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ABSTRACT

Linguistic uncertainty is a prime source of uncertainty pervading ecology and conservation. Coralline algae are a widespread
and diverse group of calcifying red macroalgae that underpin coastal ecosystem function and service provision. Recent increas-
ing interest in coralline algae in the scientific literature has revealed a diverse but confusing terminology at organism to habitat
scales. Coralline algal research and conservation are international and multidisciplinary, so there are geographic and discipli-
nary imbalances in research and conservation efforts. To reach consensus and reduce uncertainty, we propose a unified termi-
nology. We review trends in cultural and scientific use of coralline algal terms and propose a system based on six morphologies:
(1) attached, (2) free-living geniculate, (3) encrusting and free-living nongeniculate coralline algae, the latter either being (4)
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nucleated or (5) non-nucleated thalli or (6) fragments. We take inspiration from other coastal systems that have achieved consen-

sus through umbrella terms, such as ‘coral’ and ‘kelp’, to accelerate global progress in coralline algal research and conservation.

We characterise 14 coralline algae-dominated habitat global types, falling within seven functional groups, four biomes and four

realms: (1) freshwater coralline streams; (2) coralline tide pools; (3) intertidal coralline rims and (4) turf; (5) coralline sea caves;

(6) coral-algal reefs; (7) algal ridges; (8) coralligenous reefs; subtidal (9) carbonate crusts, (10) coralline barrens and (11) turf; and
(12) articulith, (13) maerl and (14) rhodolith beds, which fall into the coralline algal bed functional group. We hope this unified
terminology promotes data comparison, enables cross-boundary and cross-sector sharing of best practices, develops capacity for

meta-analyses and improves conservation strategies.

1 | Introduction

A subject with strong cultural, scientific and/or socio-
economic connections is usually associated with a high di-
versity of terms to describe it, because language and human
cognition and perception are deeply intertwined (Drew 2005;
Klemfuss et al. 2012; Thierry 2016). Similarly, the stronger the
connections of a people to a species or group of species, the
higher the number of words to describe them (Drew 2005).
This pattern can also be seen in scientific language. However,
while a diverse terminology can enable specific descriptions,
it can also hinder broader scientific understanding of the sub-
ject. This is due to increasing uncertainty (Kéfi et al. 2019;
Kovalenko et al. 2012), where there is a lack of a unique and
complete understanding of a subject. Uncertainty can arise
from contrasting multiple knowledge—distinct but equally
valid views (Brugnach et al. 2008). Linguistic uncertainty
has been identified as one of the main classes of uncertainty
that impairs ecological knowledge and effective conservation
strategies (Regan et al. 2002; Kujala et al. 2013).

Coralline algae are a highly diversified, globally distrib-
uted group of red calcifying macroalgae (Corallinophycidae,
Rhodophyta) that thrive in marine and locally in freshwater
environments under a wide range of conditions (Johansen 1981;
Zuljevi¢ et al. 2016). Following pioneering taxonomy-driven
work at the end of the 19th century (Foslie 1894; Woelkerling
et al. 2005; Woelkerling 2008), coralline algae have received
increasing attention in the scientific literature (Figure 1). This
interest came from the recognition of their global importance
for coastal ecosystem function, service provision and biogeo-
chemical cycling, their sensitivity to projected environmental
change and their value in palaeoecological records (McCoy
and Kamenos 2015). Similarly, given the biological resources
provided by the habitats these coralline algae create, there
is increasing concern related to their exploitation (Grall and
Hall-Spencer 2003; Riosmena-Rodriguez 2017; Berchez 2022;
Mogor et al. 2021; Ramos et al. 2023). Such recognition is driv-
ing conservation efforts, with coralline algae being increas-
ingly included in marine management frameworks around the
world (European Commission et al. 2016; Keith, Fragkopolou,
et al. 2022; Brodie et al. 2023; Axelsson 2023).

As a consequence of increasing recognition and the un-
matched morphological diversity of the group, the terminol-
ogy used for coralline algae and the habitats they form has
also become diverse, sometimes leading to linguistic uncer-
tainty (McCoy and Kamenos 2015). The European Red List of
Habitats (European Commission et al. 2016) exemplifies this

linguistic uncertainty in coralline algal science and conser-
vation. This document alone has 11 names for coralline algal
habitats and includes numerous others in which coralline
algae are notable components (Figure 2; Table S1). Among the
terms used, some are polysemic (have multiple meanings) and
context dependent, while some are synonymous. This linguis-
tic uncertainty has the potential to lead to misunderstandings
among researchers, decision-makers and other stakehold-
ers, transcending into policy-making (Norton 1998; Milner-
Gulland and Shea 2017) and public engagement (Vigliano
Relva and Jung 2021).

Coralline algal research and conservation are inherently in-
ternational and disciplinarily diverse due to the worldwide
distribution and the diversity of the algal group. This leads
to local and regional scale variations in priorities: Coralline
algal research disciplines are not evenly developed world-
wide (Rendina et al. 2022) and conservation efforts depend
on local pressures and stakeholders (Keith, Ferrer-Paris,
et al. 2022). Here, we highlight the importance of unification
and community consensus as a tool for contextualisation, to
ensure readers understand the meaning of a term (Crump
et al. 1999). We review how coralline algal terminology has
evolved since the 18th century at organism and habitat levels,
identifying long-term trends in cultural and scientific usages
of these terms and proposing a unified typology for coralline
algal habitats, providing authors with terms that can make
communication about these algae more efficient. We hope this
will help advance coralline algal research and conservation by
(1) facilitating observational and experimental data compar-
isons; (2) enabling cross-boundary and cross-sector sharing
of technique developments, best practices and conservation
strategies; and (3) improving meta-analyses, as synonyms can
be missed in published literature leading to skewed results
(Hodges 2008; Stroud et al. 2015; Cira et al. 2019).

