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ABSTRACT. Fourier filtering wavefront sensors (WFSs) are a class of highly sensitive sensors
that can significantly enhance adaptive optics (AO) performance, particularly in
low-flux regimes. However, their nonlinear behavior limits their effectiveness for
measuring high-amplitude phases. This paper presents a method for characterizing
the nonlinearity of Fourier filtering WFSs within the widely used matrix formalism.
The nonlinearity arises from an over-modulation effect depending on the phase
being measured. Consequently, the matrix describing the sensor outside its linearity
range must also depend on this phase. We first propose a theoretical framework,
derived from light propagation equations, to construct a reconstructor capable of
accounting for the WFS’s nonlinear responses. This analytical approach yields
an exact expression for the reconstructor within the matrix formalism, referred to
as the specific matrix, as it depends on the phase to be measured, which makes
it impractical to use. Therefore, a portion of the paper is dedicated to deriving an
approximation of the specific matrix. A method for approximating the specific matrix
using data fusion with a focal plane camera is introduced. Simulation results dem-
onstrate the efficacy of this approach when applied to a nonlinear WFS, such as the
unmodulated pyramid WFS, under challenging seeing conditions (up to 1.3″).
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1 Introduction
The angular resolution of ground-based telescopes depends, among other factors, on the perfor-
mance of their adaptive optics (AO) systems. Specifically, the capabilities of the deformable
mirror (DM) and wavefront sensor (WFS) are essential in measuring and correcting phase
aberrations caused by atmospheric turbulence. We focus on a particular class of WFSs known
as Fourier filtering WFSs. These include, for example, the pyramid WFS (PWFS)1 and its var-
iants,2–5 whether modulated or not, as well as Zernike WFS.6–8 The interest in these sensors arises
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from their excellent noise propagation properties and their designation as the WFSs of choice for
the AO systems in future Extremely Large Telescopes (ELTs).

In AO, the measurement process can be described as follows: the incident phase enters the
optical system of the WFS. The electromagnetic field then propagates through the system before
being detected by a 2D sensor. During detection, noise (such as readout noise or photon noise)
may be added to the signal. The resulting “signal plus noise,” now a digital quantity, is passed
through a numerical operator known as the reconstructor, R, which inverts it to estimate the
phase. To meet the real-time constraints of an AO system, the reconstructor R is typically
assumed to be linear. Mathematically, this process can be expressed as

EQ-TARGET;temp:intralink-;e001;114;628s ¼ hðϕÞþNoise; (1)

EQ-TARGET;temp:intralink-;e002;114;593ϕ̂ ¼ R½hðϕÞþNoise�; (2)

where s is the signal, h is a function of the phase ϕ, and ϕ̂ is the estimated phase.
Assuming a linear operator, the estimation error can be written as

EQ-TARGET;temp:intralink-;e003;114;559ϵ ¼ ϕ̂ − ϕ; (3)

EQ-TARGET;temp:intralink-;e004;114;521¼R½Noise� þ ðR½hðϕÞ� − Identity½ϕ�Þ: (4)

If h is invertible, the reconstructor R becomes h−1, yielding

EQ-TARGET;temp:intralink-;e005;114;502R ¼ h−1 → Rh ¼ Identity: (5)

In this case, the only source of error arises from the propagation of noise through the recon-
structor. This noise propagation has been widely studied9,10 and is closely linked to the sensitivity
of the WFS, which should be maximized to improve the signal-to-noise ratio.7,11,12

However, another significant source of error arises when the input-output model of the WFS,
given by Eq. (1), is not correct. If the model does not accurately represent the system, the rela-
tionship can be expressed as

EQ-TARGET;temp:intralink-;sec1;114;405s ¼ h 0ðϕÞþNoise ≠ hðϕÞþNoise;

where h 0 is an unknown function describing the actual system behavior, whereas h remains the
only available model. This mismatch introduces modeling errors that add to the estimation error.
Addressing these errors involves a dual challenge: constructing an accurate input-output model
of the WFS for on-sky operation and developing mathematical methods to invert the model
effectively.

Recent research into wavefront reconstruction has explored the use of artificial intelligence,
particularly those leveraging deep learning, to provide a promising middle ground between
purely analytical methods and traditional AO system calibration techniques. Neural networks
trained on extensive datasets of wavefront propagation simulations have shown the capability
to address the inherent nonlinear behavior of Fourier-based WFSs. Notable studies13–16 have
successfully employed convolutional and transformer networks to mitigate nonlinearity and
enhance reconstruction accuracy, even in open- and closed-loop systems. Specifically, these
studies demonstrated the feasibility of using a neural network to close the AO loop using an
unmodulated PWFS on an experimental bench. These advancements highlight the potential for
deep learning to enhance real-time AO system performance. Although the deep-learning
approach has shown promising results, it does not provide insights into the behavior of nonlinear
WFSs. Moreover, these approaches have yet to be practically implemented in on-sky applica-
tions. The limited understanding of WFS behavior, combined with the challenges of on-sky
implementation for deep-learning methods, underscores the robustness and reliability of analyti-
cal and calibration-based approaches for operational use.

