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Introduction

Body marks can be used to make inferences about trends 
in unobserved interactions within and between many spe-
cies. They can provide information about interspecific inter-
actions between predator and prey (Reimchen 1988; Fryer 
1998; Heithaus 2001; Voight and Sigwart 2007; Jayewar-
dene et al. 2009; McCordic et al. 2013; Tyler et al. 2019; 
Corsi et al. 2022) or anthropogenic sources and wildlife 
(Bradford et al. 2009; Neilson et al. 2009; Knowlton et al. 
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Abstract
Scars obtained from interactions with conspecifics may be caused by both playful and aggressive activities, making them 
useful when studying cetacean behaviour. This study investigates the effects of age and sex on conspecific scar acquisi-
tion and healing in three genetically distinct populations of killer whales (Orcinus orca) each with unique diets and social 
structures. The sample consisted of 50 of the most commonly photo-identified individuals from all sex and age classes in 
each of the Bigg’s, Northern Resident, and Crozet killer whale populations. The number of new scars annually acquired 
by an individual as well as how long it took them to disappear were extracted from annual photo-identification images 
of these individuals taken between the years of 2008 and 2021. Scar acquisition was analysed using a generalized addi-
tive model while scar healing was assessed using Kaplan-Meier survival curves. Results showed an inverse relationship 
between scar acquisition and age, as well as an effect of sex with males being more scarred than females amongst all age 
classes. No significant differences in scar acquisition between populations was found. Scar re-pigmentation was faster in 
Northern Residents compared to Crozet and Bigg’s individuals and varied amongst age classes, with scars on calves and 
juveniles disappearing more quickly than those on adults. These population- and age-based differences in healing may be 
due to scar severity, while results around scar acquisition suggest that the nature of physical interactions between sex and 
age classes in this species are homogenous despite cultural and genetic differences that have evolved between populations.

Significance Statement
In several species of odontocetes, including killer whales, scars caused by the teeth of conspecifics are typically attrib-
uted to social behaviours associated with reproductive competition. Previous research has suggested that divergent but 
sympatric populations of killer whales each with unique diets, social structures, and behaviours have frequencies of scar-
ring which differ amongst sex and age classes in each population. Using more robust data we conclude that rates of scar 
acquisition between these same populations and another non-sympatric population are remarkably similar when compared 
between sex and age classes, but that one population exhibited significantly different rates of healing. These results sug-
gest that sexually selected behaviours have not diverged as strongly as ecological adaptations have in this species, but 
that scars are likely caused by mild to intense play and aggression which are specific to population, sex, and age class.
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Divergent killer whale populations exhibit similar acquisition but 
different healing rates of conspecific scars
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2012; McGuire et al. 2020; Penketh et al. 2021; Burek-Hun-
tington et al. 2023; Von Hagen et al. 2023), whereas marks 
inflicted by conspecifics can contribute important insights 
into a species’ social behaviour (Blanchard et al. 1985; 
Staub 1993; Rosso et al. 2011; Crawford et al. 2015; Lanyon 
et al. 2021; Grimes et al. 2023). These injuries can range 
from surface abrasions to deep wounds caused by either 
rough play or more confrontational interactions which often 
result in scarring (McCann 1974).

Scarring from conspecifics is usually associated with 
sexual conflict (Reinhardt et al. 2015; Burke and Holwell 
2021; Lanyon et al. 2021) or resource competition (For-
man and Brain 2006; Donihue et al. 2016; Mayer et al. 
2020). As such, age and sex often influence the extent of 
conspecific scarring on individuals. For example, wound 
scars tend to accumulate in many taxa as competition and 
conflict increase between conspecifics with age (Arlet et al. 
2009; Crawford et al. 2015; Lanyon et al. 2021; Brown et 
al. 2022). Mating systems also play a role in the acquisition 
of scars inflicted by conspecifics with adult females having 
higher scarring rates in a variety of insect taxa due to cop-
ulatory wounds inflicted by males (Reinhardt et al. 2015; 
Burke and Holwell 2021), whereas mating competition 
between adult males results in higher scarring rates in this 
sex in several species of testudine (Keevil et al. 2017), pri-
mates (Cristóbal-Azkarate et al. 2004; Cords and Arguelles 
2023) and cetaceans (Kato 1984; Gerson and Hickie 1985; 
Chu and Nieukirk 1988; MacLeod 1998; Scott et al. 2005; 
Martin and Da Silva 2006; Marley et al. 2013; Orbach et al. 
2015). In cetaceans, severe wounds inflicted by conspecifics 
can be directly fatal (e.g. infanticide, Patterson et al. 1998; 
Dunn et al. 2002; Zheng et al. 2016; López et al. 2018; Tow-
ers et al. 2018) and in other cases they can result in seri-
ous health impacts (Parsons et al. 2003; Robinson 2014). 
Scarring from severe wounds can also impact individual fit-
ness by compromising skin elasticity and therefore hydro-
dynamic qualities and diving abilities, which can result in 
reduced foraging efficiency and predator evasion (Ridgway 
and Carder 1990). However, several physiological adapta-
tions are characteristic of enhanced wound healing capabili-
ties of cetaceans. Their epidermis is significantly tighter and 
thicker as well as more prolific and glabrous than in most 
other mammals, which together serve to limit colonization 
by microbes (Menon et al. 2022). These features in combi-
nation with antimicrobial compounds in their adipose tissue 
likely expedite healing processes (Zasloff 2011; Su et al. 
2022a). Their thick adipose tissue also reduces the chances 
of wounds reaching the muscle (Brown et al. 1983; Bruce-
Allen and Geraci 1985), but some individuals can survive 
muscle or bone deep injuries (Bloom and Jager 1994; Boss-
ley and Woolfall 2014; Dwyer et al. 2014; JRT unpubl. 
data). In such cases necrotic tissue at the wound site may 

