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Observation-only learning of neural mapping
schemes for gappy satellite-derived ocean colour

parameters
Clément Dorffer, Frédéric Jourdin, Thi Thuy Nga Nguyen, Rodolphe Devillers, David Mouillot and Ronan Fablet

Abstract—Monitoring optical properties of coastal and open
ocean waters is crucial to assessing the health of marine ecosys-
tems. Deep learning offers a promising approach to address
these ecosystem dynamics, especially in scenarios where gap-
free ground-truth data is lacking, which poses a challenge for
designing effective training frameworks. Using an advanced
neural variational data assimilation scheme (called 4DVarNet), we
introduce a comprehensive training framework designed to effec-
tively train directly on gappy data sets. Using the Mediterranean
Sea as a case study, our experiments not only highlight the high
performance of the chosen neural network in reconstructing gap-
free images from gappy datasets but also demonstrate its superior
performance over state-of-the-art algorithms such as DInEOF
and Direct Inversion, whether using CNN or UNet architectures.

Index Terms—space-time interpolation; data-driven model;
data assimilation; image gap filling; observing system experiment
(OSE); ocean colour remote sensing; end-to-end deep learning;
bio-optical parameter estimation; deep learning in satellite im-
agery.

I. INTRODUCTION

WATER optical properties are key parameters in under-
standing and monitoring ocean biogeochemistry and its

dynamics [1], in particular in the long term [2], including the
fate of particles and dissolved material from the continents [3].
These optical properties allow measurement of phytoplankton
biomass and bulk concentration of suspended matter in the
water [4]. The water transparency, which can be affected by
human activities and reveals the amount of light accessible at
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a given depth available for ocean primary production [5], can
also be monitored.

Measuring water optical properties is challenging and re-
quires multiple and repeated observations to get a good repre-
sentation of the signal, especially within coastal areas where
turbidity is highly fluctuating. While some optical parameters
are traditionally measured in-situ [6], satellite multispectral
imaging can provide high-resolution optical observations that
can be used over regions of various sizes. For example,
the Moderate Resolution Imaging Spectroradiometer (MODIS)
sensors [7] provide images every 16 days at 300 m to 1 km
spatial resolutions for 36 spectral bands (wavelengths: 405
to 14385 nm), while the Ocean and Land Color Instrument
(OLCI) sensors [8] provide images every 27 days at 300m
spatial resolution, for 21 spectral bands (400 to 1020 nm).
Once pre-processed (e.g., atmospheric corrections), different
seawater parameters can be derived from these multispectral
data [9]. For instance, standard routines [10]–[13] can be
used to estimate Chlorophyll-a (Chl-a) concentrations, diffuse
attenuation coefficient of light at wavelength 490 nm (KD490),
the particulate backscattering coefficient at wavelength 443 nm
(BBP443). In this article, we selected the BBP443 as our
variable of interest for its importance in marine ecology and
the carbon cycle [14]: BBP443 has notably been used to assess
particulate organic carbon or phytoplankton carbon biomass
[4], [15], in Case 1 waters1. In Case 2 waters2, BBP443
can be viewed as a proxy for suspended particulate matter
concentrations [17], [18]. The Copernicus Marine Environ-
ment Monitoring Service (CMEMS) makes such products,
including multi-sensor products [19], freely accessible online
via its platform [20]. These operational sea surface parameter
products can have large sampling gaps, typically ranging
between 30% and 70% of missing data for a region such as
the Mediterranean Sea, due to the impact of cloud cover on
satellite-derived measurements [21].

A variety of algorithms have been proposed to deliver gap-
free datasets, using among others low-rank matrix completion
methods [22], [23], geostatistical methods like spatio-temporal

1In Case-1 waters [16] all bio-optical parameter values recorded at the
same time and at the same location depend mainly on a unique variable:
Chla. These waters are controlled by biology, which covers large parts of the
ocean, mainly located in the open sea.