An alternative approach uses the physical laws describing light propagation within the WFS
to model its behavior. Although this can yield sufficiently accurate and invertible models in some
cases, such as the PWFS1 and its iterative inversion algorithms17–19 or Zernike WFS,6 it does not
entirely eliminate modeling errors because they do not describe the effective path of light in
the WFS.
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To address this problem, most AO systems rely on a calibration approach, constructing an
“interaction matrix” that accounts for the effective light propagation from the DM to the WFS.
This method assumes linearity therefore, under this hypothesis, the function h from Eq. (1),
becomes the interaction matrix H. Two cases can be considered

1. The matrixH is partially invertible. In that case, the reconstructor will be the pseudo-inverse
of the matrix H: R ¼ H† ¼ ðHtHÞ−1Ht. Two cases arise: (i) no eigenmodes are filtered in
the process, leading to the correction of all controlled modes. The only source of noise is the
noise or (ii) eigenmodes are filtered in the inversion, which adds an estimation error.

2. The matrix H only describes the input/output relationship in a specific phase regime.

Unfortunately, these points will lead to modeling and reconstruction errors, as representing
the behavior of a WFS with a matrix assumes that the sensor responds linearly to the incident
phase. Although this assumption is valid for some sensors over a large range of phase ampli-
tude,20 it appears that most WFSs, especially the Fourier filtering WFSs,3 have signals inherently
nonlinear with respect to the phase.

1.1 Outline
This paper aims to unify the matrix formalism with the inherent nonlinearity of Fourier filtering
WFSs within a single coherent framework. Specifically, we demonstrate how the behavior of
these WFSs can be described using a matrix, regardless of the amplitude of the incoming phase.
Furthermore, we show how this formalism can enhance the reconstruction process by providing
an accurate estimate of the optimal reconstructor, R.

Section 2 introduces the nonlinearity of Fourier filtering WFSs and its effects on phase esti-
mation. This discussion establishes the fundamental characteristics of the target reconstructor to
be computed. The reconstructor is defined as the matrix that best represents the WFS response
within the given phase regime.

In Sec. 3, the analytical expression for the matrix that accurately captures the nonlinearity of
Fourier filtering WFSs is presented. This matrix, called the “specific matrix”, is shown to depend
on the phase being measured. Its dependence on the phase (which is the unknown) makes it
impractical for implementation.

Therefore, in Sec. 4, we propose a method to approximate the specific matrix. The proposed
approach is based on data fusion and enables the derivation of a reconstructor—the hybrid
reconstructor—that closely approximates the specific matrix. This section provides a simula-
tion-based demonstration of this method using an AO system akin to that of the Very Large
Telescope (VLT).

2 Handling the Nonlinearity of the Fourier Filtering Wavefront
Sensors

2.1 General Framework of Fourier Filtering Wavefront Sensing
Fourier filtering WFSs use an object placed in the Fourier (or focal) plane, referred to as the
filtering mask, to convert phase fluctuations of the incoming light into intensity variations in
the subsequent pupil plane (see Fig. 1).

For instance, in the case of a PWFS, the filtering process is supplemented by a modulation
stage.1 This consists of a mirror in the pupil plane that cyclically applies a tip/tilt aberration to the
incoming light. This additional degree of freedom, represented by a weighting function w,21

was introduced to expand the sensor’s linear range. The weighting function encodes the path
of the Point Spread Function (PSF) on the focal plane due to tip/tilt modulation.

The following notations are adopted in this framework:

• IP: The telescope’s pupil indicator function, which equals 1 within the pupil and 0 outside.
• w: The modulation weighting function, normalized to 1 for energy conservation.
• m: The transparency function of the filtering mask, constrained by jmj < 1.
• ϕr: The reference phase, around which the system operates. For simplicity, we will assume

that the reference phase is zero.
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• ϕ: The incident phase, expressed as ϕ ¼ δϕþϕr, where δϕ denotes the difference between
the incident and reference phase.

• IðϕÞ: The intensity detected at the WFS output for a given phase ϕ.

Using these notations, the intensity at the detector can be formulated as a function of the
incident phase and WFS parameters using the diffraction laws as in21

EQ-TARGET;temp:intralink-;e006;114;474IðϕÞj ~R ¼
Z
R4

d2~r 0d2~rIPj~r 0IPj~reιðϕj~r 0−ϕj~rÞm̂j ~R−~r 0 ¯̂mj ~R−~rŵj~r 0−~r; (6)

where ~r 0; ~r and ~R are the 2D spatial variables. :̂ is the Fourier transform, and :̄ the complex
conjugate.

To work around the operating point, a tare operation is performed on the intensity data. This
involves subtracting the reference intensity, yielding the “reduced intensity,” defined as

EQ-TARGET;temp:intralink-;e007;114;391ΔIðδϕ;ϕrÞ ≡ IðϕÞ − IðϕrÞ; (7)

EQ-TARGET;temp:intralink-;e008;114;356¼IðδϕþϕrÞ − IðϕrÞ: (8)

This reduced intensity may be expressed as a function of the WFS parameters as in21

EQ-TARGET;temp:intralink-;e009;114;337ΔIðδϕ;ϕrÞj ~R ¼
Z
R4

d2~r 0d2~rIPj~r 0IPj~reıðϕrj~r 0−ϕrj~rÞm̂j ~R−~r 0 ¯̂mj ~R−~rŵj~r 0−~rðeıðδϕj~r 0−δϕj~rÞ − 1Þ: (9)

This equation serves as the input-output relationship for the WFS. Estimating the phase
depends on the ability to invert this relation, i.e., to determine the phase being measured δϕ
as a function of the reduced intensity, ΔIðδϕ;ϕrÞ.

