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Abstract
State-space models are widely used in ecology to infer hidden behaviors. This study de-velops an extensive numerical simulation-estimation experiment to evaluate the state de-coding accuracy of four simple state-space models. These models are obtained by combin-ing different Markovian specifications (Markov and semi-Markov) for the hidden layer withthe absence (model AR0) and presence (AR1) of auto-correlation for the observation layer.Model parameters are issued from two sets of real annotated trajectories. Threemetrics aredeveloped to help interpret model performance. The first is the Hellinger distance betweenMarkov and semi-Markov sojourn time probability distributions. The second is sensitive tothe overlap between the probability density functions of state-dependent variables (e.g.,speed variables). The third quantifies the deterioration of the inference conditions betweenAR0 and AR1 formulations. It emerges that the most sensitive model choice concerns theauto-correlation of the random processes describing the state-dependent variables. Optingfor the absence of auto-correlation in themodel while the state-dependent variables are ac-tually auto-correlated, is detrimental to state decoding performance. Regarding the hiddenlayer, imposing a Markov structure while the state process is semi-Markov (with negativeBinomial sojourn times) does not impair the state decoding performances. The real-life es-timates are consistent with our experimental finding that performance deteriorates whenthere are significant temporal correlations that are not accounted for in the model. In lightof these findings, we recommend that researchers carefully consider the structure of thestatistical model they suggest and confirm its alignment with the process being modeled,especially when considering the auto-correlation of observed variables.
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Introduction
The analysis of tracking data reveals information about the behavior underlying the move-ment patterns. This might for instance concern the detection of fishing activities (e.g. Bertrandet al., 2007; Bez et al., 2011; Gerritsen and Lordan, 2011; Gloaguen et al., 2015; Vermard et al.,2010), as in the present study, or the identification of exploratory versus encamped activities ofwildlife animals, e.g. elks (Morales et al., 2004) or bisons (Langrock et al., 2012). After establish-ing the principle of representing behavior with a few meaningful states, segmentation methodscan be used to estimate the states (Edelhoff et al., 2016). The commonly used segmentationmethods includes filtering or thresholding (Gerritsen and Lordan, 2011), mixture models (Owen-Smith et al., 2010), K-means (Schwager et al., 2007), and hidden Markov models (HMM) or hid-den semi-Markov models (HSMM) (Jonsen et al., 2013; Joo et al., 2013; Morales et al., 2004).This paper focuses on the two latter that allow time dependency to be considered (however, itis generally limited to first order, whereas data can have long temporal memories), and that arehierarchical models. Typically, they are composed of two layers: one to model the dynamics ofthe unobserved state process (also called the hidden process) and one to model the observedvariables along the track (see, Zucchini and MacDonald, 2009 or McClintock et al., 2020 for di-dactic descriptions). Each of these layers can be flexible in their specifications (Gloaguen et al.,2015; Langrock et al., 2012; McClintock et al., 2012; Morales et al., 2004). For example, onecould use a Markov or semi-Markov hidden process to model the sequence of hidden states,and/or a correlated or uncorrelated random walk for the observed state-dependent variables.
When the states are known by direct or indirect observations (supervised cases), it is pos-sible to infer properly the structure and the parameters of a segmentation model on a labeledtraining set, and to use the calibrated model to predict the states for a new unlabeled dataset.Learning methods, e.g., random forests (Sur et al., 2017; Thums et al., 2008) can also be used inthese situations. However, when it comes to themost common unsupervised frameworks, modelspecification flexibility comes at a cost. Histograms for state-dependent variables and sojourntimes in different states cannot be access to. As a result, one cannot infer the probabilistic lawsthey follow. In such cases, the type of probability density functions (PDF) of the state-dependentvariables and the type of probability mass functions (PMF) of the sojourn times in the variousstates are not empirically grounded. They cannot be formally verified (Auger-Méthé et al., 2011;Avgar et al., 2013; Pohle et al., 2017). However, postulating that the hidden process is Markov(HMM), with no time dependence in the observed state-dependent variables (AR0), may have anegative impact on the state decoding accuracy if the data do not conform with these choices.This study aims to assess the implications of some standard model specification choices.
In the absence of ground truth (unsupervised situations), a model can be evaluated againstcompeting models using penalizedmaximum likelihood criteria such as AIC or BIC (Auger-Méthéet al., 2021; Joo et al., 2013; Langrock et al., 2012; Pohle et al., 2017). Based on likelihood, selec-tion is made from the standpoint of the visible side of the model, i.e., the observation layer. Thehidden layers are not explicitly considered, even though they are the estimation’s target. Anotherchallenge is that several hidden state sequences can result in the same likelihood, making it dif-ficult to select models based on likelihood. Zucchini and MacDonald, 2009 suggest to comparepseudo-residuals and the conditional probabilities to observe one particular observation know-ing all observations, except the current one, in a Normal-Normal scales. Similarly Auger-Méthéet al., 2021 use probability integral transform (PIT). However, these approaches only evaluatemodel consistency regarding the observed state-dependent variables. They do not permit eval-uating model performance in terms of state estimations, which is the primary goal of these mod-els. Simulation-estimation experiments arewidely used in unsupervised situations to understandand evaluate the strengths and weaknesses of models (e.g., for the HMM context, McClintock,2021). They are especially suitable for evaluating state decoding accuracy. Simulation-estimationentails assuming a true model, i.e., a model type and its parameters, which are then used to simu-late sequences of states as well as realizations of the dependent variables (simulation step). Thesimulated dependent variables are then used as in real life unsupervised situations to re-estimatethe parameters of the model, the real one or another model, and the states (estimation step).
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The use of state-space models in fisheries is motivated by the fact that a significant propor-tion of vessels are required by regulation to be equipped with GPS systems that allow for theobservation of their trajectory at regular time steps. However, we don’t know when they’re fish-ing. The use of state-space models proved to be efficient to estimate where and when a vessel isfishing knowing its trajectories, and thus to monitor fishing pressure on certain fish stocks (Bezet al., 2011; Vermard et al., 2010). This results however in uncontrolled estimation precisionand underlines the need for an evaluation of the state decoding performances of such models.We were fortunate to have access to a few fishing vessel tracks where the fishing operationswere meticulously documented. In this paper, we conduct simulation-estimation experimentswith four types of models, the parameter values of which are derived from these sets of realtrajectories, and compare the estimation of the states with the real ones. In addition to the factthat behavioral state durations must be longer than the observation time step, understandingan individual’s behavior from his or her trajectory depends on the model’s time step. This oftencoincides with the observation time step of the trajectory, which influences the temporal scopeof correlations. Consequently, the ability of models to infer behavior is time-dependent, so it isuseful to investigate the sensitivity of model performance to their temporal resolutions.This study aims to assess state-decoding accuracy or the models’ ability to recover true hid-den states. Following a general introduction to the main characteristics of hidden Markov andsemi-Markov models and to the three metrics defined in this study to compare them, we focuson four types of models by combining two Markovian structures for the hidden layer (Markovor semi-Markov) with two auto-regressive orders for the observation layer (AR0 or AR1). In linewith the literature dealing with model skill assessment, i.e., on the ability to assess the fidelityof model behavior to truth (Allen and Somerfield, 2009; Lynch et al., 2009), we assess differ-ent facets of state decoding accuracy simulation-estimations experiments. We perform a ModelSkill Assessment (MSA), where the model used for the simulation and the estimation is the same.Then, we carry out aModel Robustness Assessment (MRA) where the model used for estimationis one of all the possible models except the model used for simulation. Thanks to the ground-truther fishing behavior associated with the vessel trajectories, we finally complete the analysesby checking the model assumptions and, more importantly, evaluating the ability of the fourtypes of models to recover the known states.
Material and methods

Definition of the simulation models
HiddenMarkov (HMM) and hidden semi-Markovmodels (HSMM) are two similar state-spacemodels formulated and implemented here in discrete regular-time frameworks. Table 1 lists allnotations.

Table 1 – Definition of the notations.
t Discrete time stepHidden NS Number of possible stateslayer s State code number ; s = 1, ...,NS

st , St (HMM) State at time step t (lower case: observed; upper case:random variable); St ∼ Markov process
s̃n , S̃n (HSMM) nth visited state (lower case: observed; upper case:random variable); S̃t ∼ Markov chain
ts , Ts Sojourn time in state s (lower case: observed; upper case: ran-dom variable)
pss′ (HMM) probability to switch from state s to state s ′ whenmov-ing from t to t + 1
p̃ss′ (HSMM) probability to switch from state s to state s ′ whenleaving state s; p̃ss = 0
qs (HMM) probability to leave state s whenmoving from t to t+1
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Table 1 – Definition of the notations.
t Discrete time step(HSMM) Third parameter of the SNB PMF for state s . Corre-sponds to the qs parameter of the HMM case when shifts = 1and when ns = 1.

G,SNB Geometric (HMM) and shifted negative binomial (HSMM)PMFs of Ts(shifts , ns , qs) (HSMM) Parameters of the shifted negative binomial PMF of
Ts

dTs Hellinger distance between the geometric and the shifted neg-ative binomial PMFs of Ts

dT Mean Hellinger distance between the geometric and theshifted negative binomial PMFs over all possible states
πs , Πs Probability to be in state s (lower case: empirical; upper case:model)
NpS Number of parameters of the PMFs of the sojourn time
NH Number of parameters defining the hidden layerObservation NV Number of state-dependent variableslayer vi , Vi State-dependent variable number i (lower case: observed; up-per case:randomvariable); typically, (Vp,Vr ), the persistent androtation speeds
Vi ,t Random process for state-dependent variables

N (µi ,s ,σi ,s) Uni-variate Gaussian PDFs of the state-dependent variable ifor state s : [Vi ,t |St = s] ∼ N (µi ,s ,σi ,s)
Ni ,s(v) PDF of the state-dependent variable given the state s :

fVi |St=s(v) = Ni ,s(v)
µi ,s ,σ

2
i ,s Expected value and variance of Vi ,t knowing the state: µi ,s =

E(Vi ,t |St = s),σ2
i ,s = V(Vi ,t |St = s)

Np0 Number of parameters of the PDFs of the state-dependentvariables
NO Number of parameters for the observation layer

Rs , rs Region of R2 where the state is estimated as s in a mixturemodel: Rs =
{
V = (v1, v2), such that Ŝ = s