help maintain homeostasis during the process of re-epitheli-
alization (Su et al. 2022a). Remarkably, scars from wounds 
on some cetaceans fully re-pigment at the wound site 
showing no evidence of previous injury (Su et al. 2022b). 
The processes associated with tissue healing and skin re-
pigmentation in cetaceans may be influenced by a variety 
of factors including ocean temperature, salinity, inherent 
gene loss, as well as compounds impacting vascular func-
tion such as melanocytes, contaminants, lipids, proteins, or 
hormones associated with environmental or demographic 
factors (Wilson et al. 1999; Ashcroft and Ashworth 2003; 
Hong et al. 2015; Lee et al. 2019; Menon et al. 2022; Su 
et al. 2022a, b; Chaudhary et al. 2024; Suzuki et al. 2024).

Killer whales are an appropriate model to study conspe-
cific scarring due to their contrasting pigments, highly social 
nature and complex matrifocal societies (Bigg et al. 1986). 
As one of the most cosmopolitan cetacean species, killer 
whales are found in all the world’s oceans (Wade and For-
ney 2007). While still being classified as a single species, 
multiple populations have been described based on physi-
cal, behavioural, and genetic differences (Ford 1991; Ford et 
al. 1998; Pitman and Ensor 2003; Morin et al. 2010; Pitman 
et al. 2011; de Bruyn et al. 2013). One of the key behav-
ioural differences between killer whale populations is their 
diet. Some populations specialise in a certain taxon such 
as marine mammals for the Bigg’s or fish for the Northern 
Residents, two sympatric populations in the northeastern 
Pacific Ocean (Ford et al. 1998). Others, like the Crozet 
population in the southern Indian Ocean, are generalists and 
feed on marine mammals, fish, and penguins (Guinet 1992; 
Tixier et al. 2019).

There are several reasons for which conspecific scarring 
may be population specific. Firstly, distinct killer whale 
populations are often faced with different trends in prey 
availability (Ford et al. 2010; Poncelet et al. 2010; Tixier 
et al. 2015, 2017, 2021) that, when paired with variations 
in population abundance and density (Towers et al. 2019a, 
2020; Tixier et al. 2021), may lead to variances in inter-
actions between conspecifics associated with competition 
for resources. Grimes et al. (2022) have shown that tooth 
rake density increased with prey abundance in one fish-
eating population of killer whales, possibly since there is 
more time for interaction when food is not scarce. It may 
also be expected that conspecific scarring would differ due 
to divergent social organization and reproductive behav-
iour between populations. Robeck et al. (2019) used scars 
to infer that physical interactions and aggression do indeed 
vary from one population to another. However, their data 
were limited to one photo per whale and therefore produced 
results on cumulative scarring without considering acqui-
sition or healing rates. To our knowledge, no research has 
compared conspecific scar acquisition and healing rates in 
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individuals over time between killer whale populations. Yet 
such information would be essential in further understand-
ing rates and intensity of interactions within populations and 
between sexes and age classes, demographic and physiolog-
ical nuances in the scar healing process, and how ecological 
divergence may influence social behaviours in this species.

This study investigates the effects of age and sex on con-
specific scar acquisition and healing (skin re-pigmentation) 
using long-term photo-identification data of individuals 
from three distinct killer whale populations with different 
prey preferences and social organisation: Bigg’s and North-
ern Residents in the northeastern Pacific Ocean and killer 
whales around the Crozet Islands in the southern Indian 
Ocean. At a population level, we hypothesise that if prey 
can affect social structure, culture, and behaviours (Ford and 
Ellis 2014), which result in scarring (Grimes et al. 2022) 
then scarring rates would differ between populations as 
proposed by Robeck et al. (2019). We also anticipate that 
healing time may be influenced by population health, scar 
severity, and demographic factors such as age and sex.