2By contrast, Case-2 waters [16] of typically coastal seas are significantly
influenced by other constituents such as lithogenic particles and dissolved
material typically brought in by river discharges or resuspended from the
floor in some coastal areas. Case-2 waters are optically more complex and do
not display the strong correlations stated in Case-1 waters.
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Kriging [24], Optimal Interpolation (OI) [25], DInEOF [26],
and eDInEOF [27]. Recently, neural mapping schemes have
emerged as an attractive solution to address sampling gaps in
ocean remote sensing data sets [28]–[32]. They often suggest
potential significant improvement in the reconstruction of gap-
free products, especially regarding higher-resolution patterns.
Besides differences in the considered neural architectures, such
as U-Nets [33] and Transformers [34], these approaches may
involve various learning strategies: training schemes using
simulated OSSE (Observing System Simulation Experiment)
datasets versus training schemes using only gappy satellite-
derived datasets. A shortcoming of the former is the underlying
assumption that simulated OSSE datasets do provide account
for the variabilities of real observation data, which does not
hold for ocean colour products.

In this article, we explore state-of-the-art neural mapping
methods, especially 4DVarNet schemes [35], to deliver gap-
free sea surface BBP443 fields from multi-sensor satellite
observations. We used the Mediterranean Sea as a case study
with the associated Multi-Sensor sea surface CMEMS ocean
colour product [36]. Our main contributions are as follows:

• We introduce a patch-based resampling approach to train
neural mapping schemes directly from observation-only
gappy datasets, i.e. thereby eliminating the need for real
or simulated gap-free reference datasets;

• Our benchmarking experiments demonstrate that our pro-
posed training framework and the chosen neural mapping
4DVarNet significantly enhances the reconstruction of sea
surface BBP443 fields.

• We conducted extensive experiments with various satel-
lite sensors (MODIS, VIIRS, SeaWiFS, and OLCI) to
evaluate their contributions to data quality. Our analysis
confirmed that using all available satellite sensors im-
proves the overall performance. The VIIRS-JPSS1 sensor
was found to be particularly crucial thanks to its large
swath that covers a larger area.

The paper is organized as follows: Section II present the
case study, i.e., the data, domain, and variables of interest.
Section III presents the different interpolation methods that
will be tested. Section IV then present the different data
sampling strategies used for learning. Section V reports on a
performance analysis of 4DVarNet algorithm considering the
different learning/testing setup. Results are compared to state-
of-the-art approaches e/DInEOF and direct inversion interpo-
lation. This section also proposes to evaluate the interpolation
improvement reached using different combinations of satellite
observations.Finally, Section VI synthesizes our main findings
and discusses future work.

II. CASE STUDY

A. Product and Variables of interest

We used the product [19] provided by the CMEMS that
consists of a collection of daily, Multi-Sensor (MODIS-aqua,
VIIRS-JPSS1, VIIRS-SNPP, and OLCI-sentinel3a and OLCI-
sentinel3b) satellite images acquired from September 1997
to date. This dataset consists of daily ”level-3” (L3) data,

for which images have been regridded, pre-processed (atmo-
spheric corrections were applied), daily merged. It includes
backscattering coefficients BBP443, processed from the raw
multispectral reflectance data. The resulting fields involve
large missing data rates, typically from 10% to 80% depending
on the considered space-time location in the case-study region.

B. Data splitting

The product covers the entire Mediterranean Sea, from
30◦N to 46◦N and from 6◦W to 36.5◦E, with a 1 km×1 km
resolution, leading to a grid size of 1580 × 3308 pixels. We
define a 240 × 240 focus region that extends from 41◦N to
43.5◦N and 3◦E to 6◦E, i.e., along the French coast.

Figure 1 shows an example of log10 BBP443 concentration
for both the entire area covered by the CMEMS product and
the reduced area of interest. The image used is from July 23,
2019, for which missing values account for around 10% of the
area, a really small level of incompleteness when compared
to the mean missing value proportion of 45% over the time
period considered (Jan. 2017 to Dec. 2021). Evolution of the
monthly mean missing value proportion over the restricted area
is shown in fig. 2. The seasonality of the cloud coverage is
clearly visible, with more clouds during the winter than the
summer periods. Figure 2 also shows the data splitting used
in this study to distinguish the train/test/validation periods.

III. INTERPOLATION METHODS

We tested three interpolation methods: Data Interpolating
Empirical Orthogonal Functions–DInEOF– [26], a popular
approach for the operational production of L4 satellite images
[37], its enhanced version [27] that encompasses a temporal
filtering step to force the temporal correlation into the recon-
structed field, a UNet-based neural mapping scheme [33], and
the NN-based Variational Data Assimilation algorithm (4DVar-
Net) [35] that has recently shown state-of-the-art interpola-
tion performance for satellite-based Sea Surface Temperature
(SST) and Sea Surface Height (SSH) reconstructions [38].