2 | Facilitating Progress in Coralline Algal
Research and Conservation Worldwide

A unified terminology for coralline algal habitats may foster
better international research collaboration, accelerating the ad-
vancement of coralline algal research frontiers and base conser-
vation strategies on a more coherent foundation. In other coastal
systems, this has been achieved—‘coral’, ‘kelp’, ‘seagrass’ and
‘mangrove’ are umbrella terms for 10s-1000s of species with
high intravariability, and all have similarly simple habitat terms.
The cohesive terminology and grouping of such diverse habitats
has facilitated their international recognition within research,
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FIGURE1 | Scopus search for publications containing coralline algal terms in the title, abstract or keywords from 1970 to 2023. (A) Search terms:

‘coralline alga* OR ‘coralline red alga*’ OR ‘coralligene*’ OR ‘coralligenous’ OR ‘maerl*’ OR ‘rhodolite*” OR ‘rhodolith*’. Total number of publica-

tions =3713. Total and individual term trends are shown—note that one publication may contain more than one term. (B) Number of single-country

publications containing the terms (maerl*) or rhodolith (‘rhodolith*” OR ‘rhodolite*’), showing the 10 most productive countries to illustrate regional
and global trends, created with the ‘bibliometrix’ R package (Aria and Cuccurullo 2017; R Core Team 2024).

conservation and more widely, with numerous examples of
global datasets and assessments (Hamilton and Casey 2016;
Krumbhansl et al. 2016; McKenzie et al. 2020; Sully et al. 2019;
van Katwijk et al. 2016; van Woesik and Kratochwill 2022).
Recognition for the importance of coralline algal research lags
far behind—we believe due in part to the disparate terminology
used at organism to habitat levels. Similarly, global datasets for
coralline algae and the habitats they form are lacking, despite
increasing academic attention (Figure 1).

Ecosystem conservation and management is typically imple-
mented through local action, which may lead to both epistemic
and linguistic uncertainty when aggregated at larger scales (Box 1;
Keith, Ferrer-Paris, et al. 2022). However, international and in-
terdisciplinary studies, which depend on a coordinated scientific
community, enable cross-comparisons between baseline knowl-
edge, ecological status and conservation efforts and help share
successful policies and protect coralline algal habitats globally
(Wilson et al. 2004; Brodie 2009; Tuya et al. 2023). Scaling-up
local ecological data helps global conservation (Agardy 2005;
Edgar et al. 2016, 2014; Rowland et al. 2020) and is needed for cor-
alline algal conservation as at present, this is a data-deficient topic
(Ferrigno et al. 2023; McCoy and Kamenos 2015; van der Heijden

and Kamenos 2015; Rendina et al. 2022; Ferrigno et al. 2023).
Addressing linguistic uncertainty will help resolve this and better
set conservation objectives (Milner-Gulland and Shea 2017).

An increasing number of studies proposing unified terminologies
toresolvelanguage uncertaintyin ecology often resort to trait-based
and functional approaches (Bellwood et al. 2024; Ellison 2019;
Keith, Ferrer-Paris, et al. 2022; Streit and Bellwood 2023). Here,
we review the terms used for coralline algae and propose a uni-
fied typology at first the organism and then the habitat level.
We then define coralline algae-dominated habitats based on the
International Union for Conservation of Nature (IUCN) Global
Ecosystem Typology (GET) (Keith, Ferrer-Paris, et al. 2022).

3 | The Emergence of a Diverse Terminology

All orders within the Corallinophycidae (Phylum: Rhodophyta),
except the Rhodogorgonales, fall under the umbrella term ‘cor-
alline algae’—almost all of which have- extensive calcifica-
tion in the cell walls (Jeong et al. 2021). The Rhodogorgonales
have a very different calcification process and a gorgonian-
like filamentous morphology (Fredericq and Norris 1995). The
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FIGURE2 | Coralline algae in the European Red List of Habitats (European Commission et al. 2016). (A) The number of habitats where coralline
algae are in the habitat name (n=11) or are listed as a notable component in the habitat description (n=22) and (B) the current conservation status

of coralline algal-associated habitats across the Mediterranean, Black Sea and Atlantic regions. Further information on each habitat is provided in

Table S1.

coralline algae are divided into two groups based on morphol-
ogy (Figure 3): geniculate (erect fronds with uncalcified seg-
ments known as genicula) and nongeniculate (thalli lacking
uncalcified segments). However, this morphological division
is not reflected in their phylogeny. The order Corallinales has
both geniculate and nongeniculate taxa, sometimes in a single
genus, assuming evolutionary reversals of some taxa to the an-
cestral, nongeniculate state (Hind et al. 2018). Nongeniculate
coralline algae can have a free-living or encrusting morphology,
the latter being flat or with branch-like protuberances (Irvine
and Chamberlain 1994). Some species are exclusively encrust-
ing, while others can be found both free-living or encrusting
(Hernandez-Kantun et al. 2016).

Besides the presence of genicula, coralline algae present great
morphological and functional diversity. They greatly vary in
size, thickness and shape, varying from (small) to (large). The
group also presents several life strategies: parasitic, semien-
dophytic, epilithic, epiphytic, epizoic or live as epibionts on
man-made surfaces such as glass, plastic and metal (Adey and
Sperapani 1971; Adey and Macintyre 1973; Harvey et al. 2005;
Dean et al. 2015; McCoy and Kamenos 2015). This diversity is
thought to be at least partially due to the presence of secondary
pits and vegetative cell fusions that allow the translocation of
photosynthates to living cells beneath photosynthetic tissues,
allowing lateral growth (Steneck 1983, 1986). The morpholog-
ical and functional diversity of the group has contributed to the
proliferation of terms used to describe coralline algae.

3.1 | Free-Living Nongeniculate Coralline Algae
Free-living, nodule forming, nongeniculate coralline algae

have been documented since the mid-18th century (e.g.,
Linnaeus 1758; Ellis and Solander 1786), although they were

thought to be animals that looked like plants (zoophytes)
until Philippi (1837) identified them as photosynthetic or-
ganisms. Initially classified as Millepora hydrocorals (Ellis
and Solander 1786; Pallas 1766) and later as Nullipora zoo-
phytes (Lamarck 1801), they were then identified as coralline
algae of the genera Lithothamnion Heydrich and Lithophyllum
Philippi, in the mid-late 1800s (Wiegmann 1837; Chauvin 1842;
Foslie 1894). Since then, multiple terms have arisen from both
traditional and scientific ecological knowledge, with varying
consensus over their interchangeability such as coatings, nod-
ules, maerl, rhodoliths, rhodolites or rhodoids; there are at least
12 terms used in the academic literature for free-living coralline
algae (Riosmena-Rodriguez 2017).

For example, in the early 20th century the Breton word maerl
(maérl, in French) started gaining popularity in the scientific
community (Lemoine 1910), although it had been used for centu-
ries by Celtic and French people in reference to the coralline algae
exploited for soil treatment—as a variant of ‘marne’ the word for
calcareous rocks (Augris and Berthou 1990). The terms ‘maerl’
and ‘maerl beds’ have been historically used for unattached
coralline algal habitats created by L. corallioides (P.Crouan &
H.Crouan) P. Crouan & H. Crouan, Boreolithothamnion gla-
ciale (Kjellman) PW.Gabrielson, Maneveldt, Hughey & V. Pefia
(previously Lithothamnion glaciale) and P. calcareum (Pallas)
W.H.Adey & D.L.McKibbin ex Woelkering & L.M.Irvine in the
Northeast (NE) Atlantic and subarctic seas (Cabioch 1969; Adey
and Macintyre 1973; Barbera et al. 2003; Wilson et al. 2004;
Hinojosa-Arango et al. 2009; Pefla et al. 2014; Jenkins
et al. 2021). These species often lack a nucleus, the main reason
why many now consider only such forms as maerl (sensu stricto).
At least 13 different maerl-forming species have been identified
in the NE Atlantic with many different growth forms (Pefia
et al. 2013, 2021; Pardo et al. 2014; Qui-Minet et al. 2021; Helias
and Burel 2023). The term maerl sensu lato has sometimes been
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Box 1. Rhodolith/maerl beds: a tale of detrimental linguistic uncertainty in conservation
efforts and how human connection may improve it

An example of linguistic uncertainty affecting conservation is a lack of cohesion on
free-living non-geniculate coralline algae terminology. The European Red List of Habitats
(Table S1) uses the term ‘maerl beds’ for the Atlantic but “rhodolith beds” for the
Mediterranean, although both are defined as “sedimentary bottoms characterised by any
morphology and species of unattached non-geniculate calcareous red algae” (European
Commission et al., 2016). Curiously, Lithothamnion corallioides and Phymatolithon
calcareum, typically associated with the term ‘maerl’ in the Atlantic, are explicitly listed in the
European Red List as the main species found in “Mediterranean rhodolith beds”. The latest
OSPAR commission Benthic Habitats report recognises maerl beds as threatened and/or in
decline, but does not consider rhodolith beds (OSPAR, 2023).

While maerl beds in the Atlantic are recognised as Endangered or Vulnerable,
Mediterranean rhodolith beds are considered ‘data deficient’ on the European Red List of
Habitats (European Commission et al., 2016), despite extensive research conducted on
Mediterranean coralline algal beds (Jacquotte, 1962; Pérés and Picard, 1964; Basso, 1998;
Barbera et al., 2003; Bordehore et al., 2003; Ordines and Massuti, 2009; Sciberras et al.,
2009; Sanz-Lazaro et al., 2011; Barbera et al., 2012; Micallef et al., 2012; Savini et al., 2012;
Martin et al., 2014). Therefore, linguistic uncertainty is probably partly responsible for the
‘data deficient’ status. Indeed, Mediterranean coralline algal beds may be facing even more
extreme conditions than those in the Atlantic zone and may deserve a higher conservative
status (Rindi et al., 2019).

Besides baseline scientific knowledge, the deep historical roots and cultural
connections humans have with the ocean cannot be overstated and might be reflected on
the different levels of protection given to coralline algal beds worldwide (Poe et al., 2013;
Bennett, 2019). For instance, the term ‘maerl’ has an important historical and cultural
heritage value in many places in the North Atlantic, especially in Brittany, France. A local
festival called ‘La féte du maérl takes place every four years in Plougastel-Daoulas in the
Bay of Brest, attracting more than 5000 people with art exhibits, traditional dancing and
historical re-enactments to remember those who extracted coralline algae for a living, and to
raise awareness of the ecological and socioeconomic importance of these habitats (Friant
and Marie, 2010; Péron and Marie, 2010; Noisette, 2013).

used to include nucleated growth forms of unattached coralline
algae and the habitats they form in the Mediterranean (Barbera
et al. 2017) and NE Atlantic (Axelsson 2023).

In the second half of the 20th century, the terms rhodolith and
rhodolith beds were first introduced to describe ‘unattached
aggregations of calcareous red algae’ (Barnes et al. 1970, 1971).
This broad definition could, therefore, include free-living thalli
of noncoralline calcifying red algae such as Peyssonneliaceae
(subcl. Rhodymeniophycidae) species (Buchbinder and
Halley 1985). However, these other calcifying red algae are
usually associated with corallines and are seldom the domi-
nant nodule-forming component, with exceptions in transition
zones (Ballesteros 1994; Basso 2012; Bianchi and Morri 2025;
V. A. Bracchi, Bazziacalupo, et al. 2022; Deinhart et al. 2022).

The terms rhodolite and rhodoid were also proposed at the time
(Bosellini and Ginsburg 1971; Peryt 1983), but because these
had previously been used to describe a variety of red garnets and
other coated grains, they were discarded for coralline algal nod-
ules (Adey and Macintyre 1973; Ginsburg and Bosellini 1973).
Since then, rhodolith has become the most widely used term for
free-living nongeniculate coralline algae (Rendina et al. 2022)
except in Europe, where maerl is more commonly used
(Figure 1B). Although the first definitions of rhodolith sensu
lato did not distinguish among nucleated and non-nucleated
nodular calcifying red algal growths, Steneck (1986) only con-
sider those that grow around a nucleus as rhodoliths sensu
stricto. Nucleated nodules can also be further classified based
on the relative contribution of the coralline algal component to
the whole nodule structure into coatings (< 50%) or rhodoliths
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FIGURE 3 | Proposed morphological organismal typology for coralline algae. Note that rhodolith and maerl both have historically been given
both strict and broad definitions. Rhodolith sensu stricto only includes nucleated nodules, while maerl sensu stricto includes only non-nucleated

forms. While rhodolith sensu lato includes only nodular forms, maerl sensu lato also includes nonnodular fragments. Here, we present historical uses

so that authors can be specific about which morphotypes are referred to when using any of the terms. The represented morphologies are examples of

the variety in growth forms. Arrows represent reproductive strategies that enable shifts between different types: Attached algae can grow into free-

living forms, while free-living reproductive forms can produce spores that will grow into attached forms.