Methods

Study populations

The Northern Resident (NR) and the Bigg’s killer whale are 
sympatric populations ranging throughout coastal waters 
off western North America and represent two distinct killer 
whale ecotypes (Ford et al. 1998). The NRs consist of a 
population of over 300 piscivorous individuals which live 
in large social units (1–19 individuals) and do not associate 
with conspecifics outside their population (Ford et al. 1994; 
Towers et al. 2020). Nearly all descendants remain philo-
patric to their matriline, resulting in an extremely stable 
society (Ford et al. 1994). The coastal population of Bigg’s 
killer whale includes nearly 400 individuals which maintain 
smaller social units (1–8 individuals; Towers et al. 2019a) 
better suited to hunting their preferred prey of marine mam-
mals (Bigg 1982; Ford et al. 1998). Social structure is less 
stable than in NRs, as dispersal of both sexes is well docu-
mented in Bigg’s (Baird and Whitehead 2000; Nielsen et 
al. 2023) and individuals are known to mingle with a larger 
number of conspecifics. Despite inhabiting the same area, 
these two populations do not interact, resulting in reproduc-
tive isolation and genetic differences (Barrett-Lennard and 
Ellis 2001) that have evolved over the past 350,000 years 
(Morin et al. 2015). Due to limited population abundance 
and prey availability, as well as a variety of anthropogenic 
threats, both populations have been listed as threatened by 
the Committee on the Status of Endangered Wildlife in 

Canada (COSEWIC) in 2001 and subsequently under Cana-
da’s Species at Risk Act (SARA).

The core Crozet killer whale population (CR) 
includes ~ 100 animals that exist within a potentially larger 
population of individuals in the waters surrounding the 
Crozet Archipelago in the southern Indian Ocean. The core 
population is composed of 23 social units of between 1 and 
11 individuals (Tixier et al. 2021). The population has a 
generalist diet which includes marine mammals, seabirds, 
and fish depending on the season and availability (Guinet 
1991, 1992; Tixier et al. 2019). They also regularly feed on 
Patagonian toothfish (Dissostichus eleginoides) caught on 
longlines deployed by the local fishery, a behavior termed 
“depredation” (Tixier et al. 2010, 2016). This population 
is in severe decline and has been listed as endangered on 
the regional Red List of the French committee of IUCN 
(2015). 60% of the individuals around Ile de la Possession 
(the archipelago’s largest island) were lost between 1988 
and 2000, predominantly due to illegal fishers’ use of lethal 
means such as firearms and explosives (Poncelet et al. 2010; 
Guinet et al. 2015). The trend appears to continue with a 5% 
decrease in population size between 2005 and 2020 making 
it a high priority for conservation (Tixier et al. 2021).

Sample details

Photo-identification data for this study were collected by 
the Centre d’Etudes Biologiques de Chizé (CEBC-CNRS, 
within the Program 109 of the French Polar Institute), the 
Muséum National d’Histoire Naturelle (MNHN) of Paris 
and by the Terres Australes et Antarctiques Françaises 
(TAAF) for the CR killer whale population for the period 
of 2008–2020. The Cetacean Research Program at Fish-
eries and Oceans Canada and Bay Cetology provided the 
data for the NR and Bigg’s populations for the periods of 
2009–2021 and 2008–2020 respectively. The sample con-
sisted of 50 of the most frequently encountered individuals 
from each population (Table 1). An encounter was defined 
as the period starting and ending when a group of individu-
als were first and last photographed respectively on a given 
day (Tixier et al. 2021). Half of these individuals (n = 25 per 
population) were known or inferred to have been born dur-
ing the study period based on their size when first observed 
and close proximity to an adult female (Towers et al. 2019a, 
2020; Tixier et al. 2021). The remaining 25 individuals per 
population were born before the year 1999 making them 
at least 10 years of age in the first year of the study. This 
allowed for scarring to be tracked on individuals across life 
stages from birth to sexual maturity (10–15 years old, Ole-
siuk et al. 1990; Ford et al. 1994), through adulthood and 
into menopause for some females (> 40 years old, Brent et 
al. 2015; Nielsen et al. 2021).
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each respective hemisphere being the times that most data 
from each population were collected. All photos were visu-
ally examined in chronological order using Photo Mechanic 
Plus by the same analyst.

A bounding box approach including the dorsal fin, sur-
rounding dorsum and saddle patch was chosen to stan-
dardise the delimitation of area of the body analysed for 
scarring because although killer whales may incur scars 
anywhere on their body, some parts perhaps more than oth-
ers, this is the only area of their body that can be easily 
photographed (Fig.  1). It is generally accepted that scars 
on this species that are obviously not from anthropogenic 
sources are caused by conspecifics (Robeck et al. 2019; 
Grimes et al. 2022, 2023; Wright et al. 2023), but for this 
study a scarring event was defined as a set of two or more 
parallel scars that were caused on the same occasion, ensur-
ing that they were due to an interaction with the teeth of 
another killer whale. Single line scars were excluded from 
the study since there is a greater chance they may have been 
caused by sources other than the teeth of conspecifics. It 
cannot be ruled out that scars may be caused by the teeth 
of pinnipeds but, despite being prey for the CR and Bigg’s 
populations, seal and sea lion species within the range of 
killer whale populations used in this analysis have not been 
observed inflicting wounds visible in identification photo-
graphs on killer whales whereas conspecifics have (JRT and 
PT unpubl. data; Towers et al. 2018). Each new scarring 
event was recorded along with its location (on dorsal fin, 
not on saddle patch, on saddle patch). Then photos of the 
same individual for following years were examined and it 
was recorded whether the scar was still visible or had disap-
peared (Fig. 1). Since right side photos were not available 

Data extraction

Raw photo-identification data for all three populations for 
the 13-year study period consisted of over 595,000 photos 
(Bigg’s ~ 329,000; NR ~ 117,000; CR ~ 149,000). Data were 
not extracted blind because the study involved examining 
high quality photos of unique individuals with distinct char-
acteristics and sightings histories. Identification images of 
NR and Bigg’s killer whales were chosen by searching a 
photo-identification database for photos with a quality rat-
ing of 3 or 4 out of 4 for each relevant individual to ensure 
that reference material was high resolution, in focus, and 
with dorsal fin and saddle patch perpendicular to the camera 
(Towers et al. 2012). Identification images of CR individu-
als were chosen by searching a photo-identification database 
for photos of relevant individuals with a quality rating of 2 
or 3 out of 3 for both saddle patch and dorsal fin exposure 
(Roche et al. 2014). When there was no photo with such a 
rating available for a certain year, unrated and lower rated 
photos were searched for an image in which the majority 
of the scar details on the whale’s body were in focus. The 
photo of the highest quality showing the largest section of 
the saddle and dorsal fin for the left side of every individual 
was selected for each year. Of the 1300 photos used in the 
study (Table 1), 842 (65%) were considered to be of excel-
lent quality and 458 (35%) of good quality. A gap of a mini-
mum of 6 months between photos from different years was 
maintained enabling the monitoring of scar acquisition and 
healing at standardised intervals. Years were defined as the 
period of January 01 – December 31 for the two populations 
in the northern hemisphere and July 01 to June 30 for the 
population in the southern hemisphere due to summers in 

Total Bigg’s NR CR
Individuals
Number of individuals included in the study 150 50 50 50
Number of male individuals 53 19 23 11
Number of female individuals 73 30 24 19
Number of individuals of unknown sex 24 1 3 20
Mean age ± SE 18 ± 0.36 19 ± 0.70 16 ± 0.50 18 ± 0.68
Photos
Total number of photos in the sample 1300 495 526 279
Number of photos of male calves 91 37 53 1
Number of photos of female calves 85 54 27 4
Number of photos of calves of unknown sex 59 2 10 47
Number of photos of male juveniles 147 47 92 8
Number of photos of female juveniles 136 80 47 9
Number of photos of juveniles of unknown sex 55 6 13 36
Number of photos of male subadults 79 24 31 24
Number of photos of female adults 400 148 176 76
Number of photos of male adults 187 64 70 53
Number of photos of post reproductive females 61 33 7 21
Mean ± SE number years with no photo for a given 
individual

1.14 ± 0.12 0.34 ± 0.08 2.14 ± 0.14 0.94 ± 0.25

Table 1  Data summary. Sample 
size represents sum of the num-
ber of years during the 13-year 
study period for which there were 
photo data available for a given 
individual of an acceptable qual-
ity. NR = Northern Resident and 
CR = Crozet
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(≤ 3) and unknown juveniles (4–12) resulting in a total of 
ten classes. These age classes were assigned to test whether 
individuals are more exposed to conspecific scarring during 
different stages of their life (Table 1).

Statistical analyses

Scar acquisition

A generalized additive mixed model (GAMM; Hastie and 
Tibshirani 1986) with a negative binomial error distribution 
and a log-link function was used to investigate effects of 
age, sex, and population on the rate of new scar acquisi-
tion. This response variable, “new scars”, was included 
as a numerical variable in which each value was the num-
ber of scars acquired by a given individual in a given year 
(Supplementary Table 1). For this part of the analyses, each 
scar was counted once. A negative binomial error distribu-
tion was chosen using the ‘family’ term to account for over 
dispersion and zero inflation in the response variable. Year 
was included as a random numeric smooth (i.e., a smooth 
component of the GAMMs that act as a random effect) to 
account for additional environmental variability (Grimes et 

for the NRs due to differing data collection methods for this 
population, only the left side of each individual was ana-
lysed for all three populations. This was unlikely to have 
biased the results since no evidence exists to suggest that 
interactions between conspecifics are laterally distributed in 
killer whales.

Demographic data

Demographic and social data were accessed for all individu-
als in the form of published catalogues (Towers et al. 2019a, 
2020; Tixier et al. 2021) and more up-to-date unpublished 
information. These data included year of birth/year first 
encountered, and year of death/year last encountered (where 
applicable) as well as the sex and the ID. The following sex-
specific age classes were assigned based on classifications 
made in Towers et al. (2019a); Tixier et al. (2021): male and 
female calves (≤ 3), male and female juveniles (4–12), male 
sub-adults (13–20), male adults (> 20), female adults (13–
40), and post-reproductive females (> 40). Since many indi-
viduals cannot be sexed until they are more than 12 years 
old, two more age classes were added to incorporate the 
young, unsexed individuals. These were unknown calves 

Fig. 1  The side and area of the body analyzed for scar acquisition and 
healing with each image in a bounding box. A: juvenile male T065A5 
showing healing and acquisition of scars between 2016 and 2019 with 
two new scars in 2017, three in 2018, and two in 2019, B: subadult 

male A061 showing healing and acquisition of scars between 2011 and 
2014 with one new scar in 2012, three in 2013, and two in 2014, and 
C: adult female CR019 showing no new scars acquired between 2009 
and 2012 (Supplementary Tables 1 and 2)
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Scar healing

Four Kaplan-Meier (K-M) survival curves were constructed 
to assess the effects of four separate variables on scar heal-
ing time (Table  2), inspired by Lee et al.’s (2019) use of 
similar survival analyses. These variables were: (1) sex, (2) 
age class of the individual at the time when the scar was 
acquired, (3) population, and (4) physical location of scar on 
body. Scars recorded as crossing the limit between two body 
location categories/groups were split and the part of the scar 
in each area was treated separately to allow for repigmenta-
tion rates between body areas to be compared (Supplemen-
tary Table 2). The scar healing time was calculated in years 
and covered the period beginning when the scar was first 
visible in a photograph and ending either when the scar was 
no longer visible due to successful re-pigmentation or in the 
year with the last available photo (either due to the end of 
the study period or lack of data). If scars remained visible in 
the last available photo of an individual, they were consid-
ered to be censored (Supplementary Table 2). Log-rank tests 
were used to determine statistically significant differences 
between groups. Plots of the K-M curves were created using 
the ggsurvplot function. Individuals of unknown sex were 
excluded from these plots to facilitate interpretability. All 
analyses were carried out in the Survival (Therneau 2024) 
and Survminer (Kassambara et al. 2021) packages in RStu-
dio version 4.2.2 (RStudio Team 2023).

Results

Scar acquisition

Of the total 1,300 images analysed, 764 (58.8%) displayed 
at least one new rake mark. The constructed GAMM fitted 
to the number of new scars from conspecifics per individual 
per year had an adjusted R squared of 0.23. There were no 
significant differences in the number of scars between the 
three populations with individuals from all three popula-
tions predicted to acquire a mean of ~ 2.4 new scars each 
per year (pairwise comparisons: Bigg´s: CR p = 0.297; 
Bigg´s: NR p = 0.236, CR: NR p = 0.945, Table 3). All male 
age classes were predicted to have more scars than their 
female counterparts (Fig.  2) but, these differences were 
only significant between male subadults and adult females 
(p < 0.0001) and between adult males and post reproduc-
tive females (p = 0.0005). Predicted scarring decreased as 
age increased for males with male calves having the most 
scars (~ 2.1) and adult males the least (~ 0.7, Fig. 2). Male 
calves and juveniles were predicted to have significantly 
more scars than male subadults and adult males (male calf: 
male subadult p = 0.0009, male calf: male adult p < 0.0001, 

al. 2022). Sex and age were incorporated simultaneously 
through use of the previously described 10 sex-specific 
age classes (SAc). Population was included as a factorial 
variable to test for differences in overall scarring rates, and 
separate smooth functions of ‘year’ were fitted for each 
level of the ‘population’ factor (this allowing the effect of 
environmental variability to act differently on each popula-
tion). Thin-plate regression splines (Wood 2003) were used 
as smoothers, with optimal effective degrees of freedom 
chosen automatically using the restricted maximum likeli-
hood approach (REML) in the generalized cross validation 
package (mgcv, Wood 2006, 2017). The result was the fol-
lowing model:

New Scars ~ SAc + population + s(year, by 
= population).

We compared this initial model to the following alterna-
tive model which includes an interaction between popula-
tion and SAc:

New Scars ~ SAc * population + s(year, by 
= population).

The results of this model demonstrated that the Bigg’s-
SAc and NR-SAc terms were not statistically significant 
and the CR-SAc terms lacked sufficient data to determine 
the presence of an interaction. This allowed us to conclude 
a lack of differences in rates across age-classes between 
Bigg’s and NR, but not for CR. Furthermore, this model 
showed a poorer fit (higher AIC and BIC) than the initial 
non-interaction model (Supplementary Material 1). We also 
explored including ID as a random variable but this resulted 
in overfitting (Supplementary Material 1). Therefore, we 
used the initial model to investigate all aspects besides the 
interaction between population and SAc. Pairwise post hoc 
tests were carried out for the factor variables SAc and popu-
lation using the emmeans package (Lenth 2023) to check if 
differences in scarring rates between groups were statisti-
cally significant. Next, predictions for new scars based on 
predictors of interest (population and SAc) included in the 
model were plotted using the plot_model function. Indi-
viduals of unknown sex were excluded from these plots to 
facilitate interpretability. All analyses were carried out in 
the R version 4.4.0 (R Core Team 2023) and RStudio ver-
sion 4.2.2 (RStudio Team 2023).

Table 2  Variables and groups used in Kaplan-Meier survival analyses
Variable Group 1 Group 2 Group 3
Sex Female Male unknown
Age-class Calf (≤ 3 yrs) Juvenile (4–12 yrs) Adult (≥ 13 yrs)
Population Bigg’s Crozet Northern Resident
Location On Dorsal Fin Not on Saddle Patch On Saddle Patch
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predicted to acquire more scars than the other female age 
classes (~ 1.7), but the difference between female juveniles 
and female calves (~ 1.4) was not significant (p = 0.9). Adult 
and post reproductive females were predicted to have the 
least scars out of all sex-specific age classes, being the only 
two age groups to have significantly different scarring rates 
from all other groups (p-values between these two groups 
and the other all p < 0.01) except each other (p = 0.0005). 
Both unknown calves and juveniles were predicted to 
have similar scarring rates to the same age classes of both 
sexes (unknown calf: male calf p = 0.265, unknown calf: 
female calf p = 1, unknown juvenile: male juvenile p = 1, 
unknown juvenile: female juvenile p = 0.833), while differ-
ing significantly from adults and post reproductive females 
(p < 0.0001). Furthermore, even without a term to formally 
test for an interaction between sex-specific age classes 
and populations in the final model, predictions of scarring 
followed the same qualitative pattern across sex-specific 
classes (Fig. 2). This supports the preliminary results of the 
alternative model including an interaction between popula-
tion and SAc that was presented in the methods. The smooth 
random effect, year, was not statistically significant (year: 
Bigg´s p = 0.077, year: CR p = 0.267, year: NR p = 0.871, 
Table 3).male juvenile: male subadult p = 0.0003, male juvenile: 

male adult p < 0.0001, Table  3). Female juveniles were 

Table 3  Model output for the generalized additive mixed model: New 
scars ~ SAc + population + s(year, by = population). Estimates for the 
male calf of the age class predictor and the Bigg’s population of the 
population predictor are represented by the intercept. CR = Crozet, 
NR = Northern Resident
Terms Estimate Standard 

Error
t p

Intercept 0.868 0.111 7.825 < 0.001
Male Juvenile -0.016 0.130 -0.121 0.904
Male Subadult 0.710 0.166 -4.290 < 0.001
Male Adult -0.974 0.136 -7.167 < 0.001
Female Calf -0.423 0.155 -2.573 0.006
Female Juvenile -0.210 0.135 -1.553 0.107
Female Adult -1.559 0.127 -12.322 < 0.001
Female Post 
reproductive

-1.937 0.227 -8.523 < 0.001

Unknown Calf -0.476 0.189 -2.516 0.012
Unknown Juvenile 0.064 0.178 0.361 0.718
CR population -0.151 0.102 -1.489 0.137
NR population -0.119 0.074 -1.624 0.105
Smooth terms Effective df Refer-

ence df
F p

Year Bigg’s population < 0.001 1 0 0.078
Year CR population < 0.001 1 0 0.267
Year NR population < 0.001 1 0 0.871

Fig. 2  Predicted mean annual new conspecific scars on killer whales 
per population by sex-specific age class based on the generalized addi-
tive mixed model: New Scars ~ Sac + population + s(year, by = popu-
lation). Where SAc refers to the following sex-specific age classes: 
male calves (≤ 3), male juveniles (4–12), male subadults (13–20), male 

adults (> 20), female calves (≤ 3), female juveniles (4–12), female 
adults (13–40), post-reproductive females (> 40). CR = Crozet and 
NR = Northern Resident. Vertical bars represent the 95% confidence 
intervals
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Discussion

Scar acquisition

The results of this study showed that the number of new 
scars from conspecifics did not differ significantly between 
highly divergent killer whale populations. This was unex-
pected as it was hypothesized that differences in prey type 
between these populations which are related to differing 
social structures, communication patterns, movements, and 
other behaviours (Ford and Ellis 2014), would similarly 
be associated with the ways in which individuals within 
populations interact physically with each other. Moreover, 
a previous comparison of conspecific scarring on NR and 
Bigg’s killer whales found significant differences between 
these populations (Robeck et al. 2019). The data and anal-
ysis conducted by Robeck et al. (2019) differed from our 
study in several ways that may explain those differences. 
Most importantly, Robeck et al. (2019) only analyzed one 
photograph per individual, did not count individual scarring 
events, or select criteria to ensure scars potentially caused 
by sources other than conspecifics were excluded. Together, 

Scar healing

Across all populations, sexes, and age classes, > 50% of 
conspecific scars had disappeared after 2 years and > 85% 
by 12 years. Scars healed significantly faster in NR with 
> 95% of scars having disappeared after 9 years compared 
to > 75% in CR individuals and ~ 70% in Bigg’s individuals 
(p < 0.0001, Fig. 3A). There was a slight difference in healing 
between sexes with scars on males consistently disappear-
ing before those on females (p = 0.0091, Fig. 3B). Healing 
also varied by age class. Scars acquired by calves healed 
faster than those in juveniles for the first nine years after 
they were acquired. Scars acquired by calves and juveniles 
healed at a similar rate once 9 years had passed since they 
were acquired. Scars acquired by adults healed the slowest 
of all age classes. After 10 years ~ 10% of scars acquired by 
calves and juveniles, and ~ 20% by adults remained visible 
(p < 0.0001, Fig. 3C). Finally, healing time varied depend-
ing on the location on the body where the scar was acquired 
with 100% of scars on the dorsal fin disappearing after 5 
years compared to ~ 95% off the saddle patch and < 75% on 
the saddle patch (p < 0.0001, Fig. 3D).