2.2 One-Dimension Toy Model
To simplify the analysis, we use a 1D model to illustrate the matrix formalism. In this model (see
Fig. 2), the incident phase ϕ, the phase being measured δϕ, and the reference phase ϕr are treated
as real scalars, denoted as x, δx, and xr, respectively. Similarly, the intensity I is simplified to a
scalar function f. The correspondences are as follows:
EQ-TARGET;temp:intralink-;sec2.2;114;192

ϕ ↔ x;

δϕ ↔ δx;

ϕr ↔ xr;

IðϕÞ ↔ fðxÞ:
In this 1D model, the WFS output, i.e., the reduced intensity, becomes

EQ-TARGET;temp:intralink-;e010;114;107ΔIðδϕ;ϕrÞ ↔ fðxr þ δxÞ − fðxrÞ: (10)

To mimic the behavior of Fourier filtering WFSs, the function f is assumed to be positive,
nonlinear, and saturating, as shown by the black curve in Fig. 2.

Fig. 1 Schematic view (in 1D) of a Fourier filtering optical system.
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2.2.1 Linear modelling of Fourier filtering WFS

Returning to the equation of propagation, the input–output relationship can be approximated
within a linear framework, as demonstrated in Ref. 22. This approach is valid only around the
reference phase ϕr, where small phase variations (δϕ ≪ 1) allow for the linearization of Eq. (6).
The linearized expression for the reduced intensity is

EQ-TARGET;temp:intralink-;e011;117;438ΔIðδϕ;ϕrÞlinj ~R ¼
Z
R2

d2~rðIPj~rδϕj~rÞ2 Im
�
¯̂mj ~R−~r

Z
R2

d2~r 0IPj~r 0m̂j ~R−~r 0ŵj~r 0−~reıðϕrj~r 0−ϕrj~rÞ
�
: (11)

To invert this relationship, the usual technique is to perform a very low amplitude push–pull
for each phase, fΦig, around the reference phase and to collect the differential intensities into the
matrix known as the interaction matrix, M
EQ-TARGET;temp:intralink-;e012;117;364

Mi ≡
Iðϕr þ εΦiÞ − Iðϕr − εΦiÞ

2ε
with ε ≪ 1

¼ ΔIðεΦi;ϕrÞ − ΔIð−εΦi;ϕrÞ
2ε

¼ ΔIlinðεΦi;ϕrÞ − ΔIlinð−εΦi;ϕrÞ
2ε

; (12)

This yields

EQ-TARGET;temp:intralink-;e013;117;264ΔIðδϕ;ϕrÞlin ¼ MaðδϕÞ; (13)

where aðδϕÞ is a vector corresponding to the projection of the phase to be measured on the
fΦig basis.

The reconstructor R is then the pseudo-inverse of M. The following relation:

EQ-TARGET;temp:intralink-;e014;117;205aðδϕÞ ¼ M†ΔIðδϕ;ϕrÞlin; (14)

constitutes an estimation of the phase from the reduced intensities when δϕ is in the linear regime
of the WFS.

For the 1D model, M corresponds to the derivative of f at xr, expressed as

EQ-TARGET;temp:intralink-;e015;117;145Mð0;ϕrÞ ↔ f 0ðxrÞ: (15)

In Fig. 2, the blue line represents the linearization of f around xr, whereas the scalar pseudo-
inverse of M becomes the inverse of the function f as follows:

Fig. 2 One-dimensional representation of the input-output WFS relation (black curve). Classic
linear modeling of the WFS around its operating point (blue curve). Linear modeling of the WFS
for the phase-to-be-measured δx (red curve).
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EQ-TARGET;temp:intralink-;e016;114;736Mð0;ϕrÞ† ↔
1

f 0ðxrÞ
: (16)

Applying this reconstructor to estimate δx, we find

EQ-TARGET;temp:intralink-;e017;114;693δ̃x ¼ 1

f 0ðxrÞ
½fðxr þ δxÞ − fðxrÞ�: (17)

However, the linear model leads to errors when δx moves away from xr. These errors
typically result in an underestimation of δx, consistent with the underestimation observed in
practice (see Sec. 4.1.1 for the optical gain (OG) discussion).

2.3 Modelling/Reconstruction Error Outside the Linear Regime
The reconstructor M† provides accurate phase estimation when the phase amplitude is small
relative to the reference phase (δϕ ≪ 1). However, as the phase amplitude increases, the linear
approximation of the reduced intensity is no longer valid, andM† fails to estimate δϕ accurately.
This limitation arises from the intrinsic nonlinearity of Fourier filtering WFSs, specifically due to
the term: ðδϕj~r 0 − δϕj~rÞ − 1 from Eq. (6). This nonlinearity introduces errors in the modeling and
reconstruction processes, manifesting in two distinct ways as δϕ increases

• Sensitivity loss and underestimation: nonlinearity causes a reduction in the WFS’s sensi-
tivity. This phenomenon is characterized by modal coefficients forming a diagonal matrix
known as the OG matrix.23 Although various methods exist to correct this sensitivity
loss,24–26 they tend to lose accuracy as the phase amplitude increases.

• Mode coupling: when the phase amplitude is large, nonlinearity induces cross-talk between
modes. This means each mode fΦig is no longer estimated independently; instead, its

estimation is distorted by the presence of other modes in δ̂ϕ.

2.4 Specific Matrix
This work aims to show that it is possible to address the modeling and reconstruction errors
caused by nonlinearity while remaining within the matrix formalism. The key challenge is to
determine the matrix that accurately represents the behavior of the WFS when measuring δϕ,
regardless of its amplitude. Because nonlinearity can be viewed as self-modulation (cf Sec. 2.6),
which alters the sensitivity of the WFS, the matrix must depend on the phase being measured.
For this reason, the matrix is called the “specific matrix” and is a function of both the reference
phase ϕr and the measured phase δϕ.