} (rs its empirical
version)

demp
V , dmod

V Discrimination coefficient between PDFs (emp : based on empir-ical speed histograms; mod : based on PDFs)
τi ,s Coefficient of correlation for auto-regressive processes of or-der 1 for state-dependent variable i in state s
ηi ,s µ = eta

1−tau
A Integral range of AR1 process

dARi ,s
Difference between AR0 and AR1 formulations for state-dependent variable i and state s

dARs Difference between AR0 and AR1 formulations for state-dependent variables in state s
dAR Difference between AR0 and AR1 formulations

The hidden layer hosts a random process St , indexed on time t , taking NS discrete possiblevalues that can be considered as a Markov (resp. semi-Markov) process for HMM (resp. HSMM)state-space models. Given that we want to estimate one specific behavioral state rather thanall of them, we consider two states (NS = 2), a targeted state and the others. This is also con-sistent with the data that are used to define the models’ settings. In general, HMM cannot beconsidered a particular case of HSMM. As explained below, the only case in which an HMM
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can be considered a subset of an HSMM is when the probability mass functions (PMFs) for theHSMM’s sojourn time are chosen from the negative binomial distributions. The sojourn timesin the various states are constraint to last at least 1 time unit. Knowing that the process enters,say, state s , at time t + 1, the distribution of the sojourn time Ts in this state is defined as
P

(
Ts = k

)
= P

(
St+k+1 ̸= s,St+k = s, ...,St+2 = s|St+1 = s,St ̸= s

)
, for k ≥ 1, s = 1, ... ,NS

The eventuallymultiple observation layers host the state-dependent variables. Two observedstate-dependent variables are considered here (NV = 2) corresponding to the average persistentand rotation speeds associatedwith a pair of consecutive locations and located by convention onthe first of these points (Figure 1, Gloaguen et al., 2015). Formally, the properties of the averagevelocity are strongly dependent on the time delay between observations, so it is recommendedin practice to take regular time steps. It also leads us to investigate model performance as afunction of time resolution.

Figure 1 – Directed acyclic graph for HMM and HSMM. The black arrows indicate con-ditional dependencies. In HSMM, the time duration is an outcome of a random variable.The four tested models (m = 1,...,4) get one hidden layer with a two states (NS = 2) vari-able and one observation layer with two variables (NV = 2) whose definition is indicatedon the top-left panel. Circles represent the states. The observation layer is made of tworandom variables depicted by squares and triangles. Conditionally on the state, the vari-ables of the observation layer can follow an AR0 (no arrow between them) or an AR1(arrows). The number of parameters needed by layer assumed a shifted-negative bino-mial PMF for the sojourn times in the HSMM formulation and a Gaussian PDF for thestate-dependent variables. NH and NO represent the number of parameters required toparameterize the hidden and the observation layers, respectively.
Definition and characterization of the hidden layers. For HMMs, the state process St is Markovwhich implies that St+1 is independent of (S1,S2, ... , St−1) conditionally on St :

P
(
St+1 = st+1|St = st , ... , S1 = s1

)
= P

(
St+1 = st+1|St = st

)
,∀t ≥ 1

where st is the outcome of St . The temporal random process is thus characterized by the tran-sition matrix whose elements pss′ are the probabilities to switch from state s to state s ′ whengoing from one time step to the next:
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pss′ = P(St+1 = s ′|St = s),∀t
Following this equation, pss is the probability of remaining in state s when going from onetime step to the next, while qs = 1 − pss is the probability to leave state s .A consequence of the conditional independence is that the distribution of the sojourn time

Ts in each possible state s = 1, ... ,NS follows a geometric PMF:
Ts ∼ G(qs)In the present work, the sojourn times last at least 1 time step so that:

P(Ts = k) = gs(k) =

{
0 if k = 0

(1 − qs)
k−1qs if k ≥ 1

The first two moments are fully determined by qs as:
E(Ts) =

1

qs

V(Ts) =
1 − qs
q2sand the number of free parameters required to specify the hidden layer of an HMM is NH =

NS(NS − 1).HSMM have a Markov property, with the difference that the memoryless property does notact on time but on the jumps between the state process (Barbu and Limnios, 2008). In HMM thestate at time t+1 only depends on the state at time t , irrespective of all the previous time steps.As mentioned above, in this case, the memory acts on time t and t + 1. In HSMM, the currentstate, that lasts a random number of time steps according to some PMF, only depends on theprior state that also lasts several time steps. The memory refers to the sequence of visited stateirrespective of the time steps. In HSMM, the states follow aMarkov chain of order one S̃n, n ∈ N,not indexed on time (hence the term chain rather than process.), so that:
P

(
S̃n+1 = sn+1|S̃n = sn, · · · , S̃1 = s1

)
= P

(
S̃n+1 = sn+1|S̃n = sn

)
, ∀n

The Markov chain is characterized by the transition probabilities
p̃ss′ = P(S̃n+1 = s ′|S̃n = s)

The transition matrix gets a zero diagonal p̃ss = 0, and lines sum to one, so that it requires
NS(NS−2) free parameters (note that in the caseNS = 2, thematrix has no free parameters). Thehidden layer of an HSMM is naturally indexed on the jumping times defined by the successivetime points Jn, n ∈ N of states’ changes (Barbu and Limnios, 2008; Figure 1). A semi-Markovprocess is such that the future visited state and the sojourn time in the present state dependonly on the present state. In this case, the semi-Markov kernel is given by :

p̃ss′(k) = P(S̃n+1 = s ′, T̃n+1 = k |S̃n = s) = p̃ss′ · P(T̃n+1 = k |S̃n+1 = s ′, S̃n = s)

where T̃n+1 and S̃n+1 are the sojourn time and the state after the nth jump, i.e. starting at the
nth jumping time Jn. In the present study, the HSMM follows a simplified structure where theconditioning is reduced to the current state Barbu and Limnios, 2008; page 46):

p̃ss′(k) = p̃ss′ · P(T̃n+1 = k |S̃n+1 = s ′)

The relation between the (non Markov) stochastic process St and the Markov chain S̃n isgiven by
St = S̃N(t)where N(t) := max(n ∈ N|Jn ≤ t) is the discrete-time counting process of the numberof jumps in [1, t]. The state sequence over time is no longer a Markov chain, which relaxes the
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constraint on the PMF of the sojourn time which no longer needs be geometric. Non-parametricformulations are rare (Johnson and Willsky, 2013; Sonia Malefaki and Limnios, 2010) and arecostly in terms of number of parameters. In this work, the PMFs for the sojourn time are chosento be shifted negative binomial
Ts ∼ SNB(shifts , ns , qs)

defined byNpS = 3 state specific parameters, the shift (shifts ) corresponding to the minimumsojourn time, and the two standard parameters of the negative binomial PMF (ns , qs ). For ns ∈
R+, the PMF is given by:

P(Ts = k) = bs(k) =

{
0 if 0 ≤ k < shifts
Γ(k ′+ns)
k ′!Γ(ns)

qnss pk
′

s if k ≥ shifts and where k ′ = k − shifts ,
where Γ(·) is the gamma function. Expectation and variance are given by

E(Ts) = shifts + ns
1 − qs
qs

,

V(Ts) = ns
1 − qs
q2s

.

The rationale for using such PMF is twofold. First, in practice, sojourn times last at least onetime step and cannot be null (shift ≥ 1). It is also common practice to obtain tracking data at afiner resolution than the duration of the states so that the smallest stay in a state is likely to beequivalent to a certain number of time steps (shift > 1 or >> 1). Secondly, geometrical PMFs,i.e. PMFs of the sojourn times in HMM cases, are particular cases of negative binomial PMFs(ns = 1). The qs parameter of the negative binomial PMF is related, but, in general, not equal tothe equivalent parameter of the geometrical PMF. They are equal when ns = 1 in which case, ifthe shift is also set to 1, the two PMFs are similar (SNB(1, 1, qs) = G(qs)). The hidden layer of anHSMM is thus defined by NH = NS(NS − 2) + NSNpS parameters.Under this formulation, the HMM models are thus nested in the HSMM models (HMM ⊂HSMMSNB). This is not true in general for other HSMM specifications, i.e., for PMFs differentfrom the family of the negative binomial functions. The distance between a shifted negativebinomial PMF and its equivalent geometric PMF is evaluated by the Hellinger distances betweenthe two PMFs (Hellinger, 1909). For each state s = 1, ...,NS , the Hellinger distance dTs is givenby:

dTs =

√√√√1 −
∞∑

k=0

√
gs(k) · bs(k)

Thus, the overall measure of distance between an HMM and an HSMMSNB is:
dT =

∑

s

ΠsdTs

where Πs = E(Ts)/
∑

s′ E(Ts′) is the probability of being in state s given by the stationary (i.e.invariant) distribution of the Markov chain.
Definition and characterization of the observation layer / Probability density functions. As in stan-dard practice, we consider that the state-dependent random variables Vi , i = 1, 2, are mutuallyindependent conditionally to the state sequence with PDFs defined conditionally to the hiddenprocess. In the present work, the two state-dependent variables are chosen uni-variate Gaussian(NpO = 2):

[Vi ,t |St = s] ∼ N (µi ,s ,σi ,s) .

Their PDFs defined conditionally to the hidden process are thus denoted:
fVi |St=s(v) = Ni ,s(v)
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Definition and characterization of the observation layer / Discrimination between PDFs. The estima-tion of the hidden states is a priori all the easier when the speed distributions per state have noor low overlaps. As an alternative to a direct measure of overlap or distance between PDFs, thediscrepancy between the PDFs is quantified here with regard to the quality of the state predic-tion they potentially permit (the larger, the better). It corresponds to the state decoding accuracyachieved when considering a mixture model (Figure 2). Indeed, in this simple case, the state isno longer considered as a stochastic process but as a random variable S and the state estima-tor Ŝ entails selecting the most likely state based on speed values, following the classical Bayesrule. Then, when all parameters are known, the state estimator derived from a given velocity
V = (v1, v2) is given by:

Ŝ = argmax
s

(
ΠsN1,s(v1)N2,s(v2)

)

For each 1 ≤ s ≤ NS , we define Rs =
{
V = (v1, v2), such that Ŝ = s

}, i.e., the region of R2

where the state is estimated as s . The state decoding accuracy derived from the overlap betweenthe PDFs of the speed velocities under a mixture model is then defined as:
dmod
V =

∑

s

P(Ŝ = s,S = s)

=
∑

s

ΠsP(Ŝ = s|S = s)

=
∑

s

Πs

∫

Rs

N1,s(v1)N2,s(v2)dv1dv2 .