(>50%) (Steneck 1983; Basso 1998). The nucleus can be of biotic
or abiotic origin, and nucleated rhodoliths can be composed of
one or several thalli, often with multiple species on individual
nodules (Riosmena-Rodriguez 2017). There is growing use of
rhodoliths sensu lato as a general term for coralline algal nod-
ules, particularly those with nuclei, while maerl sensu stricto
remains the term commonly used for non-nucleated free-living
nongeniculate coralline algae (Foster 2001; Arnold et al. 2021;
Bélanger and Gagnon 2023).

Subclassifications have been created to reflect the morpholog-
ical diversity of free-living nongeniculate coralline algae and
introduce a rich terminology that can be source of linguistic
uncertainty. For instance, both Bosence (1983) and Basso (1998)
proposed the term ‘boxwork’ for different types of nodules.
Bosence (1983) distinguished them in three classes: branching,
columnar and laminar, with the latter being divided into con-
centric and nonconcentric nodules (boxwork). Basso (1998) pro-
posed three classes: boxwork rhodoliths (large, multispecific,
laminar to columnar nucleated nodules with multiple voids),
prdlines (small, monospecific, laminar, branching or columnar
nucleated nodules) and unattached branches (small, monospe-
cific, unattached non-nucleated branches). Although useful
to describe specific morphologies, when using subclassifica-
tions, authors should be explicit about their meanings to avoid
confusion.

3.2 | Encrusting Nongeniculate Coralline Algae

Much like free-living forms of nongeniculate coralline algae,
descriptions of encrusting forms date back to the 1700s. Péres
and Picard (1964) provide a wealth of information on the va-
riety of habitats these algae can form and an evocative vari-
ety of French terms used to describe these habitats. The term
crustose coralline algae became popular at the end of the 20th

century, when it was initially used as a synonym for nongenic-
ulate coralline algae (Adey and Macintyre 1973; Bosence 1983;
Steneck 1986). Nowadays, crustose coralline algae usually refers
to encrusting (sessile) nongeniculate corallines only (McCoy
and Kamenos 2015), although free-living forms are some-
times also referred to as crustose coralline algae (Amado-Filho
et al. 2012; Pereira-Filho et al. 2012; V. Bracchi, Caronni, et al.
2022; Rebelo et al. 2022). This ambiguity is understandable since
many encrusting species may grow on mobile substrata (bio-
genic, lithic or man-made) to create nucleated free-living speci-
mens (Foster 2001). The term ‘crustose’ can also be misleading
as many nongeniculate species have calcified upright branches
(Woelkerling et al. 2005). Additionally, many geniculate species
can be confused with encrusting nongeniculate species in early
development stages, as they present a nongeniculate basal crust
preceding the formation of upright geniculate fronds (Irvine and
Chamberlain 1994).

Much of the diversity of terms regarding encrusting nongenic-
ulate coralline algae stems from the wide variety of habitats
that they form. These include coralline algal rims, buttresses,
platforms, cornices and trottoirs, coralline algal-dominated tide
pools and sea caves, coral-algal reefs, coralline algal carbonate
crusts (or cor-stromes) and coralligenous reefs, the latter also
being known as coralligenous assemblages, formations, concre-
tions, coralligéne or simply coralligenous (Marion 1883). The
similarities and differences among these habitats are discussed
below, in the habitat typology section.

3.3 | Geniculate Coralline Algae

Geniculate coralline algae were first described as zoophytes
in the 18th century (Linnaeus 1758). The name comes from
their genicula, an uncalcified, joint-like cell structure, sepa-
rating two intergenicula, the calcified segments of the upright

6 of 19

Aquatic Conservation: Marine and Freshwater Ecosystems, 2025

85U80|7 SUOWILIOD BAIIER.D 8|qed![dde aLpy Aq pausencb ae S9olie YO 8SN JO s3I 10} A%eud1T8Ul|UO /8|1 UO (SUORIPUOO-PUB-SWLBY W0 A8 | 1M AlR1q | BU [UO//:SdNY) SUORIPUOD Pue swie 1 8y 88S *[520z/c0/22] uo AkeiqiTaulluo A8|im ‘dig suberpig anueD jewel| Aq TZTOL 9be/z00T 0T/I0p/wo A8 iM AseIq Ul |Uo//SAny WoJj pepeoiumod ‘€ ‘SZ0Z ‘SGL0660T



fronds usually developed from a nongeniculate basal disc. The
term genicula was initially employed for Equisetum plants
(Blackstone 1746), then for Cnidarians by Linnaeus (1758) and
Ellis and Solander (1786), and was subsequently applied to cor-
allines (Harvey 1847).

The Corallinales is the only order of coralline algae with genic-
ulate species (Walker et al. 2009). The presence of genicula was
long considered the most important character for taxonomic dis-
tinction (Johansen 1981). However, the presence of genicula is a
derived character that has arisen in the descendants of nonge-
niculate coralline algae multiple times (Aguirre et al. 2010; Pefia
et al. 2020). Hind et al. (2018) also suggest that evolutionary
reversals have occurred within the subfamily Corallinoideae,
twice within the geniculate genus Bossiella P.C. Silva.

The genicula development pattern differs from one genus to an-
other, either through the development of uncalcified cells (apical
growth for the Metagoniolithoideae or subapical growth for the
genus Lithothrix Gray) and/or by decalcification (important in
Lithophylloideae) (McCoy et al. 2023). The genicula grant these
algae some degree of physical flexibility and were initially called
articulis by Linnaeus—hence the popularity of the alternative
term ‘articulated coralline algae’ (Johansen 1981).

Geniculate taxa are usually epilithic and typically occur in the
intertidal and subtidal zones from polar to tropical environ-
ments (Stewart 1982; Kelaher et al. 2001), although species can
also be epiphytic or epizoic. They are often strongly attached
by crustose or stoloniferous holdfasts, which can be extensive
and sometimes confused for an encrusting nongeniculate cor-
alline algae base (Brodie et al. 2013). Some geniculate corallines
can be free-living and create extensive habitats similar to free-
living nongeniculate coralline algae beds—these understudied
growth forms have been recently named ‘articuliths’ (Tamega
et al. 2017, 2021).

3.4 | Creating International Cohesion Through a
Unified Typology

As coralline algal science and interest from conservation and
policy sectors have grown, the diversity of terms used to de-
scribe these algae and their associated habitats has also in-
creased. Although a diversity of terms enables specificity in
organismal/habitat descriptions, the definition of terms and the
extent of ‘interchangeability’ between terms is not internation-
ally consistent, creating uncertainty. Adoption of specific terms
(and rejection or delineation of others), namely, in policy docu-
ments, creates uncertainty and places coralline algal habitats at
greater risk of inadequate protection measures.

4 | Proposed Organismal Typology

Some terms, such as crustose coralline algae and nongenicu-
late coralline algae, have been used interchangeably when they
designate organisms with different life histories and ecological
functions. On the other hand, organisms with similar traits and
functions have been named differently on cultural and mor-
phological bases, as in the case of the free-living nongeniculate

coralline algae. Informed by both terminology history and mor-
phological differentiation (discussed above), we propose a uni-
fied organismal typology (Box 2 and Figure 3).

In this typology, coralline algae are initially distinguished by
their structural morphology, leading to the categorisation of
geniculate and nongeniculate forms. The mode of attachment
is then used to further differentiate these forms. This includes
attached and free-living geniculate forms, as well as encrust-
ing (sessile) and free-living nongeniculate forms. Free-living
nongeniculate types can be nodules or fragments—the latter
having only one long axis (Figure 3). Encrusting nongeniculate
forms may have branches which, when detached, can become
free-living fragments or non-nucleated nodules—referred to
as ‘maerl’ in the strictest sense. The broader term ‘maerl’ can
encompass all free-living forms, including nucleated and non-
nucleated nodules and fragments. Conversely, the term ‘rhod-
olith’ in its broadest sense and following the original definition
by Barnes et al. (1971) may include noncoralline calcifying red
algae and encompasses all free-living nodules, while in its strict-
est sense, it specifically refers only to nucleated nodules of free-
living nongeniculate coralline algae. Importantly, we do not
prescribe authors necessarily use the terms sensu lato and sensu
stricto when referring to maerl or rhodoliths, but instead, advo-
cate authors are explicit about which type of coralline algae is
being referred to (nucleated nodules, non-nucleated nodules or
fragments) whenever they use one term or the other—as many
definitions exist.

5 | Proposed Habitat Typology

International cohesion among coralline terminology might be
even more important at the habitat level for conservation and
management. When different terms are employed to habitats
with similar ecological traits and functions, dissimilar protection
levels might be applied (Kujala et al. 2013). In this sense, a func-
tional approach could be an effective alternative basis for a uni-
fied terminology (Hattam et al. 2021; Streit and Bellwood 2023).
Many coralline algal species can be considered multi-influence
engineers, as they can affect several biotic and abiotic processes
and resultant ecosystem functions (Byers 2022). Therefore, we
propose a unified morphofunctional habitat typology in which
we describe and group coralline algae-dominated habitats fol-
lowing the IUCN's GET (global-ecosystems.org). The GET units
are based on (1) ecosystem functions and ecological processes,
(2) their characteristic biota, (3) conceptual consistency through-
out the whole biosphere, (4) a scalable structure, (5) spatially ex-
plicit units and (6) descriptive parsimony (Keith, Ferrer-Paris,
et al. 2022).

5.1 | IUCN's Global Typology

The GET has three upper hierarchical levels (Figure 4): 11
realms (Level 1), including atmospheric (which is taken into ac-
count but has no lower hierarchical units), freshwater, marine,
terrestrial, subterranean and six transitional realms not relevant
here; 25 functional biomes (Level 2); and 110 functional groups
(Level 3). Biomes are components of a realm with similar ecosys-
tem structure and one or a few common major ecological drivers
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https://global-ecosystems.org/

Box 2. Coralline algae organismal typology and definition key

CoralliNe @lgAE ..o e 1
GeNICUIALE . ... 2
AHACNE ... 3

Free-living . ... 4
NON-GENICUIATE ... e s 5
ENCIUSTING . ... 6

Free-living . ... 7

Fragment®® .. 8

NOAUIE ..o 9

Nucleated®® ... ... 10

Non-nucleated®P9....... ..o 11

1. Calcifying benthic red algae within the Corallinophycidae (exc. Rhodogorgonales,

2. Corallinales species with calcified frond segments separated by genicula (uncalcified
cells)

3. Geniculate coralline algae attached to substrata by crustose or stoloniferous holdfasts

4. Geniculate coralline algae living unattached in nodular forms known as articuliths

5. Fully calcified coralline algae lacking genicula

6. Non-geniculate coralline algae attached to substrata, also known as Crustose Coralline
Algae

7. Non-geniculate coralline algae living unattached as fragments or nodules

8. Fragments of branching encrusting and free-living non-geniculate coralline algae

9. Nodular growths of free-living non-geniculate coralline algae

10. Free-living non-geniculate coralline algae growing as nodules over a biogenic or abiotic
nucleus.

11. Free-living non-geniculate coralline algae growing in nodular forms from unattached
fragments

a. Maerl sensu stricto. Includes non-nucleated nodules of free-living non-geniculate
coralline algae and fragments of branching non-geniculate coralline algae

b. Maerl sensu lato. Includes all free-living non-geniculate coralline algae.

c. Rhodolith sensu stricto. Includes nucleated nodules of free-living non-geniculate
coralline algae.

d.