The specific matrix, Mðδϕ;ϕrÞ, satisfies the following relationship:

EQ-TARGET;temp:intralink-;e018;114;311ΔIðδϕ;ϕrÞ ¼ Mðδϕ;ϕrÞaðδϕÞ; (18)

where Mðδϕ;ϕrÞ is the matrix that best describes the WFS response for the given phase regime.
In the linear case, Mðδϕ;ϕrÞ reduces to the interaction matrix M, and the reconstructor R
becomes its pseudo-inverse. Outside the linear regime, the following relation:

EQ-TARGET;temp:intralink-;e019;114;252aðδϕÞ ¼ Mðδϕ;ϕrÞ†ΔIðδϕ;ϕrÞ; (19)

which ensures an accurate estimation of δϕ from the reduced intensity, regardless of the phase
amplitude.

Under this framework, the pseudo-inverse of the specific matrix provides an accurate recon-
struction of the controlled modes of the phase δϕ, with the remaining error attributed solely to
aliasing, which is negligible when using Fourier filtering WFSs.27,28

2.5 One-Dimension Toy Model to Obtain the Expression of the Specific Matrix
To understand the concept of the specific matrix, consider the 1D model. For exact phase
estimation, the linearization around the reference phase (blue curve in Fig. 2) must be replaced
by a linearization at the measurement point δxþ xr (red curve in Fig. 2). This curve is locally
linear and, therefore, invertible. Its slope corresponds to the 1D equivalent of the specific
matrix
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EQ-TARGET;temp:intralink-;e020;117;736Mðδϕ;ϕrÞ ↔
fðxr þ δxÞ − fðxrÞ

δx
: (20)

This rate of change, which depends on δx, captures the behavior of the WFS for the specific
phase being measured. In mathematical terms, this can be expressed as

EQ-TARGET;temp:intralink-;e021;117;683

fðxr þ δxÞ − fðxrÞ
δx

¼
Z

1

0

dtf 0ðxr þ tδxÞ: (21)

Extending this to the full WFS framework, where derivatives in 1D correspond to push–pull
interaction matrices [see Eq. (15)], the specific matrix becomes

EQ-TARGET;temp:intralink-;e022;117;621Mðδϕ;ϕrÞ ¼
Z

1

0

dtMð0; tδϕþϕrÞ: (22)

For the full mathematical demonstration of the specific matrix, the reader may refer to
Appendix.

In practice, this integral can be approximated using a discrete sum over n evenly spaced steps

EQ-TARGET;temp:intralink-;e023;117;549Mnðδϕ;ϕrÞ ≡
1

n

Xn
i¼1

M
�
0;

i
nþ 1

δϕþϕr

�
: (23)

2.6 Physical Interpretation
The specific matrix provides a linear representation of the WFS response for any phase ampli-
tude. It is not an interaction matrix but an average of push–pull matrices computed at various
operating points along the path from the reference phase ϕr to the measured phase ϕ ¼ ϕr þ δϕ.

This averaging process can be interpreted as a form of modulation or self-modulation. In
traditional tip/tilt modulation, the interaction matrix is averaged over variable operating points
induced by tip/tilt phases. Thus, the resulting interaction matrix is the sum of incoherent propa-
gation. Similarly, by averaging push–pull matrices computed at different operating points, the
specific matrix is also the result of an incoherent sum. Thus, the specific matrix represents the
effect of self-modulation, capturing the changes in sensitivity caused by the wavefront itself.

3 First Results Using the Specific Matrix
Although the specific matrix formalism can be applied to any Fourier filteringWFSs, our focus in
this study is on the PWFS. This choice is motivated by the PWFS being the most widely used
Fourier filtering WFSs in current AO systems. Furthermore, the PWFS is expected to play a
crucial role in the next generation of AO systems, making it a relevant and practical choice for
our simulations and analysis.

By employing the numerical approximation of the specific matrix, as described in Eq. (23),
it becomes feasible to evaluate its ability to characterize the behavior of the WFS within the
intensity space. To achieve this, Fig. 3 compares the end-to-end (E2E) reduced intensity of
an unmodulated PWFS considering a high-amplitude phase δϕ, following the Kolmogorov
statistics, to intensity patterns obtained using different linear models based on various matrices:

• Interaction matrix:Mδϕ ¼ ΔIðδϕÞ, representing the classic approach using the interaction
matrix around the reference phase ϕr.

• Push–pull matrix around the phase:Mð0; δϕþϕrÞδϕ ¼ ΔIðδϕÞ, which employs the push–
pull matrix around the phase being measured, Mð0; δϕþϕrÞ. This matrix corresponds to
an intuitive linear approximation of the input-output relationship and corresponds to the
green dashed curve in Fig. 2.

• Average matrix:Mavδϕ ¼ ΔIðδϕÞ, defined as the average of the interaction and push–pull
around the phase being measured matrices Mav ¼ 1

2
ðMþMð0; δϕþϕrÞÞ. This matrix

serves as a compromise between the two aforementioned reconstructors.
• Specific matrix approximation: Mnðδϕ;ϕrÞδϕ ¼ ΔIðδϕÞ, based on linear models con-

structed from approximations of the specific matrix Mnðδϕ;ϕrÞ, where n indicates the
number of push–pull matrices used in the numerical computation (e.g., n ∈ ½1;5; 10;20�).
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For these simulations, the reference phase ϕr is set to zero, and its contribution is omitted
from the matrix expressions. Each reconstructor is computed using the Moore-Penrose
algorithm29,30 to derive the pseudo-inverse of the respective matrices. The WaveFront Error
(WFE) is then evaluated for the controlled modes.

