space, O2 measurements from similar region and time should not be shared between the
training and test data. During the pre‐processing, O2 profiles within 1° × 1° grid cell and within the same month
are averaged into a single bin. This reduces the possibility of having similar set of values between the train and test
data. The 80‐20 split is implemented by randomly selecting 11 years out of the 55‐year input data (1965–2020),
such that the performance of algorithms are measured by their ability to reconstruct the 11 years of data unused in
the training of the algorithm. The selections of the test data are randomized for each combination of input data set,
algorithm type and hyperparameter set.
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2.2.2. Decadal Group K‐Fold Cross Validation

The second level of protection against overfitting is the Decadal‐group K‐fold Cross Validation (hereafter,
DKCV), which is a resampling procedure that helps estimating how well an algorithm will perform on unseen
data. Figure 4 visually illustrates this procedure as we apply DKCV for hyperparameter tuning. The training data
(∼80% of oxygen profiles) are split into K decadal groups (K= 5 in this study) and each set of hyperparameters is
trained K times using different (K‐1) groups of training data, and its performance is validated by measuring how
well the trained algorithm reconstructs the one 10‐year group that is withheld from the training in terms of R2

score and root mean square error. Considering the long memory of the ocean properties, the K groups are defined
by the decades including 1965–1974, 1975–1984, 1985–1994, 1995–2004 and 2005–2020. The last segment is a
15‐year long period for practically covering the entire Argo‐O2 data. In this procedure, a decade of data are
dropped from the training set, avoiding the overlap within a 10‐year period between the training and validation.
This procedure is repeated for all possible combinations of the hyperparameter set in consideration, allowing to
select the best configuration while minimizing the possible occurrence of overfitting.

2.3. Workflow and Experimental Design

Building on the procedures discussed in Section 2.2, a workflow is developed for a suite of ML algorithms for
predicting the O2 distribution. Table 1 organizes different combinations of input/output variables as experiments
(Exp) 1 through 6. All experiments use shipboard O2 as the predictand variable, and Argo‐O2 is also included in

Figure 4. Decadal group K‐fold Cross Validation (DKCV). Training data is divided into K(=5) groups as illustrated by
different horizontal bars, which is a suitable approach since autocorrelation is suspected in oceanographic measurements.
This ensures that data from the same decade are not shared between training and testing of the algorithms.

Table 1
Input Variables

Note. Experiments highlighted green contain only shipboard O2, while experiments highlighted red contain both shipboard
and Argo‐O2. “Θ” is conservative temperature (°C). “Sa” is absolute salinity (g/kg). “Long” is longitude and “lat” is latitude,
both in degrees except for Southern and Arctic Ocean where the polar stereographic coordinates are used. “P” is pressure
(dbar). “σθ” is potential density (kg/m

3), and “N2” is the square of Brunt‐Väisälä frequency (s− 1). “Time” is measured as the
number of month since January 1965. “Mon” is the month of year implemented as sine and cosine functions.
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Exp 4 through 6. All experiments also include conservative temperature (Θ), absolute salinity (Sa), longitude,
latitude, pressure (P or depth), and time as predictor variables. Time is counted as the number of months since
January 1965. We also include the sine and cosine of the month of year (mon) to capture annual cycle with 12‐
month periodicity as cos (π mon /6) and sin (π mon /6). Exp 2 and 5 includes potential density (σθ) and Exp 3 and
6 additionally include the strength of stratification as the square of Brunt‐Väisälä frequency (N2) which is pro-
portional to the vertical density gradient. There are some redundancies in the predictor variables where time can
include month, and σθ and N2 can be calculated as non‐linear functions of T and S. However, these factors are
explicitly included because of their predictive potential. The seasonal cycle can be important for O2 especially in
the near‐surface layer for biological O2 production. Isopycnal surfaces and water column stratification can be
important indicators of O2 ventilation and transport. Comparing Exp 1–3 versus 4–6 can inform the importance of
including the Argo‐O2 data.

Two types of algorithms, NN and RF are trained for each experiment (Exp1–6). For each algorithm, a suite of
hyperparameters sets is considered (18 sets each for NN and RF), thus a total of 216 algorithms are trained for
different combinations of algorithm type, hyperparameter sets, and input/output parameter choices. This was
applied separately for each of the five basins (Atlantic, Pacific, Indian, Southern and Arctic), leading to the total of
1,080 basin‐scale algorithms. For NN, the number of nodes in hidden layers and the regularization parameter are
systematically changed (see Table S1 in Supporting Information S1). A wide range of hidden layers are
considered including 10‐10‐10‐10, 20‐20‐20‐20, 40‐40‐40‐40, 60‐60‐60‐60, 60‐40‐20‐10, 20‐20‐20‐20‐20‐20‐
10‐5, and three different regularization parameters are considered including 0.001, 0.01 and 0.1. Increasing the
number of nodes and layers allows more complexity whereas increasing the regularization parameter prevents the
model from becoming too complex. Regularization parameter is a coefficient multiplying the sum of squared
weights, which is added to the loss function. A larger regularization parameter tends to regulate the magnitude of
weights. The combination of hyperparameters results in 18 different configurations of the NN algorithm. The NN
algorithm used in this study trains using backpropagation with no activation function in the output layer. It uses
the square error as the loss function, and the output is a set of continuous values. Weights are randomized at the
initialization.

For RF, the reference hyperparameters are taken from Probst et al. (2019), and different configurations are
explored for two variables (see Table S2 in Supporting Information S1) including the minimum samples for split
(min_samples_split) and the maximum features (max_features). The value of min_samples_split is varied over a
wide range from 2 to 64. If the number of samples in a node is less than the specified “min_samples_split,” the
node will not be split, and it will become a leaf node, effectively halting the tree's growth in that branch. Thus,
increasing the value of the min_samples_split prevents the model to become too complex and reduces the
overfitting. The maximum features (also referred to as “mtry” in literature) determines the number of features
randomly selected at each split when building the decision trees. The maximum features should be less than the
total number of predictor variables, and is varied from 2 to 5 in this study. This choice covers the canonical value
of

̅̅̅
p

√
∼ 3, where p is the number of predictor variables (Probst et al., 2019). Limiting the maximum features

reduces overfitting by increasing the randomness and diversity among the trees. A large number of trees avoids
overfitting and stabilizes the algorithm, and it is set to 500 in this study. The combination of these hyper-
parameters results in 18 different configurations of the RF algorithm.

A wide range of ML model complexity are explored through the diverse set of hyperparameter sets. As stated in
Section 2.1, observed O2 profiles are averaged into 1° × 1° longitude‐latitude bins during pre‐processing, which
combines O2 profiles from close proximity in space and time into a single profile. Furthermore, DKCV is per-
formed to select the best possible configuration of the hyperparameters. Then we use∼20% of data unused during
the algorithm training to assess the algorithm skill and uncertainty of the resulting mapping products. The
schematic diagram (Figure 5) shows the overall workflow. The best performing algorithm is selected after
training of all possible combination of hyperparameters for each combination of input/output variables and al-
gorithm type. The performance metrics are root‐mean‐square error (RMSE) and R2 values. Once the best per-
forming hyperparameters are found, the algorithms are further evaluated with additional performance metrics
including mean bias, root‐mean‐square‐error (RMSE), and R2 value using the 20% of the data that are held out
from the training. Using all of these factors, the ML algorithms' performances are measured, and the gridded O2

data sets are generated by projection of predictor variables.
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3. Hyperparameter Tuning and Performance Evaluation
A total of 1,080 ML algorithms is trained including 540 NN and 540 RF regression models based on different
combinations of input/output variables and hyperparameter sets for the five ocean basins. Each of the algorithms
is trained 5 times using DKCV approach, thus the total of 5,400 trainings are performed. These calculations were
computationally demanding but they can be efficiently carried out in parallel computing platform using Derecho
supercomputers at National Center for Atmospheric Research (CISL, 2023).

3.1. Optimization of Hyperparameters

For each set of input/output variables (Table 1), all possible configurations of hyperparameters are explored with
the DKCV approach, and the RMSE and R2 scores are recorded. Figures 6 and 7 shows the mean RMSE scores for
the NN and RF algorithm for each basin with the hyperparameter sets listed in Tables S1 and S2 in Supporting
Information S1. The algorithms are capable of reproducing O2 observations withheld from the training with
RMSE range of 15–22 μmol/kg in all basins, which is greater than the measurement errors. It suggests that the
mapping (interpolation) error is the largest source of uncertainty in this data set, which will be discussed in detail
later (Section 5). The R2 scores (not shown) are approximately 0.9 and higher in all basins except for the Arctic
(R2 ∼ 0.7). The relatively low R2 in the Arctic basin may reflect the skewness in the sample distribution as most
profiles are taken before 1990s and are primarily from the Atlantic sector, in addition to the presence of sea ice
which makes the shipboard observation difficult. The profile counts of the Southern and Indian Ocean are not
significantly greater than that of the Arctic, but they have wider spatial and temporal data coverage owing to the
recent deployment of BGC Argo floats.

The hyperparameter sets with the lowest RMSE score are selected as the best performing algorithm, and they
generally match the ones with the highest R2 scores. The displayed cases in Figures 6 and 7 are from Exp 1 (ship
only) and 4 (ship+Argo) but the general outcomes from other experiments are similar, and are displayed as
Figures S1–S4 in Supporting Information S1. Comparing the results between the cases with/without Argo data,
there is a noticeable difference in the overall magnitude of RMSE where the inclusion of Argo data decreased the
error in NN.

In the NN algorithm, the number of hidden layers/nodes determines the complexity of the algorithm. The best
performing configurations are different depending on the basin and on the inclusion of Argo data (Figure 6). The
most complex configuration (60‐60‐60‐60, 4 hidden layers with 60 nodes for each layer) is selected for the
Atlantic basin including shipboard and Argo data where the highest regularization coefficient reduced the risk of
the overfitting. The most complex configuration (60‐60‐60‐60 with lowest regularization) performed the poorest
in general. Simpler configurations with fewer number of nodes performed better in relatively data sparse basins

Figure 5. The workflow. This flowchart describes the preprocessing, training, tuning, and testing of the algorithm to map O2.
The shaded region is repeated for six experiments (with different input data set) and 2 algorithms (Neural Network and
Random Forest). The main outcomes are the gridded monthly maps and its uncertainty estimates boxed with the thick line.
The entire workflow is repeated for each of the five basins.
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including Indian, Southern and Arctic basins. There are multiple configurations that exhibit similarly low value of
RMSE. There are potentially multiple hyperparameter choices that perform equally well, indicative of trade‐offs
between regularization and model complexity.

The primary determining factor for RF is the max_features (see Figure 7). For this study, the canonical max_-
feature value is 3 (Probst et al., 2019) which was selected for the most basins. In the relatively data‐rich Atlantic
and Pacific Ocean, larger values of min_samples_split performed slightly better, which also avoids overfitting.
Conversely, lower values of min_samples_split performed slightly better in the relatively data‐sparse Indian and
Southern Ocean.

3.2. Validation and Quantification of Uncertainties Using the Test Data

We selected the best performing hyperparameter sets for NN and RF algorithms using DKCV, and the algorithms
are re‐trained using all training data. They are evaluated against the test data which consists of ∼20% of all input
data that are set aside and unused for training. The test data is assembled from randomly selected 11 out of
55 years, and it is randomized differently for each basin. Figure 8 shows an example of the distribution of the test
data from RF with Exp 5. These test data are used to evaluate the algorithm and to quantify the uncertainties. The
performance is evaluated using three metrics including mean bias, RMSE and R2,and the results are listed in Table
S3 and S4 in Supporting Information S1.

The general performance of both algorithms is quite high with the overall R2 scores of 0.9 and higher with the
exception of the Arctic Ocean where it is in the range of 0.6–0.8. The mean biases are generally low for all basins,
less than 2.1 μmol/kg for all algorithms. The magnitude of RMSE is in the range of 13–18 μmol/kg. RF algo-
rithms overall performed slightly better than NN in terms of these metrics. Comparing the results from ship‐only
(Exp 1–3) and ship and Argo (Exp 4–6), these metrics are overall similar.

Figure 6. Mean RMSE scores from the hyperparameter tuning of Neural Network using DKCV approach. Results from Exp 1
(left, S for ship‐only) and Exp 4 (right, S+A for ship+Argo) are shown. Each row from top to bottom is Atlantic, Pacific,
Indian, Southern andArcticOceans. Color bar shows themagnitude of the RMSE in the units of μmol/kg. The dots indicate the
best performing hyperparameter set.
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The panel C and D of Figure 8 shows the spatial distribution of the error as calculated by the difference between
the algorithm reconstructions and the test data based on the RF algorithm from the Exp 5. The specific choice of
the algorithm and input data does not significantly impact on the overall structure of the error field. The major
regions of disagreements are close to strong background O2 gradients. Relatively large errors >20 μmol/kg occurs
near the oxycline at the depth range where there are strong vertical gradients. Similarly large errors are found at
the frontal region in the Southern Ocean and at the lateral boundaries of the tropical oxygen minimum zone.

The evaluation of ML algorithms, so far, are performed based on the total O2 concentrations including clima-
tological means and its temporal variability and trends. The high R2 values and very small mean bias suggest that
the algorithms can reconstruct the overall spatial patterns and mean values relatively well. The detailed com-
parison with the test data revealed the weaknesses of the reconstructed O2 in the oxycline regions and the lateral
water mass boundaries. The amplitude of O2 anomalies generated by displacements of water parcel scales with the
magnitude of background O2 gradient. A possible explanation for very small mean bias (<3 μmol/kg) and
relatively high RMSE (13–18 μmol/kg) in the oxycline and frontal region can be that the algorithm captures the
climatological O2 distribution well but struggles to represent the spatial and temporal variability. It is difficult to
assess the algorithm skill separately for background climatology and anomalies because of temporally sparse
sampling. However, this is not necessarily the case at the sites of ocean time series stations. The algorithm re-
constructions and test data are compared at two ocean time series stations, Station P (OSP, 145°00’W, 50°00’N)
in the northeastern Pacific Ocean, and Bermuda Atlantic Time Series (BATS, 64°10’W, 31°40’N) in the sub-
tropical North Atlantic Ocean. Larger numbers of samples taken at these stations allow focused examination of
skill for the reconstruction of temporal variability at these stations.

Figure 9 shows the comparison of reconstructed and test data at the specific location of OSP and BATS. Two
isopycnal layers are selected for each station. Figures 9a and 9b shows sigma‐theta level 26.8 and 27.0 which are
in the upper/lower oxycline depths at OSP. As expected, R2 values are in the range of 0.5–0.8, which is lower than
the basin‐scale value (∼0.9). The RMSE is in the range up to 18 μmol/kg, which is comparable to the basin‐scale
value. Figure 9c shows sigma‐theta level 26.3 at BATS which is within the North Atlantic Subtropical Mode
Water. Figure 9d shows sigma‐theta level 26.8 in the lower thermocline. Again, R2 values are in the range of 0.6–

Figure 7. Same as Figure 6 but for the Random Forest algorithm.
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0.8, which reflects the algorithm skill to represent variability at these specific locations, and the RMSE is in the
range of 6–8 μmol/kg which is significantly lower than the basin‐scale value. While we admit that the algorithms
are not perfect, it is encouraging that this approach can capture a significant fraction of temporal variability at
these sites.

For most input/output variable sets (Table 1), RF algorithms showed lower RMSE than NN but R2 and mean
biases are similar to NN, indicating slightly better skill (Tables S3 and S4 in Supporting Information S1).
Comparing the algorithms trained with shipboard only (Exp 1–3) and shipboard and Argo data (Exp 4–6), there is
a slight improvement in terms of RMSE or R2 in favor of inclusion of Argo data. This is expected as Argo data
contributed to the significant increase in data coverage even though it is limited to the period after 2005.

In comparison to a recently developed global data set, GOBAI‐O2 (Sharp et al., 2023), whose global‐scale RMSE
is 8.8 μmol/kg, our results show a larger RMSE of 13–18 μmol/kg. GOBAI‐O2 employs similar NN and RF
algorithms under different configurations, and their data sources are mainly based on Argo‐O2 (with additional
GLODAPv2 profiles), thus we do not expect the same uncertainties.

3.3. Evaluation of Climatological O2 Distribution

Using the algorithms developed and tested in Section 3.2, we projected O2 distributions using the gridded EN4
data from 1965 to 2020, and we further analyze the results in comparison to the well‐established climatological
distribution using World Ocean Atlas 2018 (WOA18). Figure 10 shows the summary of comparison for annual
mean climatology averaged over 0–1,000 m. This is not a validation in the strict sense since many of the shipboard
data used to assemble World Ocean Atlas were also used in the training of the algorithms. Rather, it is reassuring
to find similar climatological distribution to the widely adopted WOA18 since our method of mapping is
fundamentally different from that of WOA. Figures 10a and 10b shows vertically averaged, annual mean O2

climatology from the WOA18 and the ensemble average of algorithm‐based reconstruction.

Figure 8. Test data for Random Forest algorithm from the Exp 5 (a) Spatial distribution of test profiles that are unused for training of algorithm (b) Temporal distribution
of the test profiles (c, d) Meridional section of misfit between estimated O2 and test data as colored dots in Atlantic and Pacific basin taken from the boxed regions in
panel (a) The contours are annual mean climatological O2 concentrations based on World Ocean Atlas 2018 (Garcia et al., 2018).
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Figure 10c shows a slight, widespread negative bias in the open ocean with some localized overestimation of O2

along the eastern boundary of ocean basins and along the Antarctic coasts. The horizontally (area‐weighted)
averaged vertical profile of O2 is displayed in Figure 10d. It shows general similarity between theWOA18 and the
reconstructed O2, and the difference between them (Figure 10e) reveals the negative bias of 2–4 μmol/kg overall.
The reconstructed O2 climatologies with ML approaches are slightly lower than WOA18. The inclusion of Argo‐
O2 data does not significantly impact on the negative bias of the climatological O2 profile. Factors contributing to
the negative mean bias may include differences in the period represented by the WOA18 and this study. The
period represented by the ML‐based climatology may reflect the time windows over which the training data were
collected. The representations of the temporal trends are further examined in Section 4. Comparing the re-
constructions with potential density and/or stratification as additional input variables (Exp 2,3,5,6), the addition
of these variables did not significantly change the climatology. Based on the comparison with WOA18, both RF
and NN algorithm performed well for reproducing the annual mean climatology.

3.4. Feature Importances to Explain Relative Contributions

In the RF algorithm, feature importance measure the relative importance between each of the predictor variables
in estimating O2. It is calculated by randomly removing a feature from the data set during training and measuring
how much each feature decreases the algorithm's overall accuracy. The larger the decrease in performance, the
more important the feature is deemed to be. Figure 11 shows the feature importances determined from the Exp 1–6
with the best performing hyperparameter sets for each basin. The feature importances significantly vary across
basins. In the Atlantic and Indian Ocean, latitude was considered the most influential variable in making O2

estimation. In the Pacific and Southern Ocean, pressure was the most influential variable. Other variables, such as
salinity, temperature, longitude, and potential density, all played some roles when they are included with

Figure 9. Validation of O2 variability at two ocean time series stations (a, b) Ocean Station Papa and (c, d) Bermuda Atlantic
Ocean Time Series. Blue dots are for the Neural Network algorithm, and red dots are for the Random Forest. The blue solid
lines are 1:1 line.
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relatively small influences. Inclusion of Argo data made little impact as the pairs of Exp 1 & 4, 2 & 5, and 3 & 6
show very similar feature importances.

Feature importances offer insights into which factors contribute most significantly to the estimation of O2.
Climatological O2 significantly varies latitudinally and in depth (pressure), likely making them two of the most
important factors. Variability of T/S on isopycnal surfaces can indicate water mass shifts and circulation vari-
ability, thus these variables can play some important roles in estimating O2 variability. Comparing Exp 1 and 2
(and Exp 4 and 5), the addition of potential density, in some cases, reduced the relative importance of T and S.
Similarly, comparing Exp 2 and 3 (and Exp 5 and 6), the further addition of N2 does not significantly change the
importance of T/S/σθ, indicating some roles played by the stratification. It is important to note that feature im-
portances are calculated for the specific configuration of RF algorithms used in this study, and they may not
indicate causal relationships.

4. Assessment of Deoxygenation Trends
Based on the comparison with the test data and annual mean climatology, we consider both NN and RF to provide
reasonable reconstructions of the O2 distribution, forming 12 ensemble members (NN 1–6 and RF 1–6) where
numbers after NN and RF indicates the experiment number in Table 1. This ensemble includes six algorithms
trained with shipboard data only, and another six with shipboard and Argo data. The following analysis aims to
evaluate the impact of the Argo data on the reconstructions of deoxygenation trends.

The top panel in Figure 12 shows the 12‐month running mean of the O2 inventory time series integrated over 0–
1,000 m. Figure 12a shows results from all algorithms grouped by (blue) ship‐only and (red) ship and Argo
ensemble members with the mean and range of 6 reconstructions respectively. Figures 12a and 12b show
separately the results of RF and NN algorithms including the mean and range of 3 reconstructions for each

Figure 10. Comparison of annual mean climatology between this study andWorld Ocean Atlas 2018 (WOA18) (a) Vertically
averaged WOA18 O2 climatology from 0 to 1,000 m. Panel (b) Same as panel (a) but for the ensemble mean of both
algorithms including Exp1–6 (c) Difference between (a, b) (d) Area‐weighted mean vertical profile of O2. Red line is
WOA18. Blue lines are ship‐only (Exp 1–3) algorithms, and magenta lines are ship+Argo (Exp 4–6) algorithms
(e) Differences between the algorithms in panel (d) and WOA18.

JGR: Machine Learning and Computation 10.1029/2024JH000272

ITO ET AL. 13 of 20

 29935210, 2024, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JH

000272 by Ifrem
er C

entre B
retagne B

lp, W
iley O

nline L
ibrary on [13/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Figure 11. Feature importance of the Random Forest algorithm for each basin. The relative importance of each feature
variables is shown for Exp 1 through 6. “Pden” indicates potential density. Latitude (Lat*) and longitude (Lon*) are
transformed to polar stereographic coordinates for the Arctic and Southern Ocean.

Figure 12. Oxygen inventory in the units of Pmol (1015 mol) and its ensemble spread (a) All 12 ensembles including Random
Forest (RF) and Neural Network (NN) algorithms. (b) RF only and (c) NN only. 12 months running mean is applied to
remove mean seasonal cycle. The shaded region is the ensemble spread calculated as the difference between yearly
maximum and minimum.
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algorithm type. In general, all ensemble members show a moderate decrease from 1965 to around 1990, followed
by stronger decline after 1990. They share similar climatological O2 inventory but the deoxygenation trend is
generally stronger in the NN algorithm. Before 2000s, the ship‐only and ship+Argo reconstructions show similar
O2 inventory, and they diverge after mid‐2000s regardless of the algorithm type. This coincides with the intro-
duction of Argo O2 data after 2005.

The ship+Argo reconstructions have much stronger deoxygenation rates during the 2010s. To highlight this point,
deoxygenation trends of O2 inventory (0–1,000 m) are calculated for 12 ensemble members over the 40‐year
period between 1970 and 2010. To avoid the end‐point effect, linear regression is not used and the trend is
calculated by taking the difference of 10‐year means between (1965–1975) and (2005–2015). The ensemble mean
trend is − 229 ± 33 Tmol/decade for the ship only reconstructions, and the uncertainty is estimated based on the
ensemble range. The magnitude of this trend is stronger than the recent deoxygenation estimates based on optimal
interpolation of shipboard observation by Ito et al. (2024) of − 175 ± 24 Tmol/decade. The optimal interpolation
of Ito et al. (2024) likely underestimated the deoxygenation trend in data‐sparse regions. For the ship+Argo
reconstructions, the ensemble mean trend is − 358 ± 93 Tmol/decade, which is approximately 57% stronger than
the ship‐only reconstruction, and caused by the stronger O2 decrease after the mid‐2000s.

Figure 12b shows the O2 inventory time series based on the RF algorithm for the ship‐only and ship+Argo groups,
which has two important implications. First, the inclusion of Argo data significantly changes the recent (2005‐)
trajectory of O2 inventory with a significantly stronger deoxygenation rate. Secondly, the additional input of
potential density and/or stratification (N2) had practically no impact for the RF algorithms. However, these
variables made significant impacts on the NN algorithm.

Figure 12c shows the O2 inventory time series from the NN algorithms. Similar to the RF, the inclusion of Argo
increases the deoxygenation rate. The NN algorithms also shows more spread across the ensemble with additional
input of potential density and/or stratification. The ranges of reconstructed O2 inventories are different between
ship‐only and ship+Argo groups, primarily coming from the NN algorithm. The range is calculated by the
difference between maximum and minimum O2 inventories (as illustrated by the blue and red shaded regions in
Figure 12) which primarily comes from the NN algorithms. On average, the range of ship‐only algorithms is 0.77
Pmol. The inclusion of Argo data significantly reduced the range to 0.47 Pmol, which is approximately 40% less
than the ship‐only case. This implies that the inclusion of Argo data not only increases the magnitude of deox-
ygenation trends but also reduces the spread between ensemble members with different configuration of input
variables.

Spatial patterns of O2 changes are examined as difference between the two decadal averages centered at 1970 and
2010. Figure 13a shows the horizontally (area‐weighted) averaged vertical profiles of O2, O2 solubility and (− 1) x
AOU. The concentration of O2 at saturation (O2sol) is calculated with solubility coefficients derived from the data
of Benson and Krause (1984) as fitted by Garcia and Gordon (1992). AOU stands for apparent oxygen utilization,
and it is defined as the difference between O2 solubility and O2, AOU = O2sol(S,T)—O2. Near the surface, the O2

decline is relatively moderate, and it sharply increases through the upper 200 m. The largest O2 decline occurs
approximately at 150 m depth, and it becomes relatively constant below 300 m. The breakdown of the O2 decrease
is approximately equal split between solubility and AOU at the surface, but the importance of AOU increases with
depth, and approximately 85%–90% of O2 decline is explained by AOU below 300 m.

Figures 13b–13d shows the spatial patterns of the 40‐year change as vertically (thickness‐weighted) averages of
O2, O2sol and (− 1) x AOU over 0–1,000 m. There are regions of strong O2 decline including North Pacific,
Southern Ocean, equatorial oceans in all basins, and along the northeastern coastline of North American conti-
nent. This pattern is in good agreement with the previously published study by Oschlies et al. (2018) and
Figure 3a. Comparing the patterns between the two components, AOU clearly dominates the overall O2 decline,
and in some regions, the solubility contributes significantly, including the northeastern coastline of North
America and the frontal regions in the Southern Ocean. Subtropical south Pacific and south Indian Oceans are
regions of moderate O2 increase, and these features are also consistent with the previous work (Oschlies
et al., 2018). In summary, the main driver of O2 decline is AOU in the upper 1,000 m, and our results are in
qualitative agreement with previous works in terms of spatial patterns (e.g., Ito et al., 2017; Oschlies et al., 2018;
Schmidtko et al., 2017).
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Figure 14 shows the regional breakdown of the O2 inventory with an emphasis on comparing (blue) ship‐only and
(red) ship+Argo reconstructions. There are regional differences in the evolution of O2 inventory. While there are
significant overlaps between ship‐only and ship+Argo cases, the ship+Argo reconstructions exhibit stronger
decrease of O2 inventory after 2000s including North/Equatorial Atlantic, North/Equatorial Pacific, Indian and
Southern Oceans. Inclusion of Argo data significantly reduced the ensemble spread in the Equatorial/South
Pacific Ocean. Detailed results from inventory trend calculations are displayed in the Table S5 in Supporting
Information S1.