Fig. 3  Predicted conspecific scar 
healing time in killer whales using 
Kaplan-Meier Survival Curves. A) by 
population. B) by sex. C) by age class 
with scars first acquired as calves (≤ 3), 
juveniles (4–12), adults (≥ 13). D) by 
scar location on the body. Vertical 
notches represent censored individuals 
(for which no further information was 
available). The shaded areas around 
each curve represent the 95% confi-
dence interval
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males (Chu and Nieukirk 1988; Tolley at el. 1995; Drews 
1996; MacLeod 1998; Scott et al. 2005; Arlet et al. 2009; 
Rowe and Dawson 2009; Wright et al. 2017; James et al. 
2022; Cords and Arguelles 2023). The negative relationship 
between scarring rates and age is similar to another dolphin 
species (Lee et al. 2019) but different from age related scar-
ring trends in several other mammal species (Arlet et al. 
2009; Crawford et al. 2015; Lanyon et al. 2021). This may 
be explained by the early life benefits of social play (Kuc-
zaj and Eskelinen 2014) and establishment of dominance 
through sparring with peers (e.g. Rose 1992; MacCormick 
et al. 2012) as well as coercive behaviours by reproductive 
males who exhibit aggression towards offspring of potential 
mates, since this may induce cooperative behaviour from 
their mothers without the extreme of committing infanticide 
(Ebensperger 1998; van Schaik and Janson 2000; Towers 
et al. 2018; McEntee et al. 2023). This hypothesis is fur-
ther supported by the finding that male killer whale calves 
have higher scarring rates than female calves since it may 
be expected that any aggression towards calves from adult 
males may be directed towards future competitors, rather 
than future mates. In this regard, it should be noted that the 
number of new conspecific scars acquired by calves may be 
underestimated since highly scarred calves may have died 
before being photographed and therefore would not have 
been included in this study. It is also important to consider 
that limited data availability for the CR population, particu-
larly calves, increases the uncertainty of predictions of scar 
acquisition for this population. Additionally, this lack of 
image data compared to Bigg’s and NR prevented the rela-
tionship between sex specific age class and population from 
being determined for the CR population, making general 
interpretations about these relationships less certain.

Scar healing

Scar healing rates varied between populations with NRs 
generally healing much faster than CR or Bigg’s killer 
whales. We suggest this is due to original scarring events 
being less severe in NRs than the other populations because 
these differences cannot be explained by variations in envi-
ronmental conditions such as salinity or sea surface tem-
perature since NRs and Bigg’s are sympatric. Furthermore, 
contaminant levels in these three populations do not align 
with scar healing rates given that CR killer whales have 
similar, but lower levels of pollutants than NRs, but heal 
at similar rates to Bigg’s which are far more contaminated 
(Ross et al. 2000; Noël et al. 2009). Robeck et al. (2019) 
also noted more mild scarring in NR compared to Bigg’s 
but did not attempt to quantify the age of scars based on 
appearance and therefore overlooked the possibility that 
variation in scarring may be affected by the intensity of the 

these factors could limit understanding of cumulative scar-
ring history because healing and acquisition rates over time 
could not be accurately accounted for. Furthermore, overall 
sample sizes per population were unbalanced with NR data 
vastly outweighing Bigg’s data. Most of the images used by 
Robeck et al. (2019) were also from an earlier point in time 
than the current study. Nevertheless, prey availability for the 
study populations can vary over time and the abundance of 
prey has been shown to have a correlation with scar acqui-
sition in the Southern Resident (SR) killer whale popula-
tion with more scars apparent during years of higher prey 
abundance (Grimes et al. 2022). Prey availability may affect 
scarring rates in the populations used in our analysis, but if 
differences in resource abundance were strong, we would 
not expect all populations to exhibit such similar scarring 
patterns over the same 11-year time series. The same may be 
true if the effects of resource competition were significantly 
contributing to scarring rates at the population level. Intra-
population resource competition has been proposed under 
conditions where killer whales depredate prey from fisher-
ies (Towers et al. 2019b) but seems unlikely to be a factor 
driving many interactions resulting in scarring, especially 
considering widespread sustained customs around reciproc-
ity in this species which include prey-sharing with both 
related and unrelated conspecifics (Ford et al. 1998; Guinet 
et al. 2000; Wright et al. 2016). The similarity in scarring 
rates between populations therefore suggest that resource 
type, abundance, and associated lifestyles do not play a sig-
nificant role in determining the kinds of physical interac-
tions between all sex and age classes that result in scars.

In all three populations conspecific scar acquisition 
was influenced by sex and age. Scarring was shown to be 
overall higher in males than females and age was gener-
ally negatively correlated with new scar acquisition in both 
sexes. However, juveniles were scarred at near equal rates to 
calves. Grimes et al. (2022) also noted higher scarring rates 
in males and an overall decline in scar acquisition through-
out life in both sexes for SR killer whales. This is somewhat 
different from the results presented in Robeck et al. (2019) 
which found a direct relationship in scar density and age 
for two of the same populations used in our analysis, how-
ever, this is likely due to the limitations of the data men-
tioned above. Although the absence of an interaction term 
in our final model prevents from statistically addressing 
inter-population variation in the effect of sex-age classes, 
similar rates of scar acquisition between sex and age classes 
across the three populations would suggest that most physi-
cal interactions causing scarring are likely driven by behav-
iours surrounding sexual selection. The higher scarring rates 
in adult males than adult females are consistent with scar-
ring patterns in several other species of social mammal that 
have been attributed to reproductive competition between 
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younger age classes since older cells are less able to divide 
and repair tissue (Borena et al. 2015; Tejada-Martinez et al. 
2021).