The simulation parameter can be found in Table 1.
These simulations demonstrate the following key insights:

• The classic linear interaction matrix, M, fails to accurately reproduce the WFS intensity
[see Fig. 3(b), red dashed line] due to the WFS operating outside its linear regime.
Consequently, its pseudo-inverse leads to substantial phase reconstruction errors, as shown
in Table 2.

Table 1 Simulation parameters.

Telescope 8 m

Pupil resolution 160 × 160 pixels

Phase basis 1000 Karhunen-Loève (KL) modes

Sensing path λ ¼ 850 nm - 40 × 40 subpupils in D

Fig. 3 (a) Input phase δϕ: amplitude 1.51 rad RMS and E2E intensity; (b) intensity cut obtained
withM andMð0; δϕÞ; (c) intensity cut obtained with andMav ,M1,M5, andM20. Top: Input phase and
corresponding E2E intensity. Middle: Intensity cuts obtained with the interaction matrix M in rad
dashed and with the push–pull matrix around the phase Mð0; δϕÞ in blue. Bottom: Intensity cuts
obtained with the average matrix Mav in yellow dashed and with the different approximation of the
specific matrix Mn with n ∈ f1; 5; 20g.

Table 2 WFE in radian RMS using different reconstructors. The reference phase equals zero.
The incident phase is shown in Fig. 3(a), and its RMS norm is 1.51 rad RMS.

Reconstructor M† Mð0; δϕÞ† M†
av M†

1 M†

5 M†

10 M†

20

WFE (rad RMS) 0.98 0.84 0.54 0.42 0.13 0.07 0.04
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• The push–pull matrix around the phase, Mð0; δϕÞ [see Fig. 3(b), blue dashed line], also
fails to accurately replicate the E2E intensity, resulting in poor phase estimation perfor-
mance (see Table 2).

• The average matrix,Mav, offers a marked improvement [see Fig. 3(c), yellow dashed line],
achieving a better approximation of the WFS intensity. Its pseudo-inverse reduces the WFE
by almost half compared with the interaction matrix (see Table 2), yielding results com-
parable to those achieved by the matrix M1, which is computed around the median operat-
ing point M1 ¼ Mð0; δϕ∕2Þ [see Fig. 3(c), green line].

• Increasing the number of steps, n, in the numerical computation of the discrete specific
matrix Mn further enhances the model’s accuracy. For example, using n ¼ 5, the WFE is
reduced by a factor of nearly 10 compared with the interaction matrix (see Table 2),
demonstrating the effectiveness of the specific matrix in representing the WFS’s behavior.
With n ¼ 20, the reconstructor achieves unwrapped phase estimates [see Fig. 3(c), cyan
dotted line].

It has been shown that it is possible to describe the nonlinearity of Fourier filtering WFSs in
the matrix formalism. To do this, the matrix describing the WFS outside the low-phase regime
has to depend on the phase being measured, which is the reason why this matrix is called the
specific matrix. Its analytical expression has been given and shows that the specific matrix can be
obtained as an average of push–pull matrices computed around different operating points. Such a
fact confirms that nonlinearity may be understood as self-modulation. In the next section, several
applications of this theoretical tool will be developed.

4 Practical Implementation of the Specific Matrix
This section focuses on the practical implementation of the specific matrix. Because the specific
matrix depends on knowledge of the wavefront being estimated, its practical implementation is
not feasible. The goal of this section is to develop a reconstructor that closely approximates the
specific matrix, enabling more accurate and precise phase estimation.

The first example involves approximating the specific matrix by combining the OG formal-
ism with information from a focal plane camera and a statistical approach to obtain the coupling
terms. This method aims to construct a hybrid reconstructor that integrates frame-by-frame and
statistical approaches to approximate the specific matrix at each iteration of the AO loop. Results
for a SPHERE-type AO system will be presented. The final part discusses how to implement this
tool in laboratory experiments.

4.1 Simulation of a Hybrid Phase Reconstructor
The dependency on the phase to be measured makes the practical use of the specific matrix
difficult. Our approach consists of considering the specific matrix as the target reconstructor
and exploring potential approximations that allow practical implementation. In particular, we
will start by adapting the OG formalism described below. The classical OG approach, which
generally only considers the diagonal of the gain matrix, will be completed by the knowledge
of the cross-talk terms to build a fully dense gain matrix. This allows the coupling terms to be
compensated. The challenge now consists of finding practical ways to obtain this full gain matrix
on a frame-by-frame basis as the turbulence evolves dynamically.