When using labeled data, one can compute the empirical histograms of both speed variables bystate and compute the following empirical equivalent:
demp
V =

∑

s

πs

∑

(v1,v2)∈rs

h1,s(v1)h2,s(v2) ,

where πs represents the empirical proportion of time effectively spent in state s , πs =
#{st=s}1...T

T , and rs is the empirical version of Rs .These metrics, ranging from 0 to 1, will be used as summary statistics for the observationlayers of the various real cases and models used in this study.

Figure 2 – Overlap between PDFs and accuracy of state decoding assuming a simplemixture model with one single state-dependent variable. Each PDF is Gaussian. Knowingthe variable value, the probability of getting the correct state corresponds to the PDF thatis maximum weighted by the probability of being in the corresponding state.
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Definition and characterization of the observation layer / Auto-regressive process of order 0 (AR0).It is also standard to consider that, conditionally to the state, Vi ,t and Vi ,t+1 are not temporallycorrelated (auto-regressive process of order 0; AR0):
cor(Vi ,t ,Vi ,t+1|St = St+1 = s) = τi ,s = 0

The number of parameters characterizing the PDF of the state-dependent variables, the obser-vation layer of an AR0, is defined by NO = NSNVNpO parameters.
Definition and characterization of the observation layer / Auto-regressive processes of order 1 (AR1).Anatural extension is to consider auto-regressive processes of order 1 (AR1) forVi ,t (Gloaguen etal., 2015; McClintock et al., 2020; Poritz, 1982). Conditionally to a given state, say St = St+1 = s ,the auto-regressive processes can be formulated as follow: Vi ,t+1 = ηi ,s + τi ,sVi ,t +σi ,sϵt , where
ϵt ∼ N (0, 1) so that

[Vi ,t+1|St+1 = St = s] ∼ N (µi ,s =
ηi ,s

1 − τi ,s
,σi ,s)

For AR1, the number of parameters characterizing the PDF of the state-dependent variables is
NO = NSNV (Np0 +1). The extra parameter corresponds to the auto-regressive coefficient. AR0being a particular case of AR1 (AR0 ⊂ AR1), it is possible to estimate an AR1 on the basis of AR0data expecting that the coefficient of correlation will be 0 (τi ,s = 0), while the reverse is unwise.The discrete auto-correlation function of an AR1 writes ρ(t) = τ t . The correlation time (Ya-glom, 1987, Chap.2, Sect. 9, Eq. 2.88, p. 113) or the integral range (Lantuéjoul, 1991) is definedby A =

∑∞
t=0 τ t . It is homogeneous to a time duration and characterizes the intrinsic temporalscale of a process (A = 1 unit of time for a nugget effect, A = 2 when τ = 0.5 and A = 10 when

τ = 0.9). In terms of prediction, it contributes to define if a given observation time window canbe regarded as large enough (resp. too low) for the mean of one realization to represent a preciseprediction the mean of the process. This says that the time window of observation must be 10times larger for an AR1 with τ = 0.9 than for an AR0 to get the same level of precision whenestimating the mean of the process. Reversely, when the time window is fixed, the precisiondeteriorates with increasing correlation coefficients.Themetric used tomeasure the difference between the AR1 and AR0 formulations is definedas the difference between the ratio of the integral range to themean time duration of the variousstates. For an AR0 state-space model, the integral range is 1, and the ratio is simply 1/E(Ts). Theunit-less differences by variable and state (dARi ,s
), by state (dARs ) and for all variables and states(dAR ) between AR1 and AR0 formulations of a given state-space models are defined in this studyby:

dARi ,s
=

Ai ,s − 1

E(Ts)

dARs =
1

NV

∑

i

dARi ,s

dAR =
∑

s

πsdARs

Definition of the simulation models. Four types of models are investigated (Figure 1; Table 2) bycrossing the two types of Markov structures with the two types of observation processes. Thenumber of parameters (Nθ = NH + NO ) ranges from 10 to 18 depending on the model.
Table 2 – Definition of the simulation models

Models m1 HMM-AR0
m2 HMM-AR1
m3 HSMM-AR0
m4 HSMM-AR1
θ , θ̂ Random vector of parameters and its estimator
Nθ Number of model parameters Nθ = NH + N0
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Parameters are set using ground-truthed tracks from two different fishing vessels with dis-tinct fishing behaviors. Vessel 1 is a trawler operating in the North-East Atlantic with onboardsensors that detect fishing operations using GPS acquisition at 0.001 Hz (every 15minutes). Ves-sel 2 is a purse seiner fishing in the Indian Ocean, with observers on board who record when thevessel is fishing and GPS acquisition at 0.003Hz (every 5minutes). For both vessels, the reportedstates are non-fishing (State 1) and fishing (State 2). Persistent and rotation speeds are calculatedat four different time resolutions by degrading observations at 30 minutes, 1 hour, and 2 hoursfor Vessel 1 and 15minutes, 30minutes, and 1 hour for Vessel 2, respectively. To facilitate modelcomparison and gain generality, the resolution is expressed as the average number of time stepsin the fishing state (i.e., State 2). For example, for Vessel 2, if a fishing operation lasts an hour anda half on average, the four resolutions correspond to 18, 6, 3, and 1.5 observations per averagefishing operation.
For simulation-estimation experiments, parameter coherence across the four model types iscritical. For the AR1 formulations, the parameters ηi ,s are deduced from τi ,s and µi ,s ensuringthat the expected values and variances of the respective PDFs are the same in AR0 and AR1for a given resolution. For the sojourn time PMFs, the parameters of the shifted negative bino-mial PMFs (shift,n,p) are evaluated by maximum likelihood based on observed tracking data. TheHMM formulation’s parameters are then deduced to ensure that the mean durations are thesame in both frameworks:

pss = 1 − 1

shifts + ns
1−ps
ps

The variance is automatically deduced. The variances in state durations between the HSMM andHMM formulations may thus differ. Settings 1 (resp. 2) denote the sets of model parametersestimated from the tracks of Vessel 1 (resp. 2). Tables 3 and 4 list the model parameters.
Table 3 – Statistics for Vessel 1. For the sojourn time in the various states, the parametersof the PMFs in the model settings (e.g. ps,s , ns , ps ) are deduced from them according tothe equations provided in the method section. The statistics for the sojourn time areprovided in the number of time steps. For the speed variables, they are expressed inknots.

Resolution 15 min Resolution 30 min Resolution 60 min Resolution 120 min(N=9506) (N=4748) (N=2370) (N=1171)
T

T1 T2 T1 T2 T1 T2 T1 T2

E [Ts ] 11 24 5.7 12 2.9 6.1 1.6 3.5
σ[Ts ] 7.4 11 3.9 5.7 2 3 1.1 2.1shifts 2 1 1 1 1 1 1 1

V1 = Vp

V1,1 V1,2 V1,1 V1,2 V1,1 V1,2 V1,1 V1,2

µ1,s 4.5 3 3.8 2.4 2.7 1.4 1.8 0.3
σ1,s 4.6 1.6 4.9 2.0 5.1 2.4 4.7 2.2
τ1,s 0.60 0.34 0.46 0.15 0.43 0.17 0.41 0.30

V2 = Vr

V2,1 V2,2 V2,1 V2,2 V2,1 V2,2 V2,1 V2,2

µ2,s 0.07 0.13 0.11 0.24 0.08 0.22 0.12 0.009
σ2,s 1.7 1.4 2 1.5 2.2 1.4 2.3 1.3
τ2,s 0.15 0.52 0.11 0.50 0.07 0.43 -0.008 0.27
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Table 4 – Statistics for Vessel 2. For the sojourn time in the various states, the parametersof the PMFs in the model settings (e.g. ps,s , ns , ps ) are deduced from them according tothe equations provided in the method section. The statistics for the sojourn time areprovided in the number of time steps. For the speed variables, they are expressed inknots.
Resolution 5 min Resolution 15 min Resolution 30 min Resolution 60 min(N=6181) (N=2011) (N=968) (N=446)

T
T1 T2 T1 T2 T1 T2 T1 T2

E [Ts ] 104 22 41 7.4 20 4.4 11 2.3
σ[Ts ] 112 4.4 45 1.9 22 1.8 12 1.2shifts 4 15 1 4 1 1 1 1

V1 = Vp

V1,1 V1,2 V1,1 V1,2 V1,1 V1,2 V1,1 V1,2

µ1,s 9.3 0.46 8.3 0.43 7.3 0.41 6.5 0.32
σ1,s 4.7 1.2 5.2 0.9 5.5 1.3 5.5 1.6
τ1,s 0.70 0.56 0.49 0.27 0.44 0.12 0.35 0.20

V2 = Vr

V2,1 V2,2 V2,1 V2,2 V2,1 V2,2 V2,1 V2,2

µ2,s 0.13 -0.08 -0.03 0.11 -0.24 0.20 -0.31 0.20
σ2,s 2.9 0.80 3.8 0.80 4.3 1.3 4.6 1.6
τ2,s 0.17 -0.10 0.12 -0.04 0.07 -0.09 0.04 -0.07

Simulation-estimation experiments
Dimensions of the numerical experiments. Simulation-estimation experiments (Figure 3) assessthe accuracy and robustness of state decoding under controlled conditions for:

2 settings × 4 resolutions × 4 model types = 32 different cases
For each case, 100 simulation-estimation experiments are run. In each experiment, syntheticdata (states and speeds) are simulated, and the model parameters (θ̂) and states are re-estimatedusing expectation-maximization algorithms (refer to below). Each simulation lasts long enoughto produce 250 state changes. We also carried out experiments with 50 alternations.