The inclusion of Argo data has different impact on the estimated deoxygenation trend. Globally, the 40‐year trend
(1970–2010) increased by 56% when Argo data is included. The strongest effects are in the Equatorial Pacific
(+94%), Equatorial Indian (+73%), and South Indian (+66%), where these regions have been relatively under‐
sampled by historical shipboard observations (Figure 1). In terms of the contributions to the global deoxygen-
ation trend, the three major regions are North Pacific (23%), Equatorial Pacific (20%), and Southern Ocean (18%).
These three regions together explain more than 60% of the global deoxygenation trend, and this is predominantly
(>85%) driven by the increasing AOU. Thus, the effect of warming‐induced solubility loss is unlikely the major
mechanism for ocean deoxygenation, and it must be primarily driven by the circulation and biochemical changes
as expressed by the AOU component.

5. Uncertainty Analysis
There are three types of uncertainty including measurement error, sampling error and mapping (interpolation)
error, and for each type, there can be random errors and biases. Assuming that measurement (ΔO2meas), sampling
(ΔO2sampl) and interpolation (ΔO2interp) errors are independent and uncorrelated, the combined median uncer-
tainty can be calculated as:

ΔO2 = {ΔO2
2meas + ΔO2

2sampl + ΔO2
2interp}

1/2
(1)

Measurement errors depend on specific techniques and instrumentation for making measurements. Bottle O2 can
include random errors of 1 μmol/kg or smaller with Winkler titration (Carpenter, 1965). CTD‐O2 sensors

Figure 13. 40‐year ensemble mean change of O2, AOU and O2 solubility for (a) area‐weighted horizontal averages and (b,c,
and d) thickness‐weighted vertical averages from 0 to 1,000 m. All plotted values are concentrations in the units of μmol/kg.
The ensemble mean is calculated for both algorithm type trained with shipboard and Argo data. The 40‐year change is
estimated as the difference between the two 10‐year means between (2005–2014) minus (1965–1974).

JGR: Machine Learning and Computation 10.1029/2024JH000272

ITO ET AL. 16 of 20

 29935210, 2024, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JH

000272 by Ifrem
er C

entre B
retagne B

lp, W
iley O

nline L
ibrary on [13/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



calibrated to Winkler O2 data is expected to have similar errors. Delayed‐mode adjusted Argo‐O2 has overall
errors of about 3 μmol/kg (Maurer et al., 2021). In the oxycline region, there can be a larger error of approximately
10 μmol/kg for Argo‐O2 data due to uncorrected sensor response time, potentially including random and systemic
bias components. Response time correction has not yet been applied to the delayed mode adjusted data used in this
study. For simplicity, uniform constant measurement error is assumed including ΔO2meas = 1 μmol/kg for bottle
and CTD‐O2 data, and ΔO2meas = 3 μmol/kg for the Argo‐O2 data.

When multiple profiles are available within the monthly bin, the standard deviation can be used to estimate the
magnitude of the sampling error. The variance of the binned data is averaged over time and depth for the
shipboard (bottle/CTD‐O2) and Argo data separately. They are combined with the measurement errors according
to Equation 1. Figures 15a and 15b shows the non‐uniform distribution of this uncertainty. The global mean value
of the combined measurement and sampling error is 4.8 μmol/kg for the shipboard (bottle/CTD‐O2) data, and is
5.5 μmol/kg for Argo data. However, there is significant spatial variability for the sampling errors likely due to the
regional variability of the background O2 gradient and wave/eddy activities. Other potential factors can include
the sampling density. It can exceed 20 μmol/kg in regions such as Scotia and Newfoundland shelves and Kur-
oshio/Oyashio region.

Mapping uncertainties can be estimated by the comparison with the O2 data withheld from the training as
documented in Section 3.2. The estimated O2 values had the mean bias of less than 2 μmol/kg and RMSE of 13–
18 μmol/kg globally. Its spatial structure can be calculated by the misfit between the reconstructed O2 and test
data not used in the training of algorithm. The misfit can include mean bias and random error. To calculate the
random component of the mapping error (ΔO2interp

2), the square of average misfit (mean bias) is subtracted from

Figure 14. Basin‐scale O2 inventory trend. Global ocean is divided to 10 basins. Blue lines and shading show ensemble mean
and ensemble range for ship‐only reconstructions, and red lines and shading are for ship+Argo reconstructions. Arctic is
northward of 60°N, and the Southern Ocean is southward of 50°S. The division between equatorial and North Atlantic/
Pacific basin is set to 15°N, and the division between equatorial and South Atlantic/Pacific/Indian basin is set to 15°S.
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the averaged misfit squared, and this calculation is performed for each
longitude‐latitude grid cell to determine pattern of mapping uncertainty
(Figure 15c). The global mean value of the interpolation (mapping) error
(ΔO2interp) is 12.3 μmol/kg. Similar to the sampling errors, the magnitude of
the mapping error is elevated nearby the eastern and western boundary current
systems, tropical oxygen minimum zones, and the Southern Ocean. These
regions contain elevated levels of horizontal and vertical gradients of O2. This
error estimates are comparable but somewhat greater than the magnitude of
“algorithm errors” for the GOBAI‐O2 data set of Sharp et al. (2023). Based on
the typical magnitudes of these errors as discussed above, the combined
uncertainty is approximately 13.5 μmol/kg globally, which is primarily
dominated by the interpolation errors and secondary by the sampling error.
The uncertainty is regionally elevated near the edge of oxygen minimum
zones and strong ocean currents close to the western and eastern boundaries of
ocean basins.