The OG formalism was introduced to compensate for the loss of sensitivity in operation.
To account for the change of regime between calibration and on-sky operation, the idea was to
use another push–pull matrix that best describes the regime where the reconstructor will be used.
In this manner, the new matrix is the one around the phase being measured Mð0; δϕþϕrÞ.
Yet, instead of using this full matrix, an approximation of this matrix is used. Indeed, the infor-
mation about the loss of sensitivity can be found in the diagonal of the matrix resulting from the
projection of the matrix around the phase to the command matrix, as given in the following
equations:

EQ-TARGET;temp:intralink-;e024;117;105Tð0; δϕþϕrÞ ¼ M†Mð0; δϕþϕrÞ; (24)

EQ-TARGET;temp:intralink-;e025;117;69OGð0; δϕþϕrÞ ¼ diagðTð0; δϕþϕrÞÞ: (25)
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This OG vector is then used to update the command matrix at each iteration. To make it
feasible during operation, previous studies have suggested the use of an abacus containing the
appropriate OG values depending on the observation conditions.24,25 It demonstrates the possibil-
ity of extracting the OG from the PSF image, also called a gain scheduling camera (GSC),
thereby eliminating the need for interaction matrix computation during operation. Following this
idea, we propose the use of a hybrid method, which consists of using a GSC for frame-by-frame
estimation of the modal gains, complemented by a statistical approach to estimate the coupling
terms using the specific matrix formalism.

4.1.1 Approximation of the specific matrix through the gain formalism

The initial step in constructing our hybrid reconstructor involves determining the modal gains.
The formalism used here follows the approach using the matrix formalism for obtaining the OG25

[cf Eq. (24)]. However, rather than employing the matrix computed around the operating point,
the specific matrix is used. To compute the OG from the PSF image (hereafter referred to as
OGGSC), we use the convolutional model12,25 and, in particular, Eq. (14) from Ref. 25 and
reminded here:

EQ-TARGET;temp:intralink-;sec4.1.1;114;531ti ¼ hIRϕ⋆ϕijIRcalib⋆ϕii
hIRcalib⋆ϕijIRcalib⋆ϕii

;

where ti is the diagonal term of the gain matrix, IRϕ the impulse response of the sensor around
the phase ϕ, and IRcalib the impulse response at calibration. The ⋆ stands for the convolutive
product.

A key distinction in this study is that, instead of directly using the gains derived from the
PSF, we adjust the gains. These are derived by combining the gains obtained from the GSC
(OGGSC) with those from the calibration process. Previous work has shown thatOGGSC provides
an excellent estimation of the gains arising from a push–pull operation around the phase itself.
However, we have demonstrated that the best estimation of these gains is achieved using the
specific matrix.

The OG values should be understood as representing a loss of sensitivity induced by the
wavefront itself. Consequently, accurate gains result from projecting the optimal reconstructor of
that wavefront onto the interaction matrix. Within the matrix formalism, the specific matrix
serves as the best reconstructor, as demonstrated in the previous section. Thus, the true OG must
be derived from this matrix. Furthermore, we have shown in Ref. 31 that a better estimation of the
gains is obtained from the specific matrix. An approximation for these gains can be obtained by
averaging the interaction matrix and the push–pull matrix calculated around the operating point.
This process is described as follows:
EQ-TARGET;temp:intralink-;e026;114;289

OGav ¼
1

2
ðdiagðM†MÞþ diagðM†Mð0; δϕþϕrÞÞÞ

¼ 1

2
ðdiagðIdÞþOGð0; δϕþϕrÞÞ: (26)

This represents a significant deviation from previous methods, as prior OG estimations were
not optimal. Although the impact of these differences is minor when working with small phases
(δϕ ≪ 1), it becomes significant for systems operating around large phase amplitudes.

The simulations are conducted around a flat reference wavefront, ϕr ¼ 0, which simplifies
the equations by removing the reference phase. The simulated wavefront aberrations are con-
structed using a power spectral density (PSD) model with a power-law exponent of −2.5 to
emulate AO residuals. The resulting equivalent Strehl ratio is 55% in the H band.

Figure 4(a) shows the OG obtained through various methods for a modulated PWFS with a
modulation radius of rmod ¼ 3λ∕D. The OG values derived from the specific matrix (black curve)
are higher than those obtained using the matrixMð0; δϕÞ around the residual phase (blue curve).
In addition, the OGGSC values (green curve) align well with those estimated around the current
operating point, consistent with previous results.25 Finally, the averaged OG values (yellow
curve), as computed from Eq. (26) and the adjusted OG obtained from the PSF (magenta curve),
closely match those from the specific matrix, demonstrating the validity of this approach.
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In the unmodulated case, shown in Fig. 4(b), the results are more nuanced. Although the
average gains from Eq. (26) match the specific matrix-derived OG, discrepancies appear between
OGGSC and the gains derived from the push–pull matrix around the residuals. This is attributed to
the limitations of the convolutional model, which relies on linear assumptions and cannot fully
account for the strong nonlinear behavior of the unmodulated pyramid. Nevertheless, OGGSC

aligns with low-order modes of OGð0; δϕÞ and high-order modes of OGðδϕ; 0Þ. By adjusting
OGGSC using Eq. (26), it is possible to achieve accurate estimations for low-order gains, though
high-order estimations remain less precise.

4.1.2 Coupling terms

The second step toward constructing the hybrid reconstructor involves obtaining the full gain
matrix, which includes the non-diagonal, i.e., coupling terms (cf. Sec. 2.3). The computation of
the full gain matrix relies on simulations and a statistical approach. To achieve this, we consider
a set E of residual phase screens representing various seeing conditions. Each set contains
N ¼ 20 phase screens, and for each one, a specific matrix is computed. The resulting gain
matrices are derived using Eq. (24) from the averaged specific matrices over these phase real-
izations. In this manner, several gain matrices Ti, representative of different seeing conditions,
are obtained.

