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An improved long-term high-
resolution surface pCO2 data 
product for the Indian Ocean  
using machine learning
Prasanna Kanti Ghoshal1,2, A.P. Joshi1 & Kunal Chakraborty   1 ✉

Accurate estimation of surface ocean pCO2 is crucial for understanding the ocean’s role in the global 
carbon cycle and its response to climate change. In this study, we employ a machine learning algorithm 
to correct the deviations in high-resolution (1/12°) model simulations of surface pCO2 from the INCOIS-
BIO-ROMS model (pCO2

model) for the period 1980–2019, using available observations (pCO2
obs). We 

train the XGBoost model to generate spatio-temporal deviations (pCO2
obs − pCO2

model) of pCO2
model. 

The interannually and climatologically varying deviations are then added back to the original model 
separately, which results in an improved surface pCO2 data product. A comparison of our surface pCO2 
data product with moored observations, gridded SOCAT, CMEMS-LSCE-FFNN, and OceanSODA 
demonstrates an improvement by approximately 40% ± 3.31% in RMSE. Further analysis reveals that 
adding climatological deviations to pCO2

model results in greater improvements than adding interannual 
deviations. This analysis underscores the ability of machine learning algorithms to enhance the accuracy 
of model-simulated surface pCO2 outputs.

Background & Summary
Since the Industrial Revolution, anthropogenic activities such as deforestation, changes in land use and cover, 
the manufacturing of cement, and burning fossil fuels have contributed to the rise in atmospheric carbon diox-
ide (CO2)1. Approximately 50% of the CO2 released by human activities is absorbed by both land and water2. 
Based on the Global Carbon Budget, 20233, the ocean absorbed about 26% of the total CO2 during 2013-2022.

The coasts of the Indian Ocean (IO) host close to 30% of the world’s population4,5. As a result, these regions 
are subject to high anthropogenic pressure. The high freshwater influx from rivers in the north Indian Ocean, 
seasonal reversing currents due to the seasonal reversal of monsoonal winds, and high aerosol deposition 
severely affect the carbon cycle of the north Indian region6–13. Further, climatic events like El Niño-Southern 
Oscillation (ENSO) and Indian Ocean Dipole (IOD) are observed to affect the partial pressure of the CO2 
(pCO2) and pH variability in the IO region14–17.

As a part of the Regional Carbon Cycle Assessment and Processes-2 (RECCAP2) project, multiple 
approaches, such as interpolated observational climatology, hindcast models, observation-based surface pCO2 
(empirical models), and atmospheric inversion models were utilized for estimating net air-sea CO2 fluxes 
between 1985 and 2018. A high-resolution (1/12°) regional hindcast model, known as INCOIS-BIO-ROMS 
(IBR_Original), was configured following the RECCAP2 ocean modeling protocol for the regional oceans. The 
IBR_Original model simulated outputs from 1980-2019 were part of the RECCAP2 assessment process5 and 
used to study the ocean acidification over the IO region16.

Regional ocean models provide valuable insights to oceanic pCO2 variability and trends but often exhibit 
significant biases due to their limitations in representing small-scale processes and associated uncertainties in 
model parameterizations. Although observations are essential to understand surface pCO2 variability, the avail-
ability of spatially and temporally varying observations is limited, especially in the IO. This data scarcity poses 
a challenge for validating and improving observations-based model predictions. The errors between model 
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outputs and observations can hinder our ability to accurately estimate surface pCO2 and associated air-sea CO2 
flux, underscoring the need for advanced correction techniques that can bridge the gap between modeled and 
observed surface pCO2 values.

Machine learning (ML) algorithms offer a promising method to improve the quality of model-simulated 
surface pCO2 by correcting its biases18,19 with respect to the observations. The ML algorithms are also widely 
applied to predict surface pCO2 using observations13,20–24. ML algorithms can capture complex, nonlinear rela-
tionships between target and predictor variables13,20– 24. Integrating ML-based corrections with existing model 
outputs makes it possible to produce more reliable and high-resolution surface pCO2 estimates that better reflect 
observed conditions19.