Rhodophyta)

Rhodolith sensu lato. Includes all nodules of non-geniculate coralline algae and other
non-coralline calcareous red algae of the presence of nuclei.

and functions. Functional groups are similar systems within a
biome that share common ecological drivers and present simi-
lar biotic traits. Functional groups can be further divided into
three bottom hierarchical levels: regional subgroups (Level 4),
global types (Level 5) and subglobal types (Level 6). Level 4
units are based on ecoregions and are not applied here because
many regions are data deficient for coralline algae (European
Commission et al. 2016; Rendina et al. 2022; Brodie et al. 2023).
Lower Levels 5 and 6 are independent of Level 4 and have a
bottom-up hierarchy. Global types (Level 5) are defined by the

aggregation of subglobal types (Level 6, regional expressions of
functional groups) based on compositional resemblance. Global
types grouped into the same functional group share similar eco-
logical processes, drivers and services but present different bi-
otic composition.

Level 6 units are regional expressions of functional groups that
are explicitly linked to local knowledge and are aggregated
based on subglobal classifications. Aggregation of subglobal
units to broader global units (Level 5) is based on compositional
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1. Realms I

2. Biomes

3 Functional
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Regional
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5 Global
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" types AA l"l

FIGURE 4 | Simplified IUCN's Global Ecosystem Typology (GET) showing only the realms containing coralline algal habitats. There are three
upper hierarchical levels: 1—realms, 2—biomes and 3—functional groups. Level 3 levels can be further divided into 4—regional subgroups, 5—glob-

al types and 6—subglobal types. Four core realms represent major components of the biosphere: terrestrial, freshwater, marine and subterranean

(the atmospheric realm is also taken into account but has no lower level units). Six additional transitional realms are defined as combinations of the

four core realms. Core realms are coloured, while transitional realms are grey. Whenever a unit presents more than four lower levels, dashed lines

are used to represent them. Lower levels of a single unit at each upper level are shown to simplify the diagram. Arrows indicate top-down (black) and

bottom-up (red) structures. F =freshwater; M = marine; S=subterranean; T =terrestrial. Adapted from Keith, Ferrer-Paris, et al. (2022). Unit names

are shown in Figure 5.

resemblance and is necessary to address uncertainty from
contrasting multiple knowledge (Brugnach et al. 2008; Keith,
Ferrer-Paris, et al. 2022). Therefore, under the post-2020
Global Biodiversity Framework, the IUCN's Red List Index
of Ecosystems (RLIE) is used to inform the IUCN's Red List
of Ecosystems and takes GET into account (Bland et al. 2019;
Nicholson et al. 2021). The RLIE summarises the risk status and
trends of ecosystems and can be reported at national or global
levels and disaggregated by ecosystem type, using the GET
(Rowland et al. 2020).

We characterise a nonexhaustive list of 10 coralline algae—domi-
nated global types, falling within seven IUCN functional groups,
four biomes and four realms (Figure 5). The global types we pro-
pose are based on subglobal habitats (GET Level 6) and grouped
based on the main coralline algae morphologies (cf. Box 2 and
Figure 3) and their compositional and functional resemblances.

5.2 | The Freshwater Realm (F)

In the freshwater realm (F), classified under the rivers and
streams biome (F1) and the permanent upland streams func-
tional group (F1.1), a unique encrusting nongeniculate coralline
algae habitat has been documented in the Cetina river karst wa-
tershed in Croatia (Zuljevi¢ et al. 2016; Koleti¢ et al. 2020). It is
formed by Pneophyllum cetinaensis, the only known freshwater
member of the Corallinales, colonising every hard substratum
available as well as roots and mollusc shells (Zuljevié et al. 2016;

Necchi and Vis 2021). No studies have yet investigated the role
of this coralline algae freshwater habitat on shaping associated
assemblages. Unfortunately, this habitat is under strong human
pressures, as the river crosses two cities and has several hydro-
electric power plants, dams and artificial lakes along its course
(Zuljevi¢ et al. 2016).

5.3 | The Marine-Terrestrial Transitional Realm
(MT)

Inthe marine-terrestrial transitional realm (MT), three coralline
global types are identified, all included in the shorelines biome
and rocky shorelines functional group (MT1.1). Geniculate cor-
alline algae can be a dominant part of rocky shoreline habitats.
They are autogenic ecosystem engineers, forming turf that pro-
vides shelter to well-developed macrofaunal and macroalgal
communities (Stewart 1982; Grahame and Hanna 1989; Kelaher
et al. 2001; Nelson 2009). However, they are increasingly at
threat from rising seawater water temperature, marine heat-
waves and ocean acidification (Brodie et al. 2014; Williamson
et al. 2014; Rendina et al. 2019; Kolzenburg et al. 2021).

Encrusting nongeniculate coralline algae may also be the main
habitat-forming species in rocky shorelines, forming coralline
algae—coated tide pools or intertidal encrusting coralline algae
rims depending on their position in the shoreline and spatial
organisation. Tide pools dominated by encrusting nongenicu-
late coralline algae can be found up to the upper intertidal zone,
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Realm

Biome Functional group Proposed global type

F Freshwater

F1 Rivers and streams  F1.1 Permanent upland Coralline streams'’

streams

. Marine-Terrestrial

MT1 Shorelines MT1.1 Rocky shorelines Coralline tide pools!

Intertidal coralline rims (trottoirs)'

Intertidal coralline turf?

SM Subterranean-Marine

SM1 Subterranean tidal SM1.3 Sea caves

. Marine

M1 Marine shelf

Coralline sea caves'

M1.3 Photic coral reefs Coral-algal reefs!

Algal ridges®

M1.5 Photo-limited marine Coralligenous reefs!

animal forests

M1.6 Subtidal rocky reefs Coralline

carbonate crusts?

Coralline (urchin) barrens?

Subtidal coralline turf?

M1.10 Coralline algal beds  Articulith beds?