An example of a full, dense gain matrix for a Strehl ratio of 42% in the H band is shown in
Fig. 5(a). This matrix provides a detailed representation of the strength of the mode couplings
under the given seeing conditions. To further illustrate this, Fig. 5(b) displays one line of the gain
matrix, normalized by its diagonal term (the OG). The coupling strength varies between a few
percent (∼1% to 2%) and higher values (up to 10% of the OG), depending on the modes
involved. Coupling is generally stronger for higher residual phases but remains proportional
to the OG.

By averaging these gain matrices across the different phase screens in the set E, it is possible
to construct a representative gain matrix hTiE for the given seeing conditions. This matrix
accounts for the statistical coupling terms and provides a practical basis for constructing the
hybrid reconstructor.

4.1.3 Hybrid reconstructor

Finally, for each residual amplitude, the average gain matrix hTiE is obtained using the method
described previously. This average matrix is subsequently updated with the OG corresponding to
the current phase realization, derived from the GSC. As a result, the reconstructor used at each
iteration closely approximates the specific matrix for the phase screen under consideration.

Fig. 4 (a) Modulated pyramid OG rmod ¼ 3λ∕D. (b) Unmodulated pyramid OG. Average OG
obtained for 20 residual phase screens. The equivalent Strehl ratio is 55% in the H band. The
OG is obtained from the different matrices OGð0; δϕÞ, OGðδϕ; 0Þ, and OGav and the focal plane
camera OGGSC. The first 500 modes are shown for clarity. The shaded area represents the stan-
dard deviation.
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This process involves normalizing the average gain matrix hTiE by its diagonal terms, result-
ing in an intermediate matrix Tint with ones on its diagonal and relative coupling strengths else-
where. This intermediate matrix is then multiplied by the updated OG values extracted from
the PSF image. The interaction matrix is subsequently updated using this dense gain matrix,
as described in the following equations:
EQ-TARGET;temp:intralink-;e027;114;434

Tint ¼
hTiE
hOGiE

;

Tupdated ¼ hTiint ×OGPSF;

Rupdated ¼ ðMTupdatedÞ†; (27)

where × denotes element-wise multiplication.
By integrating the statistical coupling terms from the averaged gain matrix with real-time

OG estimations, this hybrid approach provides a practical method to dynamically adapt the
reconstructor to the evolving turbulence. This ensures that the reconstructor remains aligned with
the optimal performance of the specific matrix.

4.2 Frame-by-Frame Estimation of Phase Residual
This section focuses on the frame-by-frame estimation of residual phase screens with increasing
amplitudes (the equivalent Strehl ratio in the H band is within the range SR ∈ ½30; 99�%).
To evaluate this, we compare the reconstruction performance using full matrices (M, Mðδϕ; 0Þ,
Mð0; δϕÞ, Mav) and the hybrid matrices. The simulation parameters can be found in Table 1,
we present the result for an unmodulated PWFS. The results are presented in Fig. 6(a), where
different matrices are computed for each phase screen.

In Fig. 6(a), it is evident that the specific matrix (black curve) provides the most accurate
results, as the WFE reaches the fitting error (cyan curve). Consistent with the results obtained in
Sec. 2, in Fig. 3(b) and in Ref. 31, the matrix computed around the residual, Mð0; δϕÞ, offers an
inaccurate phase reconstructor (blue dashed curve). To improve phase estimation, the average
matrixMav (yellow curve) ensures a systematic reduction in WFE compared with the interaction
matrix. The average matrix Mav emerges as a viable alternative to the specific matrix, requiring
less computational time and offering easier approximation through the gain formalism. As shown
in Fig. 4, the average gain OGav is accurately estimated by adjusting the gains obtained from the
PSF. These gains are closer to the real values derived from the specific matrix.

Another noteworthy reconstructor is the median matrix (M1), computed around half the
wavefront. This matrix represents the specific matrix of degree n ¼ 1, and its WFE is plotted
in magenta in Fig. 6(a). For small residuals, M1 performs comparably to Mav. However, with

Fig. 5 (a) Dense gain matrix T 1. (b) Coupling of mode KL30. Top: Full average gain matrix
obtained for a phase set whose Strehl ratio is equal to 42% in H band. Bottom: Line 30 of gain
matrices describing the coupling between the modes. The lines are normalized by the OG value.
T 1 and T 2 are the average gain matrices obtained for a set of phases whose equivalent Strehl ratio
is 85% and 42%, respectively, in the H band.
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increasing amplitude, the median matrix outperforms Mav, reducing the WFE more effectively.
The differences between M1 andMav arise from the dependence ofMav on the push–pull matrix
around the phase, Mð0; δϕÞ. As the amplitude of the phase increases, Mð0; δϕÞ becomes less
representative of the linear relationship between intensity and wavefront, introducing errors into
the estimation of Mav. Thus, in regimes of strong phase, M1, corresponding to the push–pull
matrix computed around half the wavefront, should be preferred over Mav.

Figure 6(b) depicts the results obtained using the hybrid approach. The green curve repre-
sents the WFE after estimating the phase screen with the hybrid reconstructor. In this case, the
dense gain matrix is updated with the raw OG extracted from the GSC rather than the OG
adjusted using Eq. (26). This choice was made because results without adjusting the gains were
better. In regimes of strong turbulence or when using an unmodulated PWFS, the gain extracted
from the GSC or its adjusted value either matches the specific gains of high-order modes or
low-order modes, respectively. As a result, these gains are not fully representative of the true
OG from the specific matrix due to the limitations of the convolutional approach [see Fig. 4(b)].