Maximum likelihood inference. Inferences are made by maximizing the likelihood usingExpectation-Maximization (EM) algorithms (see Dempster et al., 1977 for HMM and Gué-don, 2003 in the context of HSMM). EM algorithms are iterative and converge to the (possiblylocal) maximum likelihood. When the shape of the likelihood is unknown, it is recommended torun the algorithm from a variety of starting points. Inferences were made using starting valuesequal to ¼, ½, 1, 2, or 4 times the input parameter values used in simulations. Convergenceoccurred at the same values regardless of starting values, indicating that, in our case, thelikelihood was unimodal, with a tractable optimum free of local and detrimental holes. To avoidmixing states, label switching (assigning State 1 to slow speed instead of large speed, and viceversa) is resolved prior to analyzing the results. The state estimate is the one that ensures themaximum likelihood of the state knowing the speeds at each time step:
ŝt = argmax

s
P

(
St = s|V11...T = v11...T ,V21...T = v21...T

)

Alternatively, the Viterbi algorithm (Rabiner, 1989) can reconstruct the most likely sequenceof states
{ŝt}t=1...T = argmax

s1...sT
P

(
S1 = s1, ... , ST = sT |V11...T = v11...T ,V21...T = v21...T

)
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Figure 3 – Workflow illustrated for one case study (grey panels represent the workflowfor one particular resolution). Upper left panels: observed time series in its original high-frequency resolution (r=1) and in three levels of up-scaling (r = 2,3,4). Upper right panels:computation of persistent and rotational speeds (v1, v2) for each resolution and estima-tion by maximum likelihood procedures of models’ parameters and settings (θ). BottomRight panels: the simulation-estimation experiments. For each tested model structure(m1,m2,m3 and m4), 100 data simulations are produced. For each simulation, the estima-tion is made using the EM algorithmwith the samemodel (model skill assessments-MSA)or with a different model (model robustness assessment-MRA). Experiments get 250 or50 alternations of states 1 and 2. Bottom left panel: estimation from the annotated realdata with model structure m4.
Consistent with Hoek and Elliott, 2018 (p. 129), in the current study, the transition matrixgets no 0 values explaining why both outputs are very similar. So we only present the former.

State decoding accuracies. The capacity to recover the model parameters (θ) is investigated us-ing the box-plots of the hundred estimations of each of the model parameters. However, theperformance is mainly based on state decoding accuracies as the objectives of the recourse tothese models are to estimate states. Decoding accuracy is defined by the proportion of correctestimations:
accuracy = p(ŝ = s) =

#{ŝt = st}t=1···T
TTwo facets of the accuracy are considered (Figure 3). In sensitivity analysis (Allen and Somer-field, 2009), model skill assessment (MSA) refers to scenarios where the simulation and estima-tion models are identical. This allows evaluating accuracy in the ideal conditions, that is whenthe data and model type are completely consistent (best case scenario):

MSA(mi ,mi ) = p(ŝ = s|simulation model = mi , estimation model = mi )In reference to the aboveMSA, themodel robustness assessment (MRA) considers accuracieswhen the estimation model differs from the model used for simulation:
MRA(mi ,mj) = p(ŝ = s|simulation model = mi , estimation model = mj)For instance, if data are simulated according tom4 = HSMM-AR1, estimations are performedwith each of the three other possible model types, one by one (m1, m2, or m3). An analysis ofthe impact of discrepancies between the Markov property of the hidden layer and/or the AR
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properties of the state-dependent layer allows testing which of the two discrepancies affectsthe most the percentage of loss of accuracy when using model m′ instead of model m:
loss(mi ,mj) =

MRA(mi ,mj) − MSA(mi ,mi )

MSA(mi ,mi )
=

MRA(mi ,mj)

MSA(mi ,mi )
− 1

Real case state decoding performance
HSMM-AR1, the most flexible model type, is fitted to two sets of real annotated trajectories(Figure 3) at different time resolutions. Real states are used to calculate the associated accuracy.The most likely order of auto-regressive processes used to model the speed time series per stateis an important piece of information for interpreting real-world decoding performance. To test if

ρk , the various (partial) coefficient of correlation of order k (Saporta, 1990, p. 137) are null, theappropriate Student test statistics T is:
ρk√
1−ρ2

k
n−k−2

∼ Tn−k−2

where n represents the number of observations so that n− k represents the number of pairsof data k apart in time.In this study, the time series are interrupted by each change of state, and the lengths ofeach section are variables (Figure 4). So the number of data available to test the value of partialcoefficients of correlation of order k is rather nk , the number of pairs of observations availableat time distance k accounting for the gaps in the time series. For each state-dependent variableand each state, the order of the auto-regressive process is estimated as the smallest order forwhich the empirical partial correlation falls within the 90% confidence intervals of an T (nk − 2).

Figure 4 – Adaptation of the Student T -test to account for the effective number of avail-able data nk for each tested order k for an auto-regressive process. Squares representa variable of the observation layer (e.g. speed variable V1,t ) with padding indicating thestate.

Results
Characteristics of the simulation models
Comparing settings. Figure 5 depicts the features that distinguish the two settings. In both set-tings, dT and dAR are co-linear, and they increase when the resolutions decrease (up to theexception of dT for Settings 2, which is between the two highest resolutions). In other words,deviations from the HMM reference situation result in proportional deviations from the AR0reference situation, which are significantly larger for Settings 1 than for Settings 2. Fitting anHMM-AR0 model to data simulated with an HSMMsN B-AR1 model is expected to be challeng-ing, especially at high resolutions. The reverse is not a problem because AR0 and/or HMMmod-els are special cases of AR1 and/or HSMMsN B models. The proportions of time spent in states
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1 and 2 are strongly unbalanced, with opposite dominance between settings. The state-specificcharacteristics of the various settings are thus weighted in the opposite direction. The averagesojourn time in the various states also differs significantly between the two settings. In State 1,the average duration is ten times shorter in Settings 1 than in Settings 2 (regardless of resolu-tion). When compared to State 2, it is 1.5 times larger. Despite the similarity of the correlationcoefficients, the observed difference in dAR can be attributed to this significant difference be-tween the two settings. In State 1, the average correlation coefficients and integral ranges arevery similar for the two settings (Figure 6, right column). We are using averages to explain theoverall patterns; it is worth noting that the coefficients of correlation increase with increasingresolution. Despite similar coefficients of correlation, the distance dAR1 for Settings 1 is 10 timeslarger due to their longer sojourn times. The picture for state two is different. Coefficients ofcorrelation and integral ranges are slightly smaller in Settings 2. The slightly longer sojourn timeresults in a smaller dAR2 for Settings 2. Therefore, dAR1 and dAR2 are larger for Settings 1. The un-balanced states’ proportions between settings resulted in a larger dAR for Settings 1 but reducedthe difference.

Figure 5 – Graphical representation of the model settings. Settings 1 and 2 are summa-rized by dT the Hellinger distances between the shifted-negative binomial (HSMM) andthe geometric (HMM) PMF formulations for the sojourn time on the x-axis, by dAR thedifference between AR1 and AR0 formulations on the y-axis, and by dmod
V the state de-coding accuracies in case of mixture model through the surface area of the circles. Theproportions of time spent in each state are also represented by two half discs within thecircle. The arrows in each setting indicate the path towards decreasing resolution.

Finally, given the overlaps between the PDFs of the speed variables by states, and the ex-pected values of the different sojourn times, the expected state decoding capacities when usingmixture models (dV ) are larger for Settings 2 than for Settings 1 (Figure 5), with 95% of goodpredictions for the largest resolution for Settings 2 as opposed to 80% for Settings 1 (Figure 9).All of these statements point to disappointing decoding accuracy for Settings 1 and decreasingresolutions in general. This latter statement suffers one exception: for Settings 1; the accuracyappears slightly better for the lowest resolution than the penultimate resolution (Figure 9). Theexpected values of the PMFs are equal in HMM and HSMMsN B formulations, but the standarddeviations differ. For Settings 1 and 2, the standard deviations are co-linear between the twotypes of Markov formulations but are generally larger in the HMMs (Figure 7). It also appearsthat, for Settings 1, the standard deviations of state durations in States 1 and 2 are of the sameorder of magnitude, whereas for Settings 2, they are one order of magnitude larger in State 1than in State 2.
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Figure 6 – Auto-correlation coefficients for state-dependent variables in AR1 models,plotted against resolution. The average coefficients, regardless of resolution, appear inthe right marginal column.

Figure 7 – The decimal logarithm of standard deviations of the sojourn time PMFs forthe various settings. The x-axis represents the time duration of HSMMcases with shiftednegative binomial PMFs. The y-axis refers to HMM cases with geometric PMFs.
MSA (estimation model = simulation model)
Parameter estimation. In general, parameter estimates under MSA conditions are unbiased andsymmetrically distributed around the target value (Figure 8). One notable exception is the vari-ance of the Gaussian PDF for V1,2 for Settings 2 when using an HSMMsN B-AR0 model. Whenthe target value is 1.26, 50% of the estimations fall between Q25% = 1.25 and Q75% = 1.44, indi-cating a minor issue. The variance of the shifted negative binomial at high resolution appears tobe slightly positively biased as well (the mean of the estimation is slightly larger than the targetvalue). Finally, for a given parameter, setting, and degradation, the ranges of fluctuations of theestimations change with the model used. This is to the disadvantage of HSMMsN B frameworks(larger inter-quantile intervals).
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Figure 8 – Simulation-estimation experiments: box-plots of the 100 parameter estima-tion when the model used for the estimation is the same as the model used for the simu-lation (MSA experiments with 250 states alternations). Each panel represents a settings
× a degradation. The sequence of the box-plots is always the same: HMM-AR0, HMM-AR1, HSMM-AR0, HSMM-AR1. For each parameter, the y-axis is set to be consistentacross all four resolutions for given settings. A horizontal line represents the simulationmodel parameter’s (reference) value. The shift for the sN B PMF is not represented.
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Figure 9 – Accuracies (y-axis) of state estimations as a function of the resolution (x-axisexpressed as the average number of time steps in State 2). Simulation-estimation exper-iments (with 250 states alternations): in a row, the simulation models, and in the column,the estimation models. The light-colored envelopes are built on the basis of the 25% and75% quantiles of the accuracies obtained over the 100 simulations performed for Set-tings 1 (blue) and 2 (red). The extra transparent envelopes correspond to the 10% and90% quantiles. The white diagonal panels correspond to model skill assessment - MSA(estimationmodel equals the simulationmodel). The grey panels correspond to themodelrobustness assessment - MRA (estimation model equals all but the simulation model).Model characteristics: the thick and coloured continuous lines indicate the expected ac-curacies when considering a mixture model (dV ).
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Figure 10 – Model robustness assessment-MRA (with 250 states alternations). Percent-age of loss of accuracy when using a different estimation model than the one used tosimulate the data. The boxes show the ranges of fluctuations. Points are jittered for bet-ter readability. The black dots on the right of each panel represent the overall mean ofeach case (blue and red for Settings 1 and 2, respectively). The changes in model struc-tures between simulation and estimation are shown in the left and top margins. Columnsrepresent a possible change in the auto-regressive characteristics of the speed distribu-tions, e.g., “AR0=> AR1” means simulating with AR0 and re-estimating with AR1. Rowscorrespond to a possible change of the Markov property of the model, e.g., “HMM =>HSMM” means: simulating with HMM and re-estimating with HSMMSNB. The centralpanel corresponding to the MSA situation is not considered.

State decoding accuracies. Figure 9 (diagonal panels) shows that state decoding accuracy is higherin Settings 2 compared to Settings 1, regardless of the model. In both cases, increasing the res-olution (or the number of observations per state) improves accuracy. There is no difference be-tween the model types. The state decoding accuracy is similar for the most complex models(HSMM-AR1) to the simplest ones (HMM-AR0), which outperform by around 10% what wouldbe expected under a more simple mixture model framework. The AR1 process, when presentin the data and model structure, serves as a source of improvement. It’s worth noting that theresults are consistent with those obtained using mixture models. For Settings 1, performanceimproves when moving from the smallest to the penultimate smallest resolution. Across the 100simulations, the accuracy values are very similar. This is obvious for Settings 2 at all resolutions,demonstrating no difference between simulations. For Settings 1, some variations occur at low
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resolutions but remain small, with an average accuracy equal to 80%. These results serve as thebaseline for state decoding performance because they are obtained under the most favorableconditions, with the estimation model equal to the simulation model. It is thus expected thatperformance will suffer in less favorable situations.
MRA (estimation model = all but the simulation model)

In MRA situations (non-diagonal panels of Figure 9 taken in a row), the overall picture re-mains the same: the accuracies are systematically larger for Settings 2 and get larger when theresolution increases. The largest changes in performances appear when the simulation model isAR1 and the estimation model is AR0 (Figure 9, panels of lines 2 and 4). The range of fluctua-tions of the accuracies remains similar to MSA conditions (very small for Settings 2 and small forSettings 1). As a result, average values in each numerical experiment provide a good summary ofaccuracy. The average relative accuracy losses (Figure 10) are shown below. The overall averageloss is 1.2%. However, this average loss conceals contrasting situations, as follows.Using the correct Markov structure (panels of the middle line), estimation with an AR1 hasno impact (average loss equal to 0), which is consistent with the fact that an AR1 can capture anAR0 as a special case (AR0 ⊂ AR1). However, in the reverse situation (AR1 => AR0), accuraciesdeteriorate on average and significantly more for Settings 1. The loss of accuracy is linearlyrelated to the distance between AR1 and AR0 formulations: the larger the distance dAR , thegreater the loss of accuracy (Figure 11).Using the correct AR structure (panels of the middle column), an estimation with a HSMMSNBwhen the data is generated with an HMM has little impact. Accuracies are, however, slightlytampered for Settings 2, whose dT values are nevertheless smaller than those for Settings 1(Figure 5). A geometric PMF is a particular case of a shifted negative binomial PMF (G(q) =
SNB(shift = 1, n = 1, q)). However, the PMF for the (shifted) negative binomial PMF gets threeparameterswhen the geometric PMFgets only one parameter. This certainly hampers inferences.In practice, a HSMM can tend to an HMM but might not reach it totally. Inferences might alsobe thwarted by the fact that the n parameter of the negative binomial PMF is not an integer,but a real. So it can tend to 1 without being equal 1. Looking at the n parameter values obtainedwhen fitting a HSMMwhile the data are HMM (in supplementary material) allows evaluating thecapacity of the EM algorithm to end up with n = 1 (Figure 15). It happens that n does fluctuatearound 1 with alternate behavior (above/under) given the state. The state that lasts the shortest,i.e. state 1 for settings 1 and state 2 for settings 2, is the one with n smaller than one (and viceversa). The fluctuations in n increaseswhen the data resolution increases, with larger fluctuationsfor settings 1 where q75% = 2 and where n sometimes equals 5. Finally, there is no difference inthe output when using ARO or AR1 structures for the speed variables. These results support theidea that an HSMMSNB can capture an HMM as a special case (HMM ⊂ HSMMSNB). The mostinteresting output is that the situation remains the same the other way round (HSMMSNB =>HMM) contrary to expectations. One particular case of Settings 1 is particularly harmful, whilethe rest have no effect.Estimating with an AR1 structure when the data is AR0 does not affect the state decoding ac-curacy (left column). The most significant impacts occur when estimating using an AR0 structurewhile the true process is an AR1 (right column panels), and the value case is when also forcingthe estimation to be HMM while the data are HSMMSNB (average loss equals 3.6%). Changingfrom HSMMSNB to HMM is only a concern when there is a negative change in the AR structureof the estimating model (i.e. AR0 instead of AR1). In this worst case, a fine inspection of the pa-rameters’ re-estimations when simulating with an HSMM-AR1 and estimating with one of thethree other models (Figure 12) shows that some but not all parameters are impacted by thisbi-layers discrepancy between the simulating and estimating model. Parameters correspondingto the first moments of the speed PDFs (e.g. µ or τ ) are not significantly impacted in the sensethat their re-estimations are similar to those obtained in MSA conditions. What is also clear isthat the main impact occurs when the state-dependent variables are modeled using the AR0structure. For example, when an HMM-AR0 or an HSMM-AR0 is used to estimate the varianceparameters of the Gaussian PDFs of V1, there is a significant bias. Expected values of sojourn
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time are also significantly affected. However, the most significant effects are observed when anHMM formulation is used for the estimation model.

Figure 11 – Simulation-estimation analyses-MRA (experiments with 250 states alterna-tions) where simulations are performed with AR1models and estimations with AR0mod-els. Loss of accuracy of state estimations as a function of the distance between AR1 andAR0 formulations dAR for Settings 1 (blue) and 2 (red).
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Figure 12 – Simulation-estimation experiments: box-plots of the 100 parameter estima-tion when the model used for the estimation equals all but the HSMM-AR1 model usedfor the simulation (MRAexperimentswith 250 states alternations). Each panel representsa settings× a degradation. The sequence of the box-plots is always the same: HMM-AR0,HMM-AR1, HSMM-AR0, HSMM-AR1 (the first three in color correspond to MRA condi-tions; the last one in white corresponds to MSA situations). The (reference) value of theparameter of the simulation model is represented by a horizontal line. The shift for the
SNB PMF is not represented.

Nicolas Bez et al. 21

Peer Community Journal, Vol. 5 (2025), article e38 https://doi.org/10.24072/pcjournal.535

https://doi.org/10.24072/pcjournal.535


Figure 13 –Data characteristics for Vessel 1 (blue) and Vessel 2 (red). State 1 (non-fishing)is in open symbols, and State 2 (fishing) is in plain symbols. Top panels: real trajectorieswith centered coordinates for data resolution of 1 h. The histograms of the sojourn timeare provided below. Middle panels: correlation plots of the persistent (Vp) and the ro-tation (Vr ) speeds. The marginal histograms represent the uni-variate distribution perstate. Bottom left panel: summary metrics for the two vessels as a function of the dataresolutions. G: The Hellinger distances between the sojourn time histograms and a geo-metric PMF. sNB: The Hellinger distances between the sojourn time histograms and aa shifted negative binomial PMF. d: the discrimination coefficient between speed his-tograms (demp
V ). Bottom right panel: state decoding accuracies when using an HSMMSNB-AR1 (dashed lines). The light-colored and white envelopes are alike those presented infigure 9. They correspond to the quantiles of the accuracies of the simulation-estimationexperiment with an HSMMSNB-AR1.
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Real cases
Choosing a model structure and describing its main characteristics. Figure 13 shows the generalcharacteristics of two sets of real tracks. As the sequences of true behavioral states are known,it is possible to select the best model by evaluating parametric assumptions for both the hiddenstate variables and the state-dependent variables. However, given a large number of observa-tions (from several hundred to a few thousand depending on resolution), any minor differencebetween model and data characteristics results in low p-values for null hypothesis testing, evenat low-risk levels (“large N problem”).
Hidden layer : testing the Markov and semi-Markov hypotheses. For Vessel 1, the Hellinger dis-tances between the histograms of sojourn time duration in each state and either of the twopossible PMFs to model the state process (i.e. geometric and shifted negative binomial) indicatethat the most appropriate model is always an HSMMSNB (Figure 13). For Vessel 2, this could beless relevant because the distances are greater. But choosing a geometric PMF would even beworth it.
Observation layer : testing the AR hypothesis. The state-dependent variables exhibit temporalauto-correlation at lag 1 (Figure 6). Among the four structures tested in this work, the mostappropriate model structure is an HSMMSNB - AR1, which is also the most flexible one with re-gards to inference objectives as it can converge down to anHMM-AR0 if necessary. However, inthe framework of auto-regressive processes, which is an assumption itself, the orders of the ARprocesses of the speed variables are likely larger than 1 (Figure 14). This is very clear for Vessel1, which has auto-regressive processes with an order greater than 1 in half of the cases (9/16),as opposed to 5/16 cases for Vessel 2, and has a larger partial auto-correlation than Vessel 2.The correlation plots show that the persistent and rotation speeds are not independent giventhe state (except for Vessel 2 in State 2 , Figure 13) which contradicts the model’s assumptions.Finally, Vessel 1 has strong mixing (respectively small dV ) between the empirical histograms ofthe speed in different states, particularly for the rotation speed (Figure 13), indicating poor statedecoding performance.
State decoding performances. HSMMSNB - AR1 models and speed-based filters are applied to thespeeds time series available for the two vessels at the four different time resolutions (Figures 3)to estimate the (known but removed) states. Given the number of fishing operations (correspond-ing to State 2 by convention here) observed along each trajectory (N = 276 for Vessel 1 and N =31 for Vessel 2; Figure 13), real state decoding accuracy is compared to the simulation-estimationexperiments based on 250 and 50 alternations for Settings 1 and 2 respectively. Real-case esti-mates (Figure 13) perform worse than simulation-estimation experiments. This is especially truefor Vessel 1 at high resolution where the real-case state decoding performances clearly departfrom the simulation-estimation experiment (70% of good state estimation for the HSMMSNB -AR1 model, compared to 90% for the simulation-estimation experiment). Although not shownin this paper, these models surpass the conventional filtering approach based on a speed thresh-old to routinely identify behavior for fisheries management.

Discussion
Scope of the benchmarking

The current study’s benchmark includes four model types (some with nesting properties) andtwo sets of contrasted settings.We chose to focus on these restricted configurations rather thanfollowing an experimental design crossing parameter values over a wider range. Such a com-prehensive experimental design would have required a significant amount of computing time.Instead, we defined the parameters of the four types of models using two sets of real fishingvessel trajectories that provided ground truth on the sequence of states. While this likely limitsthe overall generalizability of the results, it allows for useful recommendations for various real-world situations involving other natural foragers than fishers. According to Nettle et al., 2013,the growing interest in human behavioral ecology presents a significant opportunity to bridge
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Figure 14 – Partial auto-correlations of state-dependent variables. For each variable, ves-sel, resolution, and state, the partial auto-correlation coefficients are represented up tothe point when they are no longer statistically different from 0. The inner panel summa-rizes the order obtained in each case with a reference being order 1.
the gap between natural and social sciences. Regarding fisheries science, Bertrand et al., 2007show that fishermen follow similar patterns as natural top predators. In this context, specify-ing the models using annotated vessel trajectories places the study in a broader, more relevantecological context. Without being too general, the scope of this work is quite broad. The modelparameters are sufficiently contrasted to distinguish first-order auto-regressive processes fromtheir AR0 counterparts and HSMMs from their HMM counterparts. So, the model parameterscause a significant contrast between the four model types.The four model structures investigated in the experiments are reasonably simple (two hiddenstates with two independent observed variables). Most models in movement ecology (includingfisheries) adopt simple modeling frameworks (e.g. Bez et al., 2011; Langrock et al., 2012; Ver-mard et al., 2010) that are still recommended in more recent studies (Auger-Méthé et al., 2021;McClintock, 2021). The number of states and the identification of a specific state among themare sometimes the primary goals of using state space models, particularly in behavioral ecology.The goal of this analysis is not to infer the possibility of correctly estimating the number of statesbut rather to quantify the state decoding accuracy of hidden Markov models under controlledconditions. If you are interested in this issue, we recommend reading the pragmatical approachproposed by Pohle et al., 2017. Others sources of possible biases coming from temporal misalign-ment between model and observations are also not considered (Glennie et al., 2023). Although
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not shown, two intriguing side outputs areworth noting. First, the Estimation-Maximization (EM)algorithm produced reliable estimates of maximum likelihood, i.e., not impacted by changes ininitialization values. Second, the most probable state sequences (Viterbi) were equal to marginalestimates, implying that the Viterbi algorithm is unnecessary in these cases.
No best model in model skill assessment conditions

The best model performances are obtained from model skill assessments, which occur whenthe simulation and estimation models are identical. This is consistent with the fact that, given afixed number of observations, one cannot expect to achieve higher accuracy when the data andmodel are no longer consistent. Given favorable inference situations (i.e., 250 state alternations),all four model types, including the most complex (e.g., HSMM-AR1), achieve similar state decod-ing accuracies and very good parameter estimations. This is not an exceptional situation; one ofour two case studies shows the same amount of state alternation. This means that there is nooptimal model type under MSA conditions. Model parameters and settings (including resolution)control performance rather than themodel structure itself. The following examples illustrate thisstatement. In both settings, the variances of the sojourn times are greater in HMM formulationthan in HSMM formulation (Figure 7).The only distinction between the two is that, for Settings 2, the variance of the sojourn timeis an order of magnitude greater in State 2 than in State 1, while the proportion of time spentin State 2 is quite small (π2=0.15, π1=0.85). This could have been detrimental to the fittingswith Settings 2. However, we observe the opposite. The difference in performances is driven bythe two metrics (dV and dAR ) that are clearly in favor of Settings 2 (Figure 5) and that explainstrongly the shapes and levels of the different accuracies (Figure 9). Regardless of model type,the characteristics of the observation layer (more favorable for Settings 2 than for Settings 1)explain the performance better than those of the hidden layer. Under MSA conditions, state-space models consistently outperform mixture models (Figure 9). This finding suggests that thestructures introduced by temporal state processes facilitate state estimation, at least as long asthe estimation model agrees with the simulation model. Consider applying this result to real-world situations: in that case, the ability to select the true temporal process will have a greaterimpact on state inference quality than the change state assumption.
Auto-correlation deteriorates the state decoding accuracy

The numerical experiments revealed that the deterioration in accuracy is primarily due toauto-correlation in the observation layers rather than the hidden layer’s Markovian structure.Although dT (hidden layer) and dAR (observation layer) are co-linear in the settings with potentialconfounding effects, the current work demonstrates that the modeling choices related to theobservation layer are of primary importance for state decoding performances. This finding issupported by both simulation-estimation experiments and real-data estimation.
Simulation-estimation experiments. The HSMMSNB - AR1 model structure is the most robust todiscrepancies betweenmodel hypotheses and data characteristicswhen retrieving hidden states,according to model robustness assessment (MRA). While the accuracy in state estimation deteri-orates in 90%of caseswhen using amodel structure different from the one used to simulate data,the relative loss is small (0.92%on average). Imposing no auto-correlation in the estimatingmodelwhile allowing some for state-dependent variables has a negative impact on state decoding per-formance. The loss of accuracy is well explained by dAR , which is the distance between AR1 andAR0 formulations. This is not true for the hidden layer, where imposing an HMM structure whilethe state process is semi-Markov has no negative impact on the state decoding performance.This finding has direct practical implications. It demonstrates that it is preferable to concentrateon the hypothesis choices of the observation layer rather than the hidden layer. In some ways,this is reassuring, as only the observation layer contains empirical data. Even though, in theory,the time dependence of the observed processes or the distinction of the PDFs should be evalu-ated conditionally on the hidden states (which is impossible in practice because the states are,by definition, hidden), we recommend conducting exploratory analyses of the observed process
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data to help setting as much as possible relevant auto-correlation hypotheses as performed onour real cases. However, this step requires access to (a sample) of trajectories with observationsof the (normally hidden) states along the trajectories. If modeling is envisaged at the time of datacollection, we recommend building up such a sample during a trajectory collection phase.
Real cases. The analysis of model performance on real cases is consistent with the simulation re-sults, indicating that discrepancies between the properties of the observations and the model’shidden layer assumptions do not affect performance. Both data sets demonstrate a visual devi-ation from the various model assumptions. However, even though the differences in residencetime for Vessel 2 are greater, the model’s performance improves. The use of the most flexible,and thus the most robust, model structure (i.e., HSMMSNB - AR1) produces state decoding per-formances that under-perform the simulation experiments. The losses in accuracies are the con-sequences of the discrepancies between the data characteristics and the model structure. Thesediscrepancies and losses are low (resp. large) for vessel 2 (resp. vessel 1). Interestingly, Vessel 2’sperformances do not deteriorate strongly with the resolution, whereas Vessel 1’s do (Figure 9).The two primary differences in favor of Vessel 2 concern the speed variables:

• The discriminating power between the speed distributions measured through the inte-grated metric dV is low, respectively large, for Vessel 1 and Vessel 2 (Figure 13). Thiscontributes to the low accuracies obtained for Vessel 1.
• In most cases, the partial autocorrelation of observed speed is greater than one (themodel’s assumed autocorrelation), particularly for Vessel 1. Not only are the auto-correlations of order 1 larger, but the most likely order of the auto-regressive processmodeling the speed variable is greater than 1.

Beyond these considerations about the value of coefficients of auto-correlation and the or-ders of the auto-regressive processes, the observations may not be consistent with an auto-regressive process at all. In particular, auto-regressive processes assume that the relationshipbetween successive observations is linear, which may not be the case. As an example, we pro-vide the cross-plots between successive speed components (Additional Figure 16), which violatelinear relationships over time. To form the correct hypotheses about the observation process,start by ensuring that the data are consistent with an auto-regressive process. The violation ofthis assumption corresponds to a structural error process that is rarely evaluated. Before dis-cussing the order of the AR, consider the more fundamental choice of using an AR formulationfor the observation layer (Gloaguen et al., 2015; Joo et al., 2013; Morales et al., 2004). Second,within the context of auto-regressive processes, the data may not correspond to a zero or firstAR order (AR0 or AR1). This second type of violation is caused by mis-specification and can bemore easily controlled by evaluating the model’s goodness of fit.
Increasing the resolution: a tricky solution?

As expected, model characteristics are linked to data resolution. This affects not only theaverages of the sojourn times, which are directly impacted because they are expressed in a seriesof time steps but also their distributions. This also affects the variability of the speeds (bothpersistent and rotational), their time dependencies, and the overlap of speed PDFs betweenstates. The multidimensional nature of data resolution precludes statistical investigation of itseffect on estimation performance, all other things being equal. Several authors (e.g., McClintocket al., 2012; Vermard et al., 2010) have pointed out that time steps must be chosen to match thescale at which behavioral decisions are made using expert knowledge. Katara and Silva Kataraand Silva, 2017 examined themismatch between the temporal resolution of position records andthe timescale of fishing activity. The authors investigated the effect of time resolution (from 10minutes to 2 hours) on bias and errors in identifying fishing operations for vessels (Portuguesepurse seiners) with characteristics similar to those of vessel 2. The results (7% of missed fishingsets with 2h time interval compared to 10 minutes) align with the estimated increase in accuracywith time scale resolution for Vessel 2.Similar results were obtained for other vessels, emphasizing the importance of high-resolution time data Edelhoff et al., 2016; Mendo et al., 2019. Interestingly, when using data
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that were consistent with a given model’s assumptions, such as in simulation-estimation ex-periments, increasing the resolution of simulated data resulted in higher accuracy. This wasless obvious for real data, where the results differed between the two case studies and werenot linear with data resolution. There is a contradiction between the need for high-frequencydata to track short-term states or to get as close as possible to the tracked individual’s actualbehavior and the ability to model this behavior using a random decision. If we suppose thatmemory and/or inertia play a role in behavioral changes at high frequencies, in this case, it isclear that a state is dependent not only on previous states but also on multiple previous ones.As a result, a compromise must be made between the pursuit of better statistical conditionsand a realism threshold to achieve an optimal level of data resolution.In conclusion, in silico, when data characteristics are controlled by and consistent with modelcharacteristics, simulation-estimation experiments show that a change in Markov property forthe estimation model has no negative impact on state decoding performance unless one forcesthe state-dependent variable to be AR0 when they are indeed AR1. This aligns with the fact thatHSMMSNB and AR1 formulations are generalizations of the usual HMM and AR0 formulations.This study also shows that model performance is more sensitive to the auto-regressive charac-teristics of the state-dependent variables than to the Markov properties of the hidden states.This is somewhat satisfactory because, in practice, one may have access to some aspects of theobservation layer but not to the hidden, unobserved layer. This allows for empirical controls onwhat appear to be key model assumptions in terms of state decoding performance. However, inreal cases, the robustness of HSMMSNB - AR1 appears low, with instances where its state decod-ing performances are worse than simple filtering. The confusion between the distributions ofstate-dependent variables in different states, whether observable (usually not possible) or morerealistically speculated, is the most important factor influencing state decoding performance inreal-world scenarios. Blind applications of state-space models in the absence of prior knowl-edge about the processes lead to radical errors and poor state-decoding performance. Giventhat HMMs are a popular choice in ecology due to their ease of use, we believe there is a needfor serious consideration of the consequences of the numerous potential deviations betweendata and model assumptions.
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Data, script, code, and supplementary information availability
Model simulations and states’ estimations are done within R version 4.3.1 "Beagle Scouts"(R Core Team, 2022) using the package mhsmm (O’Connell and Højsgaard, 2011), which allowsperforming EM inferences with several realizations of the same underlying model. Modificationsof the mhsmm package were, however, required. We extended the package:

• to the case of AR1 for the state-dependent variables that were not in the package,
• to the case of shifted negative binomial PMF for the sojourn time that was not fullyimplemented,
• to force independence between the state-dependent variables during the inference pro-cess (by default, a correlation is re-estimated during the EM procedure).