This study aims to produce an ML-based improved surface pCO2 data product by combining the available 
observations and the high-resolution IBR_Original model-simulated outputs for the IO region from 1980 to 
2019. This data product will be useful to estimate more accurate air-sea CO2 flux and identify areas in the IO that 
act as source (releasing CO2 into the atmosphere) and sink (absorbing CO2 from the atmosphere) of CO2. With 
improved accuracy in modeled pCO2, we can gain a better understanding of IO acidification in response to the 
ever-changing climate.

Methods
For improving model-simulated surface pCO2 using heterogeneous in-situ observations across IO, we divided 
the IO region into four sub-regions (Fig. 1) as (a) the Arabian Sea (0° N–30° N; 30° E–78° E), (b) the Bay of 
Bengal (0° N–30° N; 78° E–110° E), (c) Central IO (0° N–18° S; 30° E–120° E) and (d) Southern IO (18° S–30° S; 
30° E–120° E). This division is based on the complexity of regional physical processes in the IO region5.

We assume that the surface pCO2 deviant (observed pCO2 (pCO2
obs) - modeled pCO2 (pCO2

model)) is a func-
tion of surface temperature (SST), surface salinity (SSS), mixed layer depth (MLD), surface dissolved inorganic 
carbon (DIC), surface nitrate (NO3), and surface chlorophyll-a (CHL). The changes in the above-mentioned 
ocean variables significantly control the variability of surface pCO2. The variables SST, SSS, MLD, DIC, NO3, 
and CHL are considered as the proxies of major ocean processes such as ocean thermodynamics, solubility, 
stratification, and biological pump. In this study, we predict the spatio-temporal varying surface pCO2 deviants 
using an ML model. These predicted pCO2 deviants are then added to the pCO2

model to get the corrected surface 
pCO2. Figure 2 is a schematic diagram showing the complete methodology adopted for this study. The details of 
the data required for this study, description of the ML model, and mapping methodology are described below.

Data Acquisition.  We acquire pCO2
obs from two different sources. The first source is the Surface Ocean CO2 

Atlas (SOCAT) (https://socat.info/index.php/version-2022/)25 available for the period 1984 to 2019 in the IO. The 
availability of spatio-temporaral varying surface pCO2 observations from SOCAT is shown in Fig. 1a. In addition 
to the SOCAT database, the surface pCO2 observations are also collected from different Indian scientific cruises 
denoted as SAS (Sridevi and Sarma) data11. The SAS data is available from 1991 to 2019. More details of the SAS 
data are available in our recent study13. Figure 1b shows the spatio-temporal availability of the surface pCO2 from 
the SAS dataset. Data collection and quality control methods are explicitly available in the literature correspond-
ing to each of these datasets11,25.

The monthly data frequency of available surface pCO2 observations (pCO2
obs) (SOCAT and SAS) from var-

ious sources is shown in Fig. 3 for four sub-regions of the Indian Ocean (IO), namely the Arabian Sea (AS), 
the Bay of Bengal (BoB), the Central IO and the Southern IO. In the AS region, a significantly higher number 

Fig. 1  Represents the study region (Indian Ocean (IO)) and the sub-regions (Arabian Sea, Bay of Bengal, 
Central IO, and Southern IO). (a) Shows the yearly variations in pCO2 observations acquired from the SOCAT 
(Surface Ocean CO2 Atlas) data, and (b) is a representation of the yearly variation in observations from SAS 
(Sridevi and Sarma) data.
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of observations is recorded from May to September compared to other months. Similarly, a large number of 
observations are available from February to May in the BoB. Observations in the AS and Central IO peak during 
the southwest monsoon season (June–September), while the pre-monsoon season (March–May) sees the max-
imum number of observations in the BoB and Southern IO regions (Fig. 3). This analysis highlights potential 
sources of prediction uncertainty due to data unavailability during certain periods. As the number of observa-
tions increases, the accuracy of predictions is expected to improve. Despite these temporal gaps, the data provide 
excellent spatial coverage across the IO region (Fig. 1).

The input data of the ocean state variables (SST, SSS, MLD, DIC, NO3, and CHL) are extracted from the IBR_
Original model at locations at which pCO2

obs are available from different sources (SOCAT and SAS). We also 
extracted the surface pCO2 from IBR_Original i.e. pCO2

model at these same locations. The IBR_Original model 
outputs are of 1/12° spatial resolution and are available from 1980 to 2019 on a monthly scale. The IBR_Original 
model outputs used in this study have been already validated and utilized in our previous studies5,16. Hence, we 
encourage readers to refer to our previous studies5,16 for more details on the IBR_Original model configuration.

Fig. 2  Schematic representation of the complete methodology adopted in this study to improve pCO2
model.

Fig. 3  Monthly observations of pCO2 (SOCAT+SAS) are divided into four sub-regions (a)–(d) of the Indian 
Ocean (IO). The blue bars denote the northeast monsoon season (December-February), while the green, 
yellow, and red bars represent the pre-monsoon (March-May), summer monsoon (June-September), and post-
monsoon (October-November) seasons, respectively.

https://doi.org/10.1038/s41597-025-04914-z
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We checked the data distribution for each sub-region of IO before using the data for training and predictions. 
The MLD, CHL, and NO3 data are converted to a normal distribution by taking their log transformation. Since 
ML models are sensitive to outliers (>3σ), the outliers are removed from the available data for each sub-region 
of IO.

The Bay of Bengal Ocean Acidification (BOBOA) mooring is the only point-source observation of sur-
face pCO2 available from 2014-2018 in the IO region. Hence, it is used as an independent dataset for assessing 
improvements in surface pCO2 at the BOBOA mooring location. The BOBOA mooring is located at 15° N, 90° 
E. The observation data at this location is converted to a monthly frequency before being compared with the 
simulated pCO2. The surface pCO2 data from BOBOA is downloaded from https://www.pmel.noaa.gov/co2/
story/BOBOA.

We acknowledge that the scarcity of gap-free spatio-temporal observations is a common challenge in ocean 
carbonate variable studies. One approach for independent validation is to remove a specific cruise line from the 
dataset. However, this would reduce the number of available observations for developing ML models, poten-
tially affecting their overall performance. More importantly, cruise lines are region-specific and often lack broad 
temporal coverage, making it unjustified to assess improvements across the entire IO based solely on validation 
using a single cruise line. Given that the corrected pCO2 dataset has a high spatial resolution of 1/12° and spans 
from 1980 to 2019, it is essential to evaluate its improvements across the entire IO region.

The gridded SOCAT is a monthly 1° binned data product prepared from SOCAT cruise observations25. The 
surface pCO2 from IBR_Original has a spatial resolution of 0.083°. The pCO2 values corresponding to each 
cruise location are extracted from this dataset, and the difference is used as our target variable (pCO2 deviant). 
This extraction is performed using the nearest-neighbour interpolation method. Nevertheless, the SOCAT 1° 
data product bins values into a 1° grid without interpolation, resulting in slight differences from the values 
used for training. Therefore, we use the SOCAT 1° dataset to assess whether the final product demonstrates an 
improvement or decline in surface pCO2 values. The pCO2

model and corrected pCO2 datasets have a monthly 
frequency, making the monthly gridded SOCAT data particularly useful for evaluating the improvement of the 
corrected pCO2 datasets compared to observations. In the IO region, gridded SOCAT data is available from 1984 
to 2019. This data can be downloaded from https://socat.info/index.php/data-access/.

ML-based products are important as they provide spatio-temporally gap-free estimates. In this study, 
we use two high-resolution (0.25° × 0.25°) gridded ML-based data products (CMEMS-LSCE-FFNN 
(Copernicus Marine Environment Monitoring Service–Laboratoire des Sciences du Climat et de l’Envi-
ronnement feed-forward neural network)23 and OceanSODA (OceanSODA-ETHZv2)24). For this study, the 
CMEMS-LSCE-FFNN (OceanSODA) data is taken from 1985 (1982) to 2019. The CMEMS-LSCE-FFNN data 
is downloaded from https://data.ipsl.fr/catalog/srv/eng/catalog.search#/metadata/a2f0891b-763a-49e9-af1b-
78ed78b16982. While the OceanSODA data is downloaded from https://zenodo.org/records/11206366. 
Although these data products were developed using SOCAT observations, they employ different methodologies 
for constructing surface pCO2, leading to inherent differences among them. Additionally, the availability of data 
products with varying spatial resolutions, such as CMEMS-LSCE-FFNN and OceanSODA, enables a more rig-
orous comparison of our product. This comprehensive evaluation enhances confidence in the reliability of the 
final product. Table 1 summarizes all the data used in this study.

Splitting and Scaling Data.  In this study, SST, SSS, MLD, NO3 concentration, and CHL from IBR_Original 
are used as predictors. The deviation between the pCO2

obs values (from SOCAT and SAS datasets) and the pCO-
2

model values [pCO2
obs–pCO2

model] serves as the target. The data from each of the four sub-regions are randomly 
divided into training (80%) and testing (20%) datasets using the Scikit-Learn module26. These test datasets are 
kept separate for each sub-region and are exclusively used to validate the model’s performance, ensuring unbiased 
evaluation. To train the models and prevent the overfitting issue, a 10-fold cross-validation technique is applied. 
In this approach, the training dataset is split into 10 subsets (folds). The model is trained on nine of these folds 
and validated on the remaining one, with the process repeated for all folds.

Machine Learning Algorithm.  The study utilizes an advanced ML algorithm, eXtreme Gradient Boosting 
(XGB), to produce an improved version of pCO2

model for the IO region during the period 1980-2019. The details 
of the XGBoost algorithm are given below. 

Name Data Type Variables Time Period Use

SOCAT25
Cruise pCO2 1984–2019 Calculate pCO2 deviant

1° Gridded pCO2 1984–2019 Compare the final corrected pCO2

SAS11 Cruise pCO2 1991–2019 Calculate pCO2 deviant

IBR_Original16 Model
SST, SSS, MLD, CHL, and NO3 1980-2019

Predictor Variables

pCO2 Calculate pCO2 deviant

BOBOA31 Mooring at 15° N, 90° E pCO2 2014–2019 Compare the final corrected pCO2

CMEMS-LSCE-FFNN23 0.25° ML-based gridded pCO2 1985–2019 Compare the final corrected pCO2

OceanSODA24 0.25° ML-based gridded pCO2 1982–2019 Compare the final corrected pCO2

Table 1.  Summarized information of the data used in this study.
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•	 eXtreme Gradient Boosting (XGB) The XGB algorithm27 is a supervised learning algorithm that belongs to 
the decision tree-based boosting algorithm family. The XGB algorithm was created by increasing the compu-
tational speed and performance of the gradient-boosted algorithm. Previous studies highlight the algorithm’s 
superior computational speed, accuracy, and overall performance compared to other machine learning 
algorithms13,19,22,28. The proven capability of this advanced ML algorithm in previous studies motivates us to 
employ this XGB algorithm to correct the pCO2

model for each of the four sub-regions of the IO. This algorithm 
starts with an initial guess, and then trees are added sequentially. Each tree tries to improve the ensemble’s 
performance by minimizing a loss function. In this study, the model developed using the XGB algorithm is 
hereafter referred to as the ‘XGB-model.’

Performance of the tuned XGB-model.  The XGB-model has tunable hyper-parameters. Following 
previous literature13,22, we decided to use the Optuna optimization29 to tune the hyper-parameters. The 
hyper-parameters range, and final optimized values for each of the sub-regions are shown in Table 2. To deter-
mine whether the tuned XGB-model is neither overfitting nor underfitting, it is essential to evaluate the perfor-
mance of the XGB-model using the 20% test dataset set kept aside during the 80:20 data split for each sub-region 
of the IO. The performance of the four individual XGB-models developed for these sub-regions is summarized 
in Table 3. Similar RMSE values for the training and testing datasets across the respective sub-regions indicate 
consistent and reliable XGB-model performance throughout all sub-regions.

Best Estimate and Uncertainty.  To quantify the uncertainty associated with predicting pCO2 deviants, we 
adopt a method similar to the bootstrapping technique in statistics21,23. This approach requires generating a large 
number of models, where the average prediction provides the best estimate of the target (pCO2 deviants), and the 
standard deviation (SD, 1-σ) quantifies the predictive uncertainty.

To achieve this, we generate 150 training datasets for each sub-region by randomly extracting 80% of the 
data from the training set used during hyperparameter tuning. This process results in 150 independently trained 
XGB-models. Subsequently, we create ensembles of varying sizes, from a minimum of 2 to a maximum of 150 
XGB-models. The optimal ensemble size, defined as the size at which the RMSE (evaluated against the test 
dataset) stabilizes with no significant improvement, is then identified for each sub-region. As shown in Fig. 4, 
the optimal ensemble size is 140 for the AS and the Central IO, while it is 130 for the BoB and the Southern IO.

Mapping Method.  To generate the spatio-temporal variation in pCO2 deviants for each sub-region, 
spatio-temporal inputs (SST, SSS, MLD, DIC, NO3 concentration, and CHL) from IBR_Original (covering the 
period 1980–2019) are fed into each of the 140 XGB-models (for the AS and the Central IO) or 130 XGB-models 
(for the BoB and the Southern IO). As mentioned in the previous section, the average output of these algorithms 
provides the best estimate of the spatio-temporal pCO2 deviants, while the standard deviation quantifies the 
associated uncertainty for the period 1980–2019. Figure 5 shows the domain-averaged pCO2 deviants and their 

Hyper-parameters Range or Options

Optimized Value

Arabian Sea Bay of Bengal Central IO Southern IO

lambda 0–1.0 0.8040 0.8838 0.8461 0.8805

alpha 0–1.0 0.3101 0.6074 0.2885 0.3420

subsapmle 0–1.0 0.8340 0.7153 0.8760 0.9303

colsample 0–1.0 0.9780 0S.8336 0.6889 0.8130

max_depth 10–100 (step=1) 25 17 13 23

min_child_weight 1–100 28 6 18 5

learning_rate 0–1.0 0.0994 0.1084 0.1697 0.1681

gamma 0–1.0 0.0318 0.4459 0.9557 0.5811

n_estimators 100–700 (step=10) 500 300 150 400

Table 2.  Optimized values of the XGB hyper-parameters of the model developed for each sub-region (Arabian 
Sea, Bay of Bengal, Central IO, and Southern IO) of the IO region.

RMSE (μatm)

Regions Train Test

Arabian Sea 2.02 2.39

Bay of Bengal 1.81 2.23

Central IO 4.49 4.56

Southern IO 5.50 5.86SS

Table 3.  Train and test RMSE (μatm) values of XGB models for four (Arabian Sea, Bay of Bengal, Central IO, 
Southern IO) regions.

https://doi.org/10.1038/s41597-025-04914-z
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corresponding uncertainties for each sub-region. These spatio-temporal pCO2 deviants are then added back to 
the pCO2

model (at each grid cell) to derive the corrected pCO2.
Here, we examine two different approaches for incorporating spatial deviants into the pCO2 correction pro-

cess. In the first approach, the interannual deviants are added to the pCO2
model, resulting in the interannually 

corrected pCO2 dataset (pCIBR_Int). In the second approach, only the climatological mean of the deviants is 
added to the pCO2

model, producing the climatologically corrected pCO2 dataset (pCIBR_Clim). Since the varia-
bility of the climatological deviance is greater than that of the interannual variability, we aim to determine which 
approach yields better results. The data products generated using both methods are extensively validated against 
BOBOA moored buoy-based observations, gridded 1° × 1° SOCAT dataset, and two additional gridded data 
products (CMEMS-LSCE-FFNN and OceanSODA) to identify the most effective method for correcting surface 
pCO2 data.