Although the hybrid approach does not achieve the same level of performance as the specific
matrix, it allows for a 30% reduction in WFE compared with the classical approach. Moreover,
its performance is comparable to that achieved using the median matrix M1 or the average
matrix Mav.

In addition, we performed simulations with a single gain matrix for the entire range of phase
residuals. Updating the diagonal of this matrix produced results equivalent to those obtained with
the average gain matrix at each amplitude. This demonstrates that the method robustly describes
current seeing conditions using a single gain matrix while computing the current OG from
the GSC.

The analysis of frame-by-frame estimation of phase residuals using hybrid methods inspires
confidence in applying this approach to closed-loop systems with nonlinear WFS, such as the
unmodulated PWFS. Updating the gain matrix enhances the robustness of the reconstructor,
mitigating the risk of loop divergence.

4.3 Close-Loop Using the Hybrid Reconstructor
In this section, we evaluate the performance of the hybrid reconstructor, using the method
described in the previous Sec. 4.1, in a closed-loop system with an unmodulated PWFS.
Two scenarios are considered: (i) OG compensation only and (ii) full gain compensation using
the hybrid approach. This analysis aims to understand the limitations of classical gain compen-
sation and the capacity of our reconstructor to close the loop without modulation. In addition,
it highlights the importance of the nondiagonal terms in the gain matrix, particularly for con-
vergence under strong turbulence conditions. The performance of the unmodulated PWFS is
compared with that of the classical modulated PWFS, which uses a standard interaction matrix.
The AO loop parameters employed in these simulations are listed in Table 3.

Fig. 6 (a) WFE obtained with the full matrices. (b) WFE obtained with the hybrid matrix. WFE for
residual phase screens, the equivalent Strehl ratio in the H band is within the range
SR ∈ ½30; 99�%. The shaded area represents the standard deviation.
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The gain matrix used for the unmodulated PWFS simulations is built around residuals
corresponding to a Strehl ratio of 30% in the H band. The matrix is updated using GSC
images, as described in Eq. (27). Closed-loop simulations are conducted for three different
r0 values in V-band (@500 nm): r0 ¼ f6.9; 7.9; 10g cm, corresponding to seeing conditions
of f1.5 00; 1.3 00; 1.0 00g @ 500 nm, respectively. These harsh conditions are chosen to assess the
robustness of the hybrid method.

The simulations are performed without noise, as the objective is to demonstrate the feasibil-
ity of closing the loop without modulation using the hybrid reconstructor. The star magnitude is
therefore not a concern in these simulations. An in-depth analysis of noise impact has been con-
ducted in Ref. 26, highlighting the benefits of the unmodulated PWFS for low-flux regimes due
to its higher sensitivity.

For consistency, all simulations use a fixed loop gain of g ¼ 0.4, allowing direct comparison
between reconstructors under identical loop configurations. The results, summarized in Table 4,
illustrate the residual WFE and standard deviations for 20 different atmospheric screens at each
r0 value. The average WFE is computed over the last 800 iterations of the loop.

For the median seeing condition 1″, the unmodulated PWFS performs better than the
modulated PWFS, achieving a 10-nm RMS reduction in WFE. This corresponds to a 3-point
Strehl ratio improvement in the H band (from 85% to 88%). For seeing ″, the hybrid method
achieves performance comparable to the modulated PWFS. Under stronger seeing condition
(1.5 00⇐r0 ¼ 6.9 cm), the modulated PWFS performs better than the unmodulated PWFS.
This discrepancy is attributed to limitations in OG accuracy, which may inadequately reflect
true specific gains, especially for strong turbulence. Indeed, they prove to be an approximation
of the real specific gains, matching either the low-orders or the high orders or not matching at all

Table 4 Statistical study of close-loop for three different r 0 made for 20 different atmosphere
screens for each r 0. The average wind speed is 6.7 m:s−1 considering the three atmospheric
layers. The close-loop WFE and the standard deviation are specified in nm RMS. The average
WFE is computed for the last 800 iterations.

r 0 (cm)

PWFS rmod ¼ 0λ∕D PWFS rmod ¼ 3λ∕D

FittingM MOG MTupdated M

10 144� 39 138� 38 94� 10 103� 11 86

7.9 390� 75 254� 66 145� 25 143� 21 110

6.9 602� 82 276� 50 210� 44 181� 36 124

Table 3 Closed-loop parameters.

Frequency 1 kHz

Time of the loop 1 s

Frames delay 2

Integrator gain 0.4

Leak factor 0.99

Sensing wavelength 850 nm, I-band

Atmosphere 3 layers

Wind v ¼ 5 m:s−1 ground layer

Noise 0

Science H band
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for strong turbulence (see Fig. 4). This mismatch may dominate here; however, it is important to
highlight that with the proposed method it is possible to close the loop without modulation even
under such harsh seeing conditions.

The hybrid reconstructor demonstrates the feasibility of closing the AO loop without modu-
lation under challenging conditions. Although its performance in strong turbulence (1.5″) does
not surpass the modulated PWFS, it achieves a significant reduction in WFE under other con-
ditions, highlighting the potential of the hybrid approach.

4.4 Discussion Around the Hybrid Reconstructor
This section summarizes the practical implementation of the hybrid reconstructor for on-sky
operations. Furthermore, we explore the possibility of obtaining the specific matrix in practice.

4.4.1 Implementation of the hybrid reconstructor and OG tracking

For on-sky experiments, the dense gain matrix could be obtained using a simulation of the AO
system to generate dense gain matrices under various seeