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Supplementary Fig. 1. Preindustrial deep ocean biogeochemistry. a, [PO4

3-] versus [CO3
2-], b, 

[O2] versus [CO3
2-], c, Map showing hydrographic locations, d, PO4* versus [CO3

2-]as. Data are 
from GLODAPv21,2. Data in the Pacific, Indian, and Atlantic oceans are from >2500 m water 
depths. The Northern Sourced Water (NSW) and Southern Sourced Water (SSW) are defined 
following Ref. 3. The yellow circles in a, b, and d show the preindustrial deep-water 
biogeochemistry at site MD97-2106. The yellow circle in c indicates the location of Site MD97-
2106. Red and blue shading regions in c highlight regions where SSWs and NSWs, respectively, 
are defined. 
  



 
Supplementary Fig. 2. Proxy data against core depth at MD97-2106. a, Sea surface 
temperature (SST) estimated from Mg/Ca in G. bulloides4. b, C. wuellerstorfi B/Ca and the 
estimated [CO3

2-]. c, Sedimentary carbonate content (grey curve)5. d, H. elegans Cd/Ca and 
the estimated [PO4

3-]. e, δ13C gradient between C. wuellerstorfi and G. affinis and estimated 
[O2]. f, δ18O in C. wuellerstorfi (dark blue) and G. affinis (light blue), where δ18O in G. affinis is 
subtracted by 0.94‰ to account for the interspecies offset. g, C. wuellerstorfi δ13C. h, G. 
affinis δ13C. i, PO4*. j, [CO3

2-]as. In b and d, replicated measurements of subsamples are shown 
as different data points. Grey vertical bars indicate the depth ranges corresponding to the 
Younger Dryas (YD) and Heinrich Stadial 1 (HS1). Between these two periods is the Antarctic 
Cold Reversal (ACR). The vertical dashed line shows the depth corresponding to the boundary 
between early and late HS1.  



 
Supplementary Fig. 3. Influences of age control points on records at site MD97-2106. a, Sea 
surface temperature (SST)4. b, EPICA Dome C (EDC) δD, a proxy for Antarctic temperature)6. 
Triangles at the bottom are age tie points for SST at site MD97-2106 and EDC δD, and crosses 
represent 14C dates4,7. c, [CO3

2-]; d, [O2]; e, [PO4
3-]; f, PO4*; g, [CO3

2-]as. In a, c-g, solid curves 
with solid dots are the same as shown in the main text. a, c-g, dashed curves with empty dots 
are records based on an alternative age model relying only on radiocarbon dates. 
  



 
Supplementary Fig. 4. Comparison of deep-water [O2] at site MD97-2106 to other deep 
Southern Ocean oxygenation reconstructions. a, South Atlantic Ocean oxygenation based on 
authigenic uranium8 (red circles). b, South Indian Ocean oxygenation9 based on benthic 
carbon isotope gradients (magenta circles), compared to [O2] at site MD97-2106 (blue circles 
with error envelope; this study). 
  



 

 
Supplementary Fig. 5. Sensitivity tests for deglacial [CO3

2-]as at site MD97-2106. a, [CO3
2-]as 

calculated using various sensitivities to evaluate effects from changes in organic matter 
composition (RC:P) and rain ratio (RCorg:Ccarb)10. Red curve with envelope is calculated using RC:P 
= 127 and RCorg:Ccarb= 4 shown in the main text. b, Effects of the global alkalinity change on 
deep Southern Ocean [CO3

2-], assuming no air-sea CO2 exchange from three different 
simulations11,12. c, changes in [CO3

2-]as relative to the LGM calculated using three global 
alkalinity histories11,12. 
  



 
Supplementary Fig. 6. Deglacial PO4* derived from different Redfield ratios (R-O2:P) at site 
MD97-2106. The blue curve with circles and error envelope is based on a R-O2:P of 175 
following the definition in Ref. 13,14. Red and magenta curves are calculated using R-O2:P of 160 
and 180, respectively, which encompasses the entire deep-water R-O2:P variability in the 
modern oceans15. 
  



 
Supplementary Fig. 7. Comparisons of MD97-2106 [CO3

2-]as with published records16. a, 
Results at MD97-2106 (this study) compared with those at core GGC90 (South Atlantic) 
bathed in the downstream of AAIW16. b, Results at core NEAP 4K bathed in the North Atlantic 
Deep Water16 and at MD97-2106 (this study).  
  



 
Supplementary Fig. 8. Sensitivity tests for LGM SSW PO4* (a) and [CO3

2-]as (b). LGM SSW 
PO4* and [CO3

2-]as are calculated based on varying SSW% (70%-90%) at site MD97-2106. In a, 
bars in dark and light blue, respectively, show LGM SSW PO4* calculated assuming 20% 
decline and no decline in the NSW PO4* during the LGM compared to the late Holocene. In b, 
bars in dark and light red, respectively, show LGM SSW [CO3

2-]as calculated assuming 0% and 
10% SSW at the NSW-dominated site NEAK-4K during the LGM compared to the late Holocene. 
Yellow stars highlight the preferred calculation discussed in the main text. Error bars show 
the ±1σ uncertainties associated with the reconstruction of the LGM SSW endmember values. 
These sensitivity tests show that LGM SSW PO4* and [CO3

2-]as calculated here are insensitive 
to LGM SSW% at site MD97-2106 and NSW endmember values. 
  



 
Supplementary Fig. 9. Comparison of deep-water PO4* at MD97-2106 with fossil-bound 
δ15N records from the Southern Ocean. a, Deep-water PO4* at site MD97-2106. b, Coral-
bound δ15N from the Drake Passage17,18. c, Diatom-bound δ15N from core located near the 
modern Antarctic Polar Front19,20. Despite weaker age constraints than coral-bound δ15N 
records, diatom-bound δ15N data show little change during early HS1 as revealed by the coral-
bound δ15N data. δ15N data suggest reduced nutrient utilization and thus a weaker biological 
pump in the PAZ during late HS1, consistent with PO4* at site MD97-2106. 
  



 

 
Supplementary Fig. 10. Sensitivity test of [Cd]sw-[PO4

3-] calibrations on our reconstructions. 
a, modern seawater [Cd]sw and [PO4

3-] data from the GEOTRACES dataset21. Empty green dots 
are from GIPY06 Section south of Tasmania and filled green dots are sites with [PO4

3-] >1.5 
µmol/kg. Calibrations 1 and 2 are linear calibrations based on GIPY06 data with [PO4

3-] >1.5 
µmol/kg and all GIPY06 data, respectively. Calibrations 3 is quadratic calibration based on all 
GEOTRACES data. The yellow vertical bar highlights the [Cd]sw range reconstructed at site 
MD97-2106. b, Reconstructed [PO4

3-]; c, PO4*; and d, [CO3
2-]as. In b-d, bold lines with dots and 

shadings are reconstructions based on calibration 1 shown in the main text, while light-
coloured lines and dashed lines are reconstructions based on calibrations 3 and 2, respectively. 
Different calibrations yield similar patterns of [PO4

3-], PO4*, and [CO3
2-]as, despite their varying 

absolute values. 
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