The location of the scar on the body also appeared to 
significantly impact healing time. Scars on the dorsal fin 
healed slightly faster than those on the flanks despite both 
areas sharing the same black pigmentation. This may be 
due to functionally unique capillary networks between the 
connective tissue of the dorsal fin and the adipose tissue of 
the flanks which could facilitate angiogenesis required for 
wound healing differently (Arnold and West 1991). How-
ever, scars on the grey saddle patch took much longer to dis-
appear than those off the saddle patch. This is likely because 
areas of the body with dark pigmentation (i.e. not the saddle, 
eye patches or underside) have a higher density of melano-
cytes closer to the surface of the skin and these cells accel-
erate wound healing and subsequent re-pigmentation (Hong 
et al. 2015; Su et al. 2022b; Gupta et al. 2023). The re-pig-
mentation of wounded skin on cetaceans is poorly studied 
though and differs both within (as highlighted by this study) 
and between species with scars on some odontocetes being 
permanently retained (Rosso et al. 2011; Corsi et al. 2022) 
while others heal without a trace (Lee et al. 2019; Su et al. 
2022b). Similarly, some terrestrial mammals heal quicker 
on pigmented skin (Gupta et al. 2023) while others with dif-
fering levels of melanin heal at similar rates (Chadwick et 
al. 2013).

Study implications

The rates of scar acquisition being similar between all sex 
and age classes in the CR population in the Indian Ocean 
and the two populations in the northeastern Pacific has 
implications for our understanding of these threatened and 
endangered populations, and killer whales in general. First, 
when considered at a broader evolutionary scale our find-
ings indicate that certain aspects of social evolution are 
shared by highly behaviorally, genetically, and geographi-
cally divergent killer whale populations. If our interpreta-
tion of results is correct in that many of the similarities we 
see in scarring rates between sex and age classes of these 
different populations is due to sexually selected behaviours 
rather than resource competition this suggests that repro-
ductive activity and associated mating strategies have not 
diverged as strongly as ecological adaptations have evolved 
in this species. Second, through providing a robust analysis 
of data from multiple years and populations, some of our 
results differ significantly from those presented in a previ-
ous study. Our analysis has shown an inverse relationship 
between scar acquisition and age, and suggests that different 
sex and age classes may share similar scarring rates across 
populations. These findings both contribute to and change 

interaction. However, original scarring events may be less 
severe in NRs because this population is closed to immigra-
tion and emigration, whereas the CR and Bigg’s populations 
are not (Towers et al. 2019a, 2020; Tixier et al. 2021). This 
indicates that aggression and subsequent scarring inten-
sity could be positively correlated with interactions with 
unfamiliar conspecifics as seen in several other mammals 
(Dewsbury 1988; French et al. 1995; Barco-Trillo et al. 
2009; Mirville et al. 2018). It is also possible that differ-
ences in diet between these killer whale populations may 
help explain healing rates considering that lipids are thought 
to promote skin healing (Chaudhary et al. 2024). However, 
if lipid intake is related to population health, scar healing is 
not correlated with the trajectories of these populations con-
sidering Bigg’s and NRs were increasing in abundance over 
the time series of the study while CR killer whales were 
decreasing (Towers et al. 2019a, 2020; Tixier et al. 2021).

The results of this study also reveal that sex influences 
scar healing with males healing slightly faster than females. 
This may be due to differing levels of received physical 
interaction between sexes resulting in differing levels of 
scar severity. So, if scars are caused during sexually selected 
behaviours (e.g. Towers et al. 2018; Wright et al. 2023), this 
suggests that the physical impacts of sexual coercion on 
females are more severe than the effects of any retaliation by 
them or those of sexual competition between males, espe-
cially considering they have more scarring than females do 
overall. On the other hand, these differences in healing rates 
may be due to sex-based differences in vascular function 
(Costa and Tostes 2023) which could facilitate the process 
of healing. However, the only other study in which the scar 
healing process has been assessed at an odontocete popu-
lation level that we know of showed contrasting results to 
ours in scar healing trends between sexes and indicated that 
females in their study may have healed faster than males 
due to the positive effects of estrogen on cellular regenera-
tion (Lee et al. 2019).

Rates of scar healing were also influenced by age, with 
scars acquired by calves and juveniles healing faster than 
scars acquired by adults. Similar to differences in healing 
rates between sexes, these apparent differences in healing 
rates between age classes may potentially be due to dif-
ferences in the severity of the scars acquired. Young killer 
whales for example are well known to engage in play more 
often than adults (Ford 1989; Rose 1992) so their scars may 
be more superficial and thus, prone to heal more quickly 
than these other age classes. Adult killer whales of both 
sexes on the other hand may be more commonly engaged 
in aggressive interactions with peers due to sexual coercion 
and reproductive competition (Wright et al. 2023). How-
ever, cellular aging may provide an alternative physiologi-
cal explanation for why scars on adults heal slower than 

1 3

   39   Page 10 of 15



Behavioral Ecology and Sociobiology           (2025) 79:39 

source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit ​h​t​t​p​​:​/​/​​c​r​e​a​​t​i​​v​e​c​​o​m​m​o​​n​s​.​​o​
r​g​​/​l​i​c​e​n​s​e​s​/​b​y​/​4​.​0​/.
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