When considering 250 alternations of State 1 and 2, the 32MSA experiments correspondingto the 2 settings × 4 degradations × 4 model types are fully reproducible from https://doi.
org/10.5281/zenodo.10678877 (Bez, 2024a). Tolerances for stopping the iterative search of themaximum likelihood in the EM algorithm are adapted to avoid very long searches associatedwithtiny marginal improvements of the likelihood (the iterative procedure stops when the gain in log-likelihood is smaller than the tolerance). The tolerance is reduced to 10−04 for HMM, and to 10−03

for HSMMwhen the default values were 10−08 for HMM, and 10−04 for HSMM. Meanwhile, themaximum number of iterations is also adapted to ensure that the convergence is reached, atleast with regard to the chosen tolerance. The maximum number of iterations is reduced to200 for HMM (instead of 1000 by default) but increased to 150 for HSMM (instead of 100by default). With these numerical settings, convergence is systematically reached before themaximum possible number of iterations (Figures 17 and 18).With these numerical settings, the full MSA experiments last 10 hours and 20 minutes onan i7 PC which probably ruins their fluid and rapid full reproduction. This certainly does for theMRAprocedures that are 3 times longer. Thus, theMRA simulation-estimation experiments havebeen performed remotely using the computational resources of a super-computer (DATARMOR,http://www.ifremer.fr/pcdm). All the simulation-estimation outputs have been stored and thepaper is reproducible based on this stored and open-access information. The code to re-run
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all the MRA simulations is, however, available on demand. After the upload of all the outputs ofthe simulation-estimation experiments, all the analyses and figures are reproducible from https:
//doi.org/10.5281/zenodo.10679448 (Bez, 2024b). For anonymity concerns, the coordinatesof the trajectories are centered and standardized.

Figure 15 – SUPPLEMENTARY. Boxplots of n parameter values of the SNB PMFs ob-tained when the simulation model is HMM (with AR0 or AR1 structures for the speedvariables) and the estimation model is HSMM (with the same AR structures as that usedfor simulation ). Settings 1 (blue) and settings 2 (red). The white boxes correspond tostate 1 while the coloured boxes are for state 2. Data resolution, is represented alongthe x-axis.
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Figure 16 – SUPPLEMENTARY. Delayed correlation plots for Vessel 1 (left, blue panels)and Vessel 2 (right, red panels). The axes correspond to the speeds at time t (x-axis) and
t+1 hour (y-axis). This corresponds to the third and the fourth degradation for vessel 1and 2 respectively. Persistent speed is in squares, and rotation speed is in triangles. State1 is in empty symbols, and State 2 is in plain. Linear regressions for which p-value < 5%are represented.
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Figure 17 – SUPPLEMENTARY. Settings 1. Evolution of the log-likelihood of each EMunder MSA conditions (estimation model = simulation model). Rows correspond to thedifferent model types. Columns correspond to the different resolutions. On each panel,the evolution of the log-likelihood during each of the 100 estimations is represented.The log-likelihood is normalized between the value for the initialization and the valueobtained after convergence. The x-axis represents the number of iterations (differentfor each experiment). Tick marks represent the number of iterations reached at eachestimation. The EM never reached the maximum possible number of iterations set to200 for HMM and 150 for HSMM.
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Figure 18 – SUPPLEMENTARY. Settings 2. Same caption as before.Additional information: On two occasions, the estimation of the shift for the shifted neg-ative binomial PMFs causes a decreasing evolution of the likelihood. In these cases, wechanged the seed to recover the normal behavior of the convergence. These cases corre-spond to experiment no 4 - simulation no72, and to experiment no 12 - simulation no73.See the code to get details (https://github.com/nicobez/H-S-MM_MSA).

32 Nicolas Bez et al.

Peer Community Journal, Vol. 5 (2025), article e38 https://doi.org/10.24072/pcjournal.535

https://github.com/nicobez/H-S-MM_MSA
https://doi.org/10.24072/pcjournal.535


References
Allen J, Somerfield P (2009). A multivariate approach to model skill assessment. Journal of MarineSystems 76, 83–94. https://doi.org/10.1016/j.jmarsys.2008.05.009. URL: http:

//www.sciencedirect.com/science/article/pii/S0924796308001152.Auger-Méthé M, Clair CCS, Lewis MA, Derocher AE (2011). Sampling rate and misidentificationof Lévy and non-Lévy movement paths: comment. Ecology 92, 1699–1701. https://doi.org/
10.1890/10- 1704.1. URL: http://doi.wiley.com/10.1890/10- 1704.1 (visited on12/02/2022).Auger-Méthé M, Newman K, Cole D, Empacher F, Gryba R, King AA, Leos-Barajas V, Mills Flem-ming J, Nielsen A, Petris G, Thomas L (2021). A guide to state–spacemodeling of ecological timeseries. Ecological Monographs 91, e01470. https://doi.org/10.1002/ecm.1470. (Visitedon 04/15/2024).Avgar T, Deardon R, Fryxell JM (2013). An empirically parameterized individual based model ofanimal movement, perception, and memory. Ecological Modelling 251, 158–172. https://doi.
org/10.1016/j.ecolmodel.2012.12.002. URL: http://linkinghub.elsevier.com/
retrieve/pii/S0304380012005686 (visited on 01/06/2014).Barbu VS, Limnios N (2008). Semi-Markov Chains and Hidden Semi-Markov Models toward Appli-cations. Springer. https://doi.org/10.1007/978-0-387-73173-5_3.Bertrand S, Bertrand A, Guevara-Carrasco R, Gerlotto F (2007). Scale-Invariant Movements ofFishermen: The Same Foraging Strategy as Natural Predators. Ecological Applications 17, 331–337. https://doi.org/10.1890/06-0303.Bez N (2024a). nicobez/H-S-MM_MSA: MSA (v1.0.1). Zenodo. https : / / doi . org / 10 . 5281 /
zenodo.10678877.Bez N (2024b). nicobez/H-S-MM_paper_figures: figures (V1.0.0). Zenodo. https://doi.org/10.
5281/zenodo.10679448.Bez N, Walker E, Gaertner D, Rivoirard J, Gaspar P (2011). Fishing activity of tuna purse seinersestimated from vessel monitoring system (VMS) data. Canadian Journal of Fisheries and AquaticSciences 68, 1998–2010. https://doi.org/10.1139/f2011-114. (Visited on 11/18/2022).Dempster AP, Laird NM, Rubin DB (1977).Maximum Likelihood from Incomplete Data Via the EMAlgorithm. Journal of the Royal Statistical Society: Series B (Methodological) 39, 1–22. https:
//doi.org/10.1111/j.2517-6161.1977.tb01600.x. (Visited on 12/02/2022).Edelhoff H, Signer J, Balkenhol N (2016). Path segmentation for beginners: an overview of currentmethods for detecting changes in animal movement patterns. Movement Ecology 4, 21. https:
//doi.org/10.1186/s40462-016-0086-5.Gerritsen H, Lordan C (2011). Integrating vessel monitoring systems (VMS) data with daily catchdata from logbooks to explore the spatial distribution of catch and effort at high resolution. ICESJournal of Marine Science 68, 245–252. https : / / doi . org / 10 . 1093 / icesjms / fsq137.(Visited on 11/18/2022).Glennie R, Adam T, Leos-Barajas V, Michelot T, Photopoulou T, McClintock BT (2023). HiddenMarkov models: Pitfalls and opportunities in ecology. Methods in Ecology and Evolution 14, 43–56. https://doi.org/10.1111/2041-210X.13801. (Visited on 04/15/2024).Gloaguen P, Mahevas S, Rivot E, Woillez M, Guitton J, Vermard Y, Etienne MP (2015). An au-toregressive model to describe fishing vessel movement and activity. Environmetrics 26, 17–28.
https://doi.org/10.1002/env.2319.Guédon Y (2003). Estimating Hidden Semi-Markov Chains from Discrete Sequences. Journal of Com-putational andGraphical Statistics 12, 604–639. https://doi.org/10.1198/1061860032030.URL: http://www.jstor.org/stable/1391041.Hellinger E (1909). Neue Begründung der Theorie quadratischer Formen von unendlichvielen Verän-derlichen. Journal für die reine und angewandte Mathematik 1909, 210–271. https://doi.
org/10.1515/crll.1909.136.210. (Visited on 12/02/2022).Hoek J, Elliott RJ (2018). Introduction to Hidden Semi-MarkovModels. Cambridge University Press.
https://doi.org/10.1017/9781108377423.

Nicolas Bez et al. 33

Peer Community Journal, Vol. 5 (2025), article e38 https://doi.org/10.24072/pcjournal.535

https://doi.org/10.1016/j.jmarsys.2008.05.009
http://www.sciencedirect.com/science/article/pii/S0924796308001152
http://www.sciencedirect.com/science/article/pii/S0924796308001152
https://doi.org/10.1890/10-1704.1
https://doi.org/10.1890/10-1704.1
http://doi.wiley.com/10.1890/10-1704.1
https://doi.org/10.1002/ecm.1470
https://doi.org/10.1016/j.ecolmodel.2012.12.002
https://doi.org/10.1016/j.ecolmodel.2012.12.002
http://linkinghub.elsevier.com/retrieve/pii/S0304380012005686
http://linkinghub.elsevier.com/retrieve/pii/S0304380012005686
https://doi.org/10.1007/978-0-387-73173-5_3
https://doi.org/10.1890/06-0303
https://doi.org/10.5281/zenodo.10678877
https://doi.org/10.5281/zenodo.10678877
https://doi.org/10.5281/zenodo.10679448
https://doi.org/10.5281/zenodo.10679448
https://doi.org/10.1139/f2011-114
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1186/s40462-016-0086-5
https://doi.org/10.1186/s40462-016-0086-5
https://doi.org/10.1093/icesjms/fsq137
https://doi.org/10.1111/2041-210X.13801
https://doi.org/10.1002/env.2319
https://doi.org/10.1198/1061860032030
http://www.jstor.org/stable/1391041
https://doi.org/10.1515/crll.1909.136.210
https://doi.org/10.1515/crll.1909.136.210
https://doi.org/10.1017/9781108377423
https://doi.org/10.24072/pcjournal.535


Johnson MJ, Willsky AS (2013). Bayesian Nonparametric Hidden Semi-Markov Models. Journal ofMachine Learning Research 14, 673–701. URL: http://jmlr.org/papers/v14/johnson13a.
html.Jonsen I, Basson M, Bestley S, Bravington M, Patterson T, Pedersen M, Thomson R, Thygesen U,Wotherspoon S (2013). State-space models for bio-loggers: A methodological road map. DeepSea Research Part II: Topical Studies in Oceanography 88-89, 34–46. https://doi.org/10.
1016/j.dsr2.2012.07.008. (Visited on 11/18/2022).Joo R, Bertrand S, Tam J, Fablet R (2013). Hidden markov models: the best models for forager move-ments? PloS one 8, e71246. https://doi.org/10.1371/journal.pone.0071246. (Visitedon 01/06/2014).Katara I, Silva A (2017). Mismatch between VMS data temporal resolution and fishing activity timescales. Fisheries Research 188, 1–5. https://doi.org/10.1016/j.fishres.2016.11.023.(Visited on 12/02/2022).Langrock R, King R,Matthiopoulos J, Thomas L, FortinD,Morales JM (2012). Flexible and practicalmodeling of animal telemetry data: hidden Markov models and extensions. Ecology 93, 2336–2342. https://doi.org/10.1890/11-2241.1. (Visited on 12/09/2013).Lantuéjoul C (1991). Ergodicity and integral range. Journal of Microscopy 161, 387–403. https:
//doi.org/10.1111/j.1365-2818.1991.tb03099.x.Lynch DR, McGillicuddy DJJ, Werner FE (2009). Skill assessment for coupled biological/physicalmodels of marine systems. Journal of Marine Systems 76, 1–3. https://doi.org/10.1016/j.
jmarsys.2008.05.002. (Visited on 07/12/2023).McClintock BT (2021).Worth the effort? A practical examination of random effects in hiddenMarkovmodels for animal telemetry data. Methods in Ecology and Evolution 12, 1475–1497. https:
//doi.org/10.1111/2041-210X.13619. (Visited on 04/15/2024).McClintock BT, King R, Thomas L, Matthiopoulos J, McConnell BJ, Morales JM (2012). A generaldiscrete-timemodeling framework for animalmovement usingmultistate randomwalks. EcologicalMonographs 82, 335–349. https://doi.org/10.1890/11-0326.1.McClintock BT, Langrock R, Gimenez O, Cam E, Borchers DL, Glennie R, Patterson TA (2020).Uncovering ecological state dynamics with hidden Markov models. Ecology Letters 23, 1878–1903. https://doi.org/10.1111/ele.13610. (Visited on 11/18/2022).Mendo T, Smout S, Russo T, D’Andrea L, James M (2019). Effect of temporal and spatial resolutionon identification of fishing activities in small-scale fisheries using pots and traps. ICES Journal ofMarine Science 76. Ed. by Christos Maravelias, 1601–1609. https://doi.org/10.1093/
icesjms/fsz073. (Visited on 12/02/2022).Morales JM, Haydon DT, Frair J, Holsinger KE, Fryxell JM (2004). Extractingmore out of relocationdata: building movement models as mixtures of random walks. Ecology 85, 2436–2445. https:
//doi.org/10.1890/03-0269. (Visited on 12/02/2022).Nettle D, GibsonMA, Lawson DW, Sear R (2013).Human behavioral ecology: current research andfuture prospects. Behavioral Ecology 24, 1031–1040. https://doi.org/10.1093/beheco/
ars222. (Visited on 12/02/2022).O’Connell J, Højsgaard S (2011). Hidden Semi Markov Models for Multiple Observation Sequences:The mhsmm Package for R. Journal of Statistical Software 39. https://doi.org/10.18637/
jss.v039.i04. (Visited on 12/02/2022).Owen-Smith N, Fryxell JM, Merrill EH (2010). Foraging theory upscaled: the behavioural ecologyof herbivore movement. Philosophical Transactions of the Royal Society B: Biological Sciences365, 2267–2278. https://doi.org/10.1098/rstb.2010.0095. URL: http://rstb.
royalsocietypublishing.org/content/365/1550/2267.abstract.Peyrard N (2025). An empirical study on the impact of neglecting dependencies in the observed orthe hidden layer of a H(S)MMmodel on decoding performances. Peer Community inMathematicaland Computational Biology. https://doi.org/10.24072/pci.mcb.100316.Pohle J, Langrock R, Beest FM, Schmidt NM (2017). Selecting the Number of States in HiddenMarkov Models: Pragmatic Solutions Illustrated Using Animal Movement. Journal of Agricultural,Biological and Environmental Statistics 22, 270–293. https://doi.org/10.1007/s13253-
017-0283-8. (Visited on 12/02/2022).

34 Nicolas Bez et al.

Peer Community Journal, Vol. 5 (2025), article e38 https://doi.org/10.24072/pcjournal.535

http://jmlr.org/papers/v14/johnson13a.html
http://jmlr.org/papers/v14/johnson13a.html
https://doi.org/10.1016/j.dsr2.2012.07.008
https://doi.org/10.1016/j.dsr2.2012.07.008
https://doi.org/10.1371/journal.pone.0071246
https://doi.org/10.1016/j.fishres.2016.11.023
https://doi.org/10.1890/11-2241.1
https://doi.org/10.1111/j.1365-2818.1991.tb03099.x
https://doi.org/10.1111/j.1365-2818.1991.tb03099.x
https://doi.org/10.1016/j.jmarsys.2008.05.002
https://doi.org/10.1016/j.jmarsys.2008.05.002
https://doi.org/10.1111/2041-210X.13619
https://doi.org/10.1111/2041-210X.13619
https://doi.org/10.1890/11-0326.1
https://doi.org/10.1111/ele.13610
https://doi.org/10.1093/icesjms/fsz073
https://doi.org/10.1093/icesjms/fsz073
https://doi.org/10.1890/03-0269
https://doi.org/10.1890/03-0269
https://doi.org/10.1093/beheco/ars222
https://doi.org/10.1093/beheco/ars222
https://doi.org/10.18637/jss.v039.i04
https://doi.org/10.18637/jss.v039.i04
https://doi.org/10.1098/rstb.2010.0095
http://rstb.royalsocietypublishing.org/content/365/1550/2267.abstract
http://rstb.royalsocietypublishing.org/content/365/1550/2267.abstract
https://doi.org/10.24072/pci.mcb.100316
https://doi.org/10.1007/s13253-017-0283-8
https://doi.org/10.1007/s13253-017-0283-8
https://doi.org/10.24072/pcjournal.535


Poritz A (1982). Linear predictive hidden Markov models and the speech signal. Proc.ICASSP ’82.pp.1291-1294, Paris, France, May 1982. https://doi.org/10.1109/icassp.1982.1171633.R Core Team (2022). R: A Language and Environment for Statistical Computing. R Foundation forStatistical Computing. Vienna, Austria. URL: https://www.R-project.org/.Rabiner L (1989).A tutorial on hiddenMarkovmodels and selected applications in speech recognition.Proceedings of the IEEE 77, 257–286. https://doi.org/10.1109/5.18626. (Visited on12/02/2022).Saporta G (1990). Probabilités, analyses des données et statistique. Technip.Schwager M, Anderson DM, Butler Z, Rus D (2007). Robust classification of animal tracking data.Computers and Electronics in Agriculture 56, 46–59. https://doi.org/10.1016/j.compag.
2007.01.002. (Visited on 12/02/2022).Sonia Malefaki ST, Limnios N (2010). An EM and a Stochastic Version of the EM Algorithm for Non-parametric Hidden Semi-Markov Models. Communications in Statistics - Simulation and Compu-tation 39, 240–261. https://doi.org/10.1080/03610910903411185.SurM, Suffredini T,Wessells SM, BloomPH, LanzoneM, Blackshire S, Sridhar S, Katzner T (2017).Improved supervised classification of accelerometry data to distinguish behaviors of soaring birds.PLOS ONE 12, e0174785. https://doi.org/10.1371/journal.pone.0174785.Thums M, Bradshaw CJ, Hindell MA (2008). A validated approach for supervised dive classificationin diving vertebrates. Journal of Experimental Marine Biology and Ecology 363, 75–83. https:
//doi.org/10.1016/j.jembe.2008.06.024.Vermard Y, Rivot E, Mahévas S, Marchal P, Gascuel D (2010). Identifying fishing trip behaviourand estimating fishing effort from VMS data using Bayesian Hidden Markov Models. EcologicalModelling 221, 1757–1769. https://doi.org/10.1016/j.ecolmodel.2010.04.005.Yaglom A (1987). Correlation Theory of Stationary and Related Random Functions. Springer.Zucchini W, MacDonald IL (2009). Hidden Markov models for time series: an introduction using R.Monographs on statistics and applied probability 110. CRC Press. https://doi.org/10.
1201/9781420010893.

Nicolas Bez et al. 35

Peer Community Journal, Vol. 5 (2025), article e38 https://doi.org/10.24072/pcjournal.535

https://doi.org/10.1109/icassp.1982.1171633
https://www.R-project.org/
https://doi.org/10.1109/5.18626
https://doi.org/10.1016/j.compag.2007.01.002
https://doi.org/10.1016/j.compag.2007.01.002
https://doi.org/10.1080/03610910903411185
https://doi.org/10.1371/journal.pone.0174785
https://doi.org/10.1016/j.jembe.2008.06.024
https://doi.org/10.1016/j.jembe.2008.06.024
https://doi.org/10.1016/j.ecolmodel.2010.04.005
https://doi.org/10.1201/9781420010893
https://doi.org/10.1201/9781420010893
https://doi.org/10.24072/pcjournal.535