Here, we first briefly introduce the first two approaches,
then we provide more details about the 4DVarNet method.

A. DInEOF

Considering x1, . . . , xn a collection of incomplete images
focused on the same area with m pixels, then one can build
X ∈ Rm×n the sparse data matrix whose columns corre-
spond to the vectorized images. Data Interpolating Empirical
Orthogonal Functions, or DInEOF [25], is an iterative matrix
completion approach that consists in:

1) Computing X̃ a low-rank approximation of X (using
truncated Singular Value Decomposition);

2) Filling missing entries in X by corresponding values in
X̃;

3) Repeating until convergence.
While relatively simple, this approach provides interesting
results, especially when the observed physical phenomenon
is slowly changing over time, thus ensuring that most of the
signal can be efficiently recovered using only few principal
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Fig. 1. Selected area of interest used for learning and evaluation tasks. Example of BBP443 data, in common log values, from July 23th, 2019. Grey pixels
are the continental mask, while white ones correspond to missing values.

Fig. 2. Evolution of the monthly mean missing value proportion in the 240×
240 area from Jan. 2017 to Dec. 2021 and data splitting schemes used for
learning-based approaches. Red, blue and green time windows correspond
respectively to the training, validation and testing periods.

components. However, when using this approach, each image
is recovered independently and does not benefit from the
temporal dependencies within the dataset. As a consequence,
totally blind images or highly sparse images are usually not
correctly interpolated using DInEOF. An enhanced version of
this method, eDInEOF, has been proposed in [27], consisting
of a filtering step applied after the low-rank approximation
to ensure a temporal correlation within matrix X̃ and thus
tending to maintain a temporal continuity in the interpolated
images.

B. Neural mapping

A first and basic way to use Artificial Intelligence to solve a
data interpolation problem consists of feeding a neural scheme
with sparse images and optimizing the network weights to
minimize the reconstruction error, i.e., the difference between
the output of the neural network and the target data to be
recovered. Once the training stage is done, the interpolated
field associated to incomplete time series is simply provided
by the output of the ANN fed by the time series. We refe

Different neural architectures can be considered. In the lat-
ter, we propose testing a UNet [33] and a simple Convolutional
Neural Network.

C. 4DVarNet

4DVarNet is a Neural Network (NN) based version of the
traditional data assimilation approach 4DVar [39]. It mainly
consists in solving the problem

x̃ = argmin
x

U(x) = λ1∥x− y∥2Ω + λ2∥x− ϕ(x)∥2F , (1)

where ∥∥Ω stands for the l2 (possibly l1) norm computed
on the observation domain Ω, λ1 and λ2 are the variational
cost parameters and ϕ is the dynamical model that could be a
differential equation model, a physical model, or a NN-based
model. Resolution of eq. (1) is performed using yhr iterative
gradient descent update

xk+1 = xk + ρ∇U, (2)

where ∇U is the gradient of the variational cost eq. (1)–
that is computed using automatic differentiation tools–and ρ,
the gradient step-size. Instead of manually choosing ρ, which
might be challenging, one can think about using a NN-based
solver such as Long Short Term Memory networks (or lstm
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Sat. Obs.

λ1||xk − y||Ω
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y

Fig. 3. Structure of the 4DVarNet algorithm. Trainable parts i.e., the lstm parameters, variational cost parameters (λi), and model parameters are presented
in red.

[]) that drives the gradient descent by smoothing successive
updates.

Considering all these different parts, 4DVarNet algorithm
consists in an end-to-end architecture that is presented in fig. 3.
Interestingly, if one considers using a NN for model ϕ, then
its parameters can be learned simultaneously with variational
cost weights and lstm inner-parameters so as to provide the
best interpolation. Following the learning scheme presented in
fig. 4, the parameters to be updated with back-propagation are
λ1, λ2, ϕ and lstm, i.e., those appearing in red in fig. 3.

IV. LEARNING STRATEGIES

Neural Network based approaches require observations and
target data to be fitted to during the training phase. Depending
on the application, those targets can be e.g., known Ground
Truth–hardly available for satellite multispectral imaging–or
reference model outputs such as in [38]. Here, we aim to train
NN-based mapping algorithms using only available gappy
satellite images. We cannot feed the training algorithms with
the same data as input and target without any additional
assumptions as the NN-based approaches will tend to learn
the identity. We then propose to use the gappy images to ar-
tificially generate even more gappy observations. The training
data then consist in considering the gappy satellite images as
the target and the sub-sampled version of these images as the
input data. As such, the training loss is evaluated over all
available pixels from the satellite images. An overview of this
learning strategy is presented in fig. 4.