Data Records
The long-term high-resolution corrected surface pCO2 datasets (pCIBR_Clim and pCIBR_Int) produced for the 
IO region can be accessed from https://zenodo.org/records/1461473930. This product has a monthly temporal 
resolution and a spatial resolution of 1/12°. The data is available from 1980-2019. From the same link, the users 
can access the input data used to correct pCO2

model and the pCO2 deviants, along with the associated uncertainty 
derived from the XGB-models. All the data are provided in a single NetCDF file.

Technical Validation
A comparison of the pCO2

model and the corrected surface pCO2 data products (pCIBR_Int and pCIBR_Clim) 
has been carried out against the time series observations of surface pCO2 from the BOBOA moored buoy loca-
tion (Fig. 6). This study employs three statistical metrics (Root Mean Square Error (RMSE), Mean Absolute 
Error (MAE), and Taylor Skill Score (TSS)) to evaluate the performance of the corrected pCO2 data against 

Fig. 4  Evaluation of RMSE as a function of ensemble size across the four sub-regions ((a) Arabian Sea, (b) Bay 
of Bengal, (c) Central IO, and (d) Southern IO) to determine optimal ensemble size.

Fig. 5  The figure displays the annual variation of the pCO2 deviants for the four sub-regions. The solid line 
shows the best estimates for each of the sub-regions of the IO domain, and the error bar indicates the associated 
uncertainty.
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the pCO2
model using the BOBOA mooring-based observations. As summarized in Table 4, the RMSE between 

pCIBR_Clim (pCIBR_Int) and the BOBOA pCO2 observations decreased by approximately 37.84%  ± 2.35% 

Fig. 6  Comparison of pCIBR_Int, pCIBR_Clim, and pCO2
model with observation from BOBOA buoy, located at 

15°N and 90° E. The grey-shaded region represents the standard deviation in the observation data from BOBOA 
buoy.

Data SD

RMSE (μatm) MAE (μatm) TSSBOBOA 16.51

pCO2
model 19.11 15.61 13.51 0.87

pCIBR_Int 13.86 9.31 6.73 0.88

pCIBR_Clim 14.50 9.71 7.52 0.89

Table 4.  Statistical comparison of pCIBR_Int, pCIBR_Clim, and pCO2
model.

Fig. 7  The figure represents the changes in RMSE (ΔRMSE, first row), MAE (ΔMAE, second row), and TSS 
(ΔTSS, third row) between pCIBR_Int (first column) or pCIBR_Clim (second column) and pCO2

model while 
comparing each of them to the gridded SOCAT product. Negative values (blue) in ΔRMSE and ΔMAE indicate 
improvement over pCO2

model. While positive values (red) in ΔTSS represent an improvement over pCO2
model.

https://doi.org/10.1038/s41597-025-04914-z
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(40.63%  ± 0.38%) compared to the RMSE between the pCO2
model and BOBOA. Similarly, the MAE decreased 

by about 50.43%  ± 1.85% for pCIBR_Int and 44.46%  ± 5.84% for pCIBR_Clim. The TSS measures the agree-
ment between model outputs and reference data, particularly with respect to variability, where a value close to 
1 indicates a perfect match. The pCO2

model demonstrates a good TSS of 0.87. However, the corrections applied 
in this study further improve the TSS by approximately 1.11%  ± 0.77% for pCIBR_Int and 2.23%  ± 0.62% for 
pCIBR_Clim. Based on the comparison with BOBOA observations, we conclude that both correction methods 
(pCIBR_Clim and pCIBR_Int) provide significant improvements to the pCO2

model. This comparison further 
indicates that both the methods perform very close to each other.

In addition to validation at a moored buoy location, a comparison of pCIBR_Int and pCIBR_Clim data prod-
ucts has been carried out with the gridded SOCAT, CMEMS-LSCE-FFNN, and OceanSODA datasets to evaluate 
the spatial improvement in the surface pCO2 (Figs. 7, 8, and 9). The corrected pCO2 datasets (pCIBR_Int and 
pCIBR_Clim) have a resolution of 1/12°, which is finer than all the reference datasets. Therefore, we re-grid the 
corrected pCO2 data to match the grid of the reference datasets using the nearest-interpolation method. 

Figure 7 shows the difference in RMSE between pCIBR_Int (Fig. 7a) or pCIBR_Clim (Fig. 7b) and pCO2
model 

when compared with the gridded SOCAT data. Both panels (Fig. 7a and b) demonstrate a considerable reduc-
tion in RMSE across the IO domain. Specifically, the RMSE decreases by approximately 40.43%  ± 4.39% for 
pCIBR_Int and 38.87%  ± 4.92% for pCIBR_Clim. The second and third rows of Fig. 7 show the differences 
in MAE and TSS between the corrected pCO2 outputs (from both methods) and pCO2

model when compared to 
SOCAT. The reduction in MAE is more pronounced for pCIBR_Clim (≈ 40%  ± 5%) compared to pCIBR_Int 
(≈ 35%  ± 4%). The third row of Fig. 7, which shows TSS differences, contains fewer grid cells than the first and 
second rows. This is because TSS accounts for data availabilityS, and the gridded SOCAT dataset bins cruise 
line data into a 1° mesh, resulting in fewer cells with repeated data values. The grid cells displayed in the third 
row have at least three observation data points per cell. An increase in TSS of approximately 7.13%  ± 0.22% 
is observed for pCIBR_Int, while pCIBR_Clim shows an increase of about 5.15%  ± 0.76%. Nevertheless, the 
availability of a limited number of spatio-temporal varying surface pCO2 observations makes it challenging to 
conclusively determine which method (pCIBR_Int or pCIBR_Clim) better improves the pCO2

model. However, 
the analysis clearly indicates that both methods result in significant improvements over SSthe pCO2

model.

Fig. 8  The figure represents the changes in RMSE (ΔRMSE, first row), MAE (ΔMAE, second row), and TSS 
(ΔTSS, third row) between pCIBR_Int (first column) or pCIBR_Clim (second column) and pCO2

model while 
comparing each of them to the CMEMS-LSCE-FFNN product. Negative values (blue) in ΔRMSE and ΔMAE 
indicate improvement over pCO2

model. While positive values (red) in ΔTSS represent an improvement over 
pCO2

model.
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CMEMS-LSCE-FFNN and OceanSODA are observation-based reconstructed data products that provide 
high-resolution, gap-free, spatio-temporally varying gridded surface pCO2. Both datasets were developed using 
different ML methods to predict long-term changes in surface pCO2. These data products are widely recognized 
by the international scientific community for their significant contributions to advancing ocean carbon cycle 
research and improving our understanding of how environmental changes influence air-sea CO2 flux dynamics. 
Accordingly, we utilize these datasets to perform robust spatio-temporal validation, as shown in Figs. (8 and 9). 

Figure (8a and b) demonstrate a significant reduction in RMSE for both pCIBR_Clim and pCIBR_Int com-
pared to the pCO2

model. When compared against CMEMS-LSCE-FFNN, a domain-averaged RMSE decrease of 
approximately 29.48%  ± 4.25% is observed for pCIBR_Int, and approximately 37.06%  ± 4.46% for pCIBR_
Clim, relative to pCO2

model. Figure (8c and d) highlight the differences in MAE between the corrected pCO2 
datasets and pCO2

model, when compared with CMEMS-LSCE-FFNN. For pCIBR_Int, small regions, particularly 
in the AS, show an increase in MAE. This suggests that the addition of interannually varying pCO2 deviants 
to pCO2