6. Conclusion
Since the mid‐2000s, Argo floats equipped with O2 sensors have been
deployed in different parts of the global oceans, and the development of in
situ calibration methods reduced the measurement uncertainties of the Argo‐
O2 sensors to approximately 3 μmol/kg. Coincidentally the number of
shipboard observations has decreased in recent decades, and as a result, it is
difficult to estimate the basin‐scale deoxygenation trends based on ship-
board observation only. Recently, a gridded, time‐varying O2 product has
been developed using ML approaches (Sharp et al., 2023), reconstructing
the global O2 distribution since 2004. This study and GOBAI‐O2 are similar
in methodology, but there are some differences. Both this study and
GOBAI‐O2 used delayed mode Argo data, but we further limited to the O2

profiles calibrated with two established methods including in‐air pO2

measurement (Bushinsky & Emerson, 2015; Johnson et al., 2015) and climatological air‐sea disequilibrium
(Takeshita et al., 2013). GOBAI‐O2 further applied a bias correction of − 1.18 μmol/kg based on the match‐up
profiles (Sharp et al., 2023; Appendix D). The GOBAI‐O2 product is an average of two ML‐based data sets
with two‐layer NN and RF. In this study, we trained a larger number of algorithms with varying sets of input
data and hyperparameters and selected 12 algorithms to form an ensemble of O2 estimates. Results from each of
the ensemble members with and without Argo‐O2 data are available in public domain from zenodo (Ito &
Cervania, 2024).

Contrasting algorithms trained with ship only and ship+Argo O2 profiles was the main theme of this paper. The
historical observations since 1965 included quality‐controlled bottle and CTD‐O2 data, but the number of
shipboard profiles has been declining since 1980s (see Figure 2). The inclusion of Argo data made two major
impacts on the representation of global ocean deoxygenation. First, the inclusion of Argo data increased the
magnitude of the global deoxygenation significantly. The 40‐year (1970–2010) trend of 0–1,000 m O2 inventory
is − 229 ± 33 Tmol/decade for the ship only reconstructions, but it is − 358 ± 93 Tmol/decade for the case of
ship+Argo, which is approximately 56% stronger. This implies that recent increase in data coverage by BGC
Argo array had impact on reconstruction of global‐scale O2 changes. Increased data coverage has contributed to
capture recent declines of O2 in regions where no shipboard observation is available. Secondly, the inclusion of
Argo data significantly decreased the range of the global O2 inventory estimates among the ensemble members.
The range of ship‐only algorithms is 0.77 Pmol on average, and the inclusion of Argo data significantly reduced
the range to 0.47 Pmol, which is approximately a 40% reduction. Thus, the inclusion of Argo data not only in-
creases the magnitude of deoxygenation trends but also narrows the uncertainty.

Our uncertainty analysis considered three sources of errors including measurement, sampling, and interpolation
errors. Of these, interpolation errors are likely the largest source of the errors with the global mean magnitude of

Figure 15. An estimate of measurement, sampling and mapping errors based
on the standard deviation and vertically averaged over 0–1,000 m including
(a) shipboard measurement and sampling errors (b) Argo measurement and
sampling errors, and (c) mapping errors from the test data including Exp 4–6
for both algorithms. The units are in μmol/kg.
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13.5 μmol/kg averaged over the ensemble members. Regionally it can be twice as high as this global mean value.
These regions exhibit strong variability and strong background O2 gradients, which can generate large un-
certainties than the global mean. Additional potential source of errors includes the sensor calibration bias for
Argo‐O2 observations due to finite response time of optode sensors, which may cause systemic bias in the
oxycline regions (Bittig et al., 2014, 2018).

Due to the results of anthropogenic carbon dioxide and other greenhouse gas emissions, the ocean is warming,
losing oxygen and being acidified. While these ecosystem stressors are projected to intensify for coming decades,
our understandings of their impacts on marine ecosystems remains limited. While this study at 1° × 1° resolution
focused on improving the method of filling data gaps for basin‐scale O2 distribution, this resolution is too low for
coastal studies. It remains to be tested how well ML approaches can be used to map biogeochemical properties at
higher resolution in the coastal waters.

Data Availability Statement
The gridded dissolved oxygen data set generated from this study are available at zenodo (Ito & Cervania, 2024)
via https://doi.org/10.5281/zenodo.11129715 with the Creative Commons Attribution 4.0. The source codes are
available from github via https://github.com/takaito1/ML4O2 with the MIT license.
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