One could think that a pure random sub-sampling of
the satellite images–i.e., randomly removing pixels from the
images–is an easy way to build a training dataset. However,
such a sub-sampling scheme does not provide an efficient
learning dataset as it defines a too simple interpolation problem
and thus does not constrain the NN to extract general patterns.
We then propose two other resampling strategies: a first one
based on real satellite masks; and another one based on the
random removal of square patches.

A. Real satellite-based observation patterns

The data product considered [19] is a Multi-Sensor product,
meaning that the images result from the fusion of optical
data acquired by different satellite sensors. A sensor mask
informing the different sensors contributing to each pixel is
provided for each daily image.

Sat. Obs.

Neural Network
interp. scheme −|| ||

Training loss

Gappy GTSub-samp.

Gappy Obs.

(input)

Interp. field

(output)

Parameters update (back-propagation)

Fig. 4. Proposed learning strategy scheme for Neural-Network based ap-
proaches.

Our first data sub-sampling strategy exploits these sensor
masks to generate gappy patterns associated with different
Multi-Sensor configuration as illustrated in fig. 5. As an exam-
ple, we also display the resulting field when considering only
the OLCI-S3A sensor mask is also presented in fig. 5. Such a
sampling strategy provides realistic observation in the way that
produced observations correspond to real observation patterns.
As a drawback, it makes the proportion of missing data and
spatial covering–that is preferred to be homogeneous–difficult
to tune. This strategy also provides only one observation
mask per day and does not allow randomized simulations.
Moreover, some satellites follow trajectories that do not ensure
a dense coverage in time and/or space. For example, Sentinel-
3A revisits the same site every two days, which means that
for a given pixel an observation is available at most one day
out of two, depending on the cloud cover.

B. Randomised patch-based patterns

Another approach that allows us to better control missing
data proportion, spatial sampling, and other factors consists
in removing random patches instead of removing random
individual pixels. The size and shape of the removed patches
can also be controlled. This strategy seems appealing as a
trade-off between fully random patterns and realistic ones.

In the latter, we propose generating the observations by
removing 50% of data from the Multi-Sensor images, with
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Fig. 5. Example of satellite-based observations sampling. (top) Available
sensor mask. Color are composed w.r.t. available senseors presented in
section II. (bottom) Observations sampled using the Sentinel-3-A mask. The
unit of measurement is depicted in log10 scale of m−1.

original missing value proportions that are below 75%. In
other words, images from the original dataset that have more
than 75% of missing data are kept in full as observations,
while half the content of the other images is removed. Patch
sizes (heights and width) were randomly generated between
5 to 25 pixels, which in our case represents 0.04% to 1%
of the image. Overall, this approach allows us to discard
enough observation data so that the inputs and targets depict
significant differeneces, while preserving very gappy images
in the observation subset.

For illustration purpose, Figure 6 shows one example of the
two resampling approaches.

Our code and data are open source and available online at
this link.

V. EXPERIMENTS

In our numerical experiments, we benchmark the considered
interpolation methods presented using different learning and
testing configurations in terms of observations patterns. More
specifically, we aim to:

1) compare the interpolation performance achieved by DI-
nEOF, Direct-Inversion, and 4DVarNet using a common
dataset;

2) analyze the impact of training and testing observation
patterns on the performance of NN-based models;

3) asses a potential enhancement of the interpolation per-
formance when using multi-sensor datasets.

For evaluation purposes, we focus on the restricted area shown
in fig. 1. We compute for the interpolated fields for the 2-year
testing time period that ranges from 2019-01-01 to 2020-12-
31 (see fig. 2) with the two following metrics. The Root Mean
Squared Log Error (RMSLE):

Algo. RMSLE MRE
DInEOF 0.0758 11.7
eDInEOF 0.0745 12.11

CNN 0.128 21.9
UNet 0.119 18.9

4DVarNet (CNN) 0.0501 7.3
4DVarNet (UNet) 0.0520 7.65

TABLE I
COMPARISON OF THE DIFFERENT INTERPOLATION METHODS USING

PATCH-BASED OBSERVATIONS.

RMSLE =

√
1

#Ω
·
∑
i∈Ω

(log10(x(i))− log10(x̃(i)))
2, (3)

and the Mean Relative Error (MRE):

MRE(%) =
1

#Ω
·
∑
i∈Ω

100 ·
∣∣∣∣x(i)− x̃(i)

x(i)

∣∣∣∣ . (4)

In both cases, Ω is the considered spatio-temporal domain
on which the error is evaluated, i.e., pixels from the Gappy
Ground Truth (GT) that are discarded from the observations.
x(i) is the GT values at spatio-temporal location i and x̃(i) is
the associated interpolated value.

A. Benchmarking of the interpolation methods

To compare e/DInEOF, NN-based interpolation, and 4DVar-
Net, we propose to consider the dataset composed of the
multi-satellite images as the Gappy Ground Truth used for the
learning step and testing steps, and observations obtained with
the random patch-removing strategy for the training and testing
steps. Two NN were considered for both the Direct-Inversion
and 4DVarNet, a UNet, and a CNN. In both cases networks
were trained up to 100 epochs and patch-based observations
were randomly generated online during the training stage.

To be fair with non-learning based approaches, especially
with e/DInEOF, the same data were used, i.e., the gappy GT
from the learning stage and the observations from the testing
step. In that way, the calibration of the EOF was performed
using both training and testing data.

For each algorithm, the interpolation scores were computed
over the randomly removed patches of the testing period and
were shown in table I. One can see that 4DVarNet provides a
large improvement in performance when compared to other
approaches tested, with a 34% gain in terms of RMSLE,
when compare to e/DInEOF interpolation. Figure 7 shows a
reconstruction example for each approach. One can easily see
that 4DVarNet approaches better recover small structures and
provides more detailed reconstructions. The smooth aspect of
DInEOF and eDInEOF typically comes from the underlying
low-rank reconstruction strategy, while reconstructions from
neural Direct-Inversion approaches seem to suffer from nu-
merous artifacts. While 4DVarNets also rely on convolutional
architectures, they do not exhibit similar artifacts. This can
be explained by the more complex structure of 4DVarNet that
consists of an iterative scheme that allows relaxing the ”model-
fidelity” constraint.

https://github.com/CIA-Oceanix/4dvarnet-core/tree/turbidity-fish-predict
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Fig. 6. Example of observation masks to be considered in the training phase. (left) Gappy ground-truth, (middle) Sentinel-3A based obs. and (right) random
patch obs. The unit of measurement is depicted in log10 scale of m−1.

Algo. Train pattern Test Pattern RMSLE MRE
4DVarNet (CNN) Patch-based 0.0501 7.3
4DVarNet (CNN) Random-based Patch-based 0.1479 20.7
4DVarNet (CNN) Sensor-based 0.1167 21.5
4DVarNet (CNN) Patch-based 0.0594 8.1
4DVarNet (CNN) Random-based Random-based 0.0271 4.0
4DVarNet (CNN) Sensor-based 0.1035 18.2
4DVarNet (CNN) Patch-based 0.1669 28.6
4DVarNet (CNN) Random-based Sensor-based 0.2361 42.8
4DVarNet (CNN) Sensor-based 0.1373 25.8

TABLE II
ROOT MEAN SQUARE LOG ERROR (RMSLE) AND RELATIVE ERROR

(RE) REACHED BY THE 4DVARNET ALGORITHM, CONSIDERING
DIFFERENT OBSERVATION SETUP FOR TRAINING AND TESTING STEPS.

As the 4DVarNet scheme using a CNN as model ϕ provides
the best performance in these first experiments, we propose to
consider only this method for the following tests comparing
the impact of the different observation patterns used for the
training/testing stages.

B. Impact of the learning setup

Here, we compare the efficiency of 4DVarNets trained with
the different observation patterns proposed in section IV. To
that end, we trained the same 4DVarNet architecture i.e.,
4DVarNet with the same CNN-based model, using input
observations generated with i) the patch-based strategy, ii) a
purely random pixel-level strategy where 50% of data were
randomly removed, and iii) the S3A-sensor based strategy.
Each trained 4DVarNet was then used for the interpolation of
all observation patterns. Interpolation scores were computed
on the removed observations, i.e., i) on the removed patches
for patch-based observations, ii) on the randomly removed
pixels for purely random-based observations, and iii) on the
non S3A-provided data for satellite-based observations.