model can lead to a decrease in quality in certain areas. This decline is likely due to the limited tempo-
ral frequency of pCO2 cruise observations. In contrast, for pCIBR_Clim, regions with a decline in quality are 
almost negligible (Fig. 8d). Over the entire IO domain, MAE decreases by approximately 32.19%  ± 4.28% for 
pCIBR_Int and by approximately 38.91%  ± 4.93% for pCIBR_Clim. Similarly, Figure (8e and f) show changes 
in TSS. For pCIBR_Int (Fig. 8e), certain regions exhibit a decrease in TSS. However, for pCIBR_Clim (Fig. 8f), 
TSS increases consistently across the entire domain. The domain-averaged improvement in TSS is approximately 
1.35%  ± 0.09% for pCIBR_Int and significantly higher at approximately 5.01%  ± 0.21% for pCIBR_Clim. In 
summary, the results indicate that pCIBR_Clim significantly outperforms pCIBR_Int. It achieves greater reduc-
tions in RMSE (37.06%  ± 4.46% vs. 29.48%  ± 4.25%) and MAE (38.91%  ± 4.93% vs. 32.19%  ± 4.38%), and 
a higher improvement in TSS (5.01%  ± 0.21% vs. 1.35%  ± 0.09%), with fewer regions showing quality deg-
radation. Overall, pCIBR_Clim demonstrates superior performance and consistency when compared against 
CMEMS-LSCE-FFNN.

Figure 9a and b) illustrate the differences in RMSE between the corrected surface pCO2 data products 
(pCIBR_Int and pCIBR_Clim) and pCO2

model when compared with OceanSODA data. A decrease in RMSE is 
observed across the domain for both methods. On average, the domain-wide RMSE is reduced by approximately 
30.82%  ± 4.43% for pCIBR_Int and by approximately 37.73%  ± 4.75% for pCIBR_Clim. The differences in 
MAE are also presented in Fig. 9c and d). Similar to the comparison with CMEMS-LSCE-FFNN, the pCIBR_Int 

Fig. 9  The figure represents the changes in RMSE (ΔRMSE, first row), MAE (ΔMAE, second row), and TSS 
(ΔTSS, third row) between pCIBR_Int (first column) or pCIBR_Clim (second column) and pCO2

model while 
comparing each of them to the OceanSODA product. Negative values (blue) in ΔRMSE and ΔMAE indicate 
improvement over pCO2

model. While positive values (red) in ΔTSS represent an improvement over pCO2
model.
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case (Fig. 9c) shows localized increases in MAE, particularly in the AS. In contrast, the MAE decreases consist-
ently across the IO domain for the pCIBR_Clim case (Fig. 9d). On a domain-averaged basis, MAE is reduced 
by approximately 34.71%  ± 4.91% for pCIBR_Int and by approximately 40.94%  ± 5.14% for pCIBR_Clim. 
Figure 9e and f) show TSS improvements. For the pCIBR_Clim case, TSS shows consistent improvement across 
the IO domain. However, for pCIBR_Int, certain regions exhibit patches of deterioration. On average, the 
domain-wide TSS improves by approximately 3.81%  ± 0.15% for pCIBR_Clim and by approximately 1.00%  ± 
0.08% for pCIBR_Int. In conclusion, when comparing the two corrected surface pCO2 data products (pCIBR_
Int and pCIBR_Clim) with reference to products such as CMEMS-LSCE-FFNN and OceanSODA, pCIBR_Clim 
demonstrates superior performance. It achieves greater reductions in RMSE and MAE, along with more consist-
ent improvements in TSS, making it the more effective correction method.

Hence, based on this technical analysis, it is evident that both methods (pCIBR_Clim and pCIBR_Int) 
adopted in this study improve the pCO2

model. Furthermore, when compared with other ML-based products, 
pCIBR_Clim demonstrates superior performance over pCIBR_Int. Nevertheless, we have made both products, 
i.e., one derived from pCIBR_Int and the other from pCIBR_Clim, available for users. The users can choose 
the one that best fits the purpose of their research. The corrected surface pCO2 can be utilized to derive more 
accurate air-sea CO2 flux estimations for the period 1980–2019 in the IO region. This long-term, high-resolution 
air-sea CO2 flux data can also help identify regions with significant source and sink characteristics within the IO, 
thereby contributing to a better understanding of the IO’s role in the global carbon budget.

Code availability
The code used to create the final product is available at https://github.com/prasannakanti/XGBoost_pCO2_IO. 
The study uses Python programming language to execute the machine learning codes.
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