(originally Maérl/Rhodolith beds)

Maerl beds*

Rhodolith beds®

FIGURE S5 | Coralline algae-associated habitat nomenclature and typology, following the IUCN's Global Ecosystem Typology. New global types
are proposed here, based on functional and compositional resemblances among subglobal types. Recommended habitat names are proposed as global
types for consistency within the coralline algae community. Superscript numbers represent the dominant morphotypes of habitat-forming coralline
algae, as described in Figure 3: 1 =encrusting nongeniculate coralline algae; 2 =attached geniculate coralline algae; 3 =free-living geniculate coral-
line algae nodules; 4 =free-living nongeniculate coralline algae nodules and fragments; 5 =free-living calcifying coralline algae nodules (including
noncoralline species). Exemplary habitat photographs: MT1.1 =intertidal coralline turf, Brittany, France (credit: Victor L. Jardim); SM1.3 =coralline
algae sea cave, Brittany France (credit: Jacques Grall); M1.3 =coral-algal reef, Great Barrier Reef, Australia (credit: Tessa Page); M1.5 = corallige-
nous reef, Sorrento, Italy (credit: Francesco Rendina); M1.10 (from top to bottom)=articulith bed, Rio de Janeiro, Brazil (credit: Frederico Tamega),
Carraroe maerl beach composed mostly of nongeniculate coralline algae fragments, County Galway, Ireland (credit: Siddhi Joshi) and rhodolith bed
Capri, Italy (credit: Francesco Rendina).

making them environmentally variable habitats characterised
by distinct seasonal and diurnal cycles (Legrand et al. 2018) and
intense biotic pressures, such as grazing (Steneck et al. 1991;
Wai and Williams 2006). Coralline algae-dominated tide pools
are usually dominated by a few species of encrusting non-
geniculate coralline species (Wai and Williams 2006; Dorey
et al. 2023). Although tide pools usually present low diversity of

associated organisms when compared to subtidal communities,
they are more diverse than the surrounding emergent rock hab-
itats (Firth et al. 2014).

Intertidal encrusting nongeniculate coralline algae rims are
formed through the coalescence of numerous coralline algae
thalli on vertical or subvertical rocky surfaces (Verlaque 2010).
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Coralline algae rims usually present a porous upper layer of liv-
ing coralline algae over dead algae, an intermediate hardened
multilayered sedimentary matrix with filled-up interstices and
a highly colonised lower eroded matrix of dead crustose cor-
alline algae (Pezzolesi et al. 2017). These habitats, also known
as trottoirs in the Mediterranean, are understudied and face
numerous threats, namely, sea-level rise, human mechanical
impact and pollution, which grants them Vulnerable status
on the European Red List of Habitats (European Commission
et al. 2016; Blanfuné et al. 2023).

5.4 | The Subterranean-Marine Transitional Real
(SM)

In the subterranean-marine transitional real (SM), sea caves
(SM1.3) are special refuge habitats acting as biodiversity reser-
voirs (Bussotti et al. 2006; Gerovasileiou and Bianchi 2021). They
are formed in a variety of rock types and can include biogenic
habitats dominated by encrusting nongeniculate coralline algae
(Adey and Vassar 1975; Gerovasileiou and Bianchi 2021). Sea
caves have strong biotic zonation due to gradients in light and
hydrography, with low-light communities dominated by coral-
line algae in cave entrances (Guido et al. 2019; Gerovasileiou
and Bianchi 2021). Although highly diverse, sea caves are con-
sidered low resilient habitats and face many threats, includ-
ing invasive species, global change and local human impacts
(Tillin 2015; Gerovasileiou and Bianchi 2021).

5.5 | The Marine Realm (M)

In the marine realm (M), we identify six global habitat types
in which coralline algae are the main biogenic component, all
of them in the marine shelf (M1) biome. In photic coral reefs
(M1.3), encrusting nongeniculate coralline algae dominate
forming coral-algal reefs. Tropical coral-algal reefs (also known
as algal reefs) form thick, mostly calcified frameworks of coral-
line algal crusts, corals, foraminifera, vermetids, serpulids and
boring organisms (Littler 1973; Adey 1978, 1998). Encrusting
nongeniculate coralline algae can characterise both inshore and
fringing reefs, as well as mid and outer-shelf reefs, and thick cor-
alline algal crusts are often more abundant in outer-shelf reefs
(Dean et al. 2015). In the tropics, encrusting nongeniculate cor-
alline algae often dominate the windward most exposed crests
of reefs, sometimes accounting for up to 90% of the composition
of reef crests, creating algal ridges (Adey and McKibbin 1970;
Adey 1998). Coralline algae can contribute more than cor-
als to coral reef carbonate production in some reefs (Cornwall
et al. 2023). The Taoyuan Algal Reef (Taiwan) is the largest
known subtropical intertidal algal reef; it spans over 27km
on a tidal flat and is approximately 4m thick (Liou et al. 2017;
Zhan et al. 2022). It is thought to harbour high coralline algal
endemism and overall diversity but is threatened by coastal de-
velopment and industrial waste run-off (Kuo et al. 2020; Heard
et al. 2021; Chen et al. 2022; Zhan et al. 2022). All tropical coral
reefs assessed on the ITUCN's Red List of Habitats are either
endangered or critically endangered (Bland et al. 2019, 2017).
Their conservation status is primarily based on increased fre-
quency and severity of warming-induced coral bleaching events
(Hughes et al. 2017; Sully et al. 2019; Andrello et al. 2022). The

impacts of warming on tropical coralline algae per se are varied,
but overall, encrusting nongeniculate coralline algae seem less
sensitive to warming stress than scleractinian corals (Cornwall
et al. 2022). However, the impacts of global change and human
activities on coralline algae need to be better understood and
integrated when discussing the vulnerability of coralline algal
habitats (Kuffner et al. 2008; Diaz-Pulido et al. 2012; Webster
et al. 2013; Cornwall et al. 2017; Heard et al. 2021; Kluibenschedl
et al. 2023).

Coralline algae are the deepest known macroalgae and have
been found at 268-m depth (Littler et al. 1985), with encrusting
nongeniculate coralline algae often being the dominant com-
ponent of photo-limited marine animal forests (M1.5), forming
coralligenous reefs. Coralligenous reefs (also known as coral-
ligenous assemblages, formations, concretions or simply coral-
ligenous) are typical mesophotic habitats of the Mediterranean
Sea (Ballesteros 2006). They are among some of the best studied
coralline algal habitats (Ferrigno et al. 2023) and were first de-
scribed by Marion (1883). The term comes from the French word
coralligéne, which means ‘coral maker’, and is used to describe
coralline algae dominated hard bottom communities (Basso
et al. 2022). Coralligenous reefs are usually characterised by
several layers of encrusting nongeniculate coralline algae (from
a few centimetres to several metres thickness) over several ki-
lometres on either rocky walls in the intertidal or subhorizon-
tal sedimentary or rocky substrata in the subtidal, occurring at
depths of over 150 m (Bosence 1983; Basso et al. 2022).

Subtidal rocky reefs (M1.6) are often dominated by coralline
algae in the photic zone. In Subarctic and Arctic regions, en-
crusting nongeniculate coralline algae coat most subtidal rocky
surfaces and can form thick carbonate crusts (or cor-stromes)
that can be as thick as 0.5m. Coralline algal carbonate crusts
occur both in the Atlantic and Pacific ocean basins and may be
composed of different taxa, although Clathromorphum Foslie
and Boreolithothamnion species are the most abundant (Adey
et al. 2013). In the Arctic, these carbonate crusts may be ex-
tremely long-lived, with Clathromorphum specimens aged up to
1200years BP (Adey et al. 2015). This, in combination with their
capacity to incorporate certain elements and isotopes in their
band-like growth structures, can be useful for biogeochemical
analyses and paleoclimate reconstructions (Adey et al. 2013;
Halfar et al. 2013; Gould et al. 2022). Carbonate crusts are
highly diverse habitats, harbouring macrobenthic communities
as diverse as those found in surrounding habitats dominated by
canopy macroalgae (Chenelot et al. 2011).

Similarly, encrusting nongeniculate coralline algae are the main
biogenic components of subtidal rocky reef habitats usually
known as ‘urchin barrens’. These often-extensive habitats are
distributed worldwide and emerge from a stable-state shift from
structurally complex, macroalgae-dominated seascapes (such
as kelp forests) to expanses of coralline-encrusted rock due to
intense sea urchin grazing (Filbee-Dexter and Scheibling 2014).
Even after the drivers of sea urchin outbreaks subside, these bar-
rens often persist, sometimes maintained by other grazers such
as limpets (Melis et al. 2019; Piazzi et al. 2016). While often asso-
ciated with a loss of key ecosystem functions (Eger et al. 2024),
coralline barrens are not devoid of life. They support diverse
assemblages of benthic mega-invertebrates and can present
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structurally complex nongeniculate coralline species that pro-
vide habitat for a variety of organisms (Agnetta et al. 2024;
Ramos et al. 2025).

Geniculate coralline algae are also major colonisers of rocky
shores, forming coralline turfs. This habitat can be found
worldwide across diverse environments, ranging from polar to
tropical regions (Nelson 2009). Geniculate coralline algal turf
habitats are characterised by the dense aggregation of genic-
ulate fronds, forming cohesive mats that can reach heights of
up to 15cm (Connell et al. 2014). Their thalli, composed of stiff
branches, provide a substratum for the attachment of numer-
ous epiphytes (Soltan et al. 2001) while their three-dimensional
structure fosters a high diversity of organisms, particularly small
invertebrates (Kelaher and Castilla 2005; Berthelsen et al. 2014;
Marchini et al. 2019; Ragazzola et al. 2021).

Finally, the TUCN GET recognises ‘Rhodolith/Maerl beds’
(M1.10) (Keith, Fragkopolou, et al. 2022). These coralline algal
beds are aggregations of alive and dead free-living nongeniculate
coralline algae that cover extensive benthic areas (Riosmena-
Rodriguez 2017) and are common in fossil deposits (Aguirre
et al. 2017). They are distributed worldwide and have a wide-depth
range from intertidal to mesophotic zones (Davies et al. 2004;
Wilson and Blake 2011; Pereira-Filho et al. 2012; Basso et al. 2016;
Veras et al. 2020; Pierri et al. 2024). Here, we propose that FEG
M1.10 is renamed as coralline algal beds—also including articu-
lith beds (formed by geniculate coralline algal nodules) and remov-
ing linguistic uncertainty related to different morphotypes and
locations. In the global typology, GET M1.10 is defined as benthic
carbonate systems dominated by free-living, slow-growing, long-
lived coralline algae covering 30%-100% of the seafloor within the
beds, providing autochthonous energy to the system. In the GET
definition, only nongeniculate coralline algae are included; how-
ever, the ecosystem properties, resources, ambient environmental
conditions, disturbance regimes and biotic interactions used to
define them could also be applied to free-living geniculate coral-
line algae (Keith, Fragkopolou, et al. 2022). For instance, rhodolith
and maerl beds are grouped on the basis of moderate productiv-
ity (Martin et al. 2005; Riosmena-Rodriguez 2017; Qui-Minet
et al. 2022), high associated biodiversity (Pefia et al. 2014; Boyé
et al. 2019; Helias and Burel 2023) and high structural complexity
(Jardim et al. 2022; Bélanger and Gagnon 2023; Cabrito et al. 2024).
Although understudied and possibly rare, articulith beds probably
share most of these characteristics, are formed through similar
processes and face similar pressures (Tamega et al. 2017, 2021).
Little is known, however, about the durability of the structure of
articuliths, which may not be as long-lasting as the thalli formed
by nongeniculate corallines—although closely packed thalli can
protect geniculate corallines from breakage, a feature that may be
enhanced in articuliths (Martone and Denny 2008a, 2008b).

6 | Conclusion

Inconsistent definitions can lead to ecological uncertainty and
variable conservation policies for habitats with similar traits,
functions and services and facing similar anthropic pressures.
We have suggested a consistent set of terms to describe coralline
algae and coralline algal habitats to help put them into a global
context to support local actions and decision-making (Keith,

Ferrer-Paris, et al. 2022). We highlight the importance of clar-
ifying uncertain terms and simplifying dichotomies through
contextualisation when using polysemic or synonymous terms.
We resolve, in an integrative and adaptive way, a long-lasting
debate on the use of the terms ‘maerl’ and ‘rhodolith’ through
the umbrella term ‘coralline algal beds’ and explicit definitions
that allow established terms in local and global scientific and
management frameworks to coexist without creating uncer-
tainty. Language is adaptative and ever-changing, and while
a diverse coralline algal terminology reflects the widespread
distribution and growing scientific and conservation relevance
of the group, authors must have a contextualisation tool to sim-
plify and clarify the terms they use. In this context, we urge
the scientific community to adopt a more cohesive terminology
for coralline algae, to improve scientific progression and inter-
national collaborations and to facilitate conservation, public
understanding and stakeholder engagement.
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