We report in table II a summary table of the interpolation
scores reached for all models on all observation strategies.
As the scores are computed on different data, depending on
the testing observation patterns, one cannot directly compare
the performances reached for the different testing observation
setups. However, one can compare the performances of the

different 4DVarNet models when considering the same testing
setup. We point out two interesting results from table II. First,
4DVarNet trained using a given observation pattern always
provides the best performance when applied to the inter-
polation of the same observation pattern. That result shows
that during the training phase, 4DVarNets learn interpolation
schemes optimized for the associated training observation
pattern. Second, one can see that when it is used for training,
the patch-based observation strategy seems to provide an
interpolation scheme that generalizes well considering the
other two testing observation patterns. the 4DVarNet trained
with patch-based observations provides results that are always
between the best and worst models, contrary to models learned
with purely random or satellite-based observations, that pro-
vide poor interpolation scores when used on other setup.

Figure 8 shows reconstruction examples for all kind of
observation patterns using the 4DVarNet model that provides
the best RMSLE score for each setup.

C. Impact of the satellite selection
To assess the improvement due to different sensor contribu-

tions that impact the spatio-temporal coverage of the area, we
propose a new evaluation framework. First of all, to compare
interpolation performance using different input observations,
we propose to discard 10% of data from the Gappy Ground
Truth, ensuring a common evaluation support for each dataset.
We then used 4DVarNet algorithm trained with the above
patch pattern to interpolate from the observation generated by
keeping pixels provided by different sensor combinations, i.e.,
we first interpolate data provided by the different individual
sensors, we then moved to data provided by all combinations
of two sensors, then by all combinations of three sensors.
As the dataset contains data provided by 5 sensors for the
considered testing period, the proposed experiment consisted
in interpolating 31 datasets and evaluating the reconstruction
performances on the common missing data i.e., on the 10%
removed patches. RMSLE and MRE performances are shown
in table III.

Considering the single sensor setup, One can see that
interpolations based on the VIIRS-JPSS1 sensor provide the
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Fig. 7. Interpolation examples using different interpolation methods. (top-
left) All available observation (target), (top-right) Considered input obs. (2nd
line - left) DInEOF interpolation (2nd line - right) eDInEOF interpolation.
(3rd line - left) Direct-inversion with CNN. (3nd line - right) Direct-inversion
with UNet. (bottom - left) 4DVarNet interpolation with CNN model. (bottom
- right) 4DVarNet interpolation with UNet model. The unit of measurement
is depicted in log10 scale of m−1.

best reconstruction performances, with relative gains of ap-
proximately 52%, 50%, 19%, and 7% compared to OLCI-
S3B, OLCI-S3A, MODIS-aqua, and VIIRS-SNPP, respec-
tively.Interestingly, some sensors seem to provide more com-
plementary information than others to the interpolation. Con-
sidering the three sensors setup, one can note that each combi-
nation of sensors provides approximately the same proportion
of missing values. However, interpolation performance is quite

Fig. 8. Examples of reconstructions obtained with 4DVarNet for different
observation patterns. (left) Considered input observations, (right) associated
4DVarNet reconstructions. The unit of measurement is depicted in log10 scale
of m−1.

different, e.g., combination 1+3+4 and 2+3+4 both get 51%
of missing data but respectively raise RMSLE of 0.047 and
0.050, thus showing that the distribution of missing values
largely impacts the interpolation results. These results seem
consistent with the satellite properties, as sensor 1 (OLCI-
S3A) provides finer observations near the coast compared to
sensor 2 (MODIS).

Figure 9 shows interpolation examples obtained with 4DVar-
Net algorithm using increasing sensor combinations, i.e., by
gradually including sensors into the observations. One can see
that VIIRS-JPSS1 sensor provides a large coverage of the area
but is subject to missing values caused by the acquisition
process (striping and bow-tie effects [40]). The addition of
VIIRS-SNPP observations leads to a significant improvement
for the North-Eastern part of the considered region. The
addition of S3A and S3B only brings minor changes, as
highlighted for the inland waters along the northeastern sea
shore. This is line with the relative improvements brought by
the different sensors reported in Table III.
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Fig. 9. Interpolation examples using different sensors combinations. (left)
Observations, (right) 4DVarNet reconstruction. (top) All sensors observation
(2nd line) VIIRS-JPSS1 Obs. (3rd line) VIIRS-JPSS1 + VIIRS-SNPP Obs.
(4th line) VIIRS-JPSS1 + VIIRS-SNPP +S3A Obs. (bottom) VIIRS-JPSS1 +
VIIRS-SNPP + S3A + S3B Obs. The unit of measurement is depicted in log10
scale of m−1. The two boxes emphasize areas with noticeable differences.

Sensor combinaison RMSLE MRE MV prop.
All-sensors 0.04426 6.71 0.46

1 : OLCI-S3A 0.1372 21.82 0.84
2 : MODIS-Aqua 0.08516 12.77 0.67
3 : VIIRS-JPSS1 0.06891 10.14 0.64
4 : VIIRS-SNPP 0.07434 10.84 0.66
5 : OLCI-S3B 0.1444 21.60 0.84

1+2 0.06900 10.17 0.61
1+3 0.06158 8.99 0.59
1+4 0.06386 9.26 0.60
1+5 0.09895 14.01 0.70
2+3 0.05905 8.62 0.57
2+4 0.05900 8.67 0.57
2+5 0.07301 10.67 0.61
3+4 0.05154 7.62 0.54
3+5 0.06039 8.85 0.59
4+5 0.06441 9.31 0.60

1+2+3 0.05330 7.84 0.53
1+2+4 0.05237 7.78 0.53
1+2+5 0.05868 8.54 0.55
1+3+4 0.04756 7.14 0.51
1+3+5 0.05367 7.87 0.54
1+4+5 0.05527 8.05 0.55
2+3+4 0.05045 7.46 0.51
2+3+5 0.05369 7.87 0.53
2+4+5 0.05373 7.90 0.54
3+4+5 0.04807 7.16 0.51

1+2+3+4 0.04689 7.03 0.49
1+2+3+5 0.04865 7.22 0.50
1+2+4+5 0.04791 7.17 0.50
1+3+4+5 0.04471 6.77 0.48
2+3+4+5 0.04724 7.05 0.49

TABLE III
4DVARNET INTERPOLATION PERFORMANCE CONSIDERING DIFFERENT

SATELLITE COMBINATIONS. COLUMNS CORRESPOND TO (FROM LEFT TO
RIGHT): THE CONSIDERED SENSOR COMBINATION, THE ROOT MEAN

SQUARE LOG ERROR, THE MEAN RELATIVE ERROR AND THE MISSING
VALUE PROPORTION.

VI. CONCLUSION AND FUTURE WORK

In this paper, we demonstrated the effectiveness of train-
ing neural networks 4DVarNet schemes directly on gappy
data from satellite observations. Through extensive testing
across various sampling scenarios, we find that the best-
performing approach uses random rectangular patches. For
specific application with BBP443 reconstructions, our chosen
deep neural network, 4DVarNet, outperforms other state-of-
the-art methods (e.g.,DInEOF, neural network based Direct
Inversion) thanks to its integration of data assimilation within
the network.

Based on extensive experiments with different satellite sen-
sors, we have made two key observations: a) Utilizing data
from all available satellite sensors yields the best performance
thanks to the more available data; b) The VIIRS-JPSS1
satellite sensor appears to be the most crucial, as experiments
including VIIRS-JPSS1 data consistently outperform compa-
rable configurations without it. This can be attributed to the
particularly large swath of this sensor giving a larger coverage
of the earth and so add much more input data in the process.

Although this paper focuses on a restricted area of the
Mediterranean Sea, as shown in Figure 1, it is important
to note that, according to [32], the proposed training frame-
work with gappy groundtruth data and random patch-sampling
schemes allows the 4DVarNet architecture to generalize well
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to other regions and parameters. Especially, while training
over the entire Mediterranean can be extensively expensive
due to its large area, the study [32] demonstrates a cost-
effective strategy. The model trained on the relatively small
selected area transfers well to the entire Mediterranean Sea
without no fine-tuning step. Similarly, our study supports the
potential training of generic interpolation schemes that could
apply to a wide range of observation patterns. Future work will
likely explore such generalization properties up to the global
scale and across ocean colour variables. In this context, the
exploration of conditioning variables such as the space-time
location, bathymetry as well as other sea surface variables
(e.g., sea surface currents, sea surface temperature, sea surface
winds,...), could also be highly beneficial.

Beyond the surface of the ocean, combining the learning-
based method of [41] to our results open new research avenues
to retrieve the full 3D+t picture of BBP443 on global scale and
fully exploit the potential of the global network of Bio-Argo
floats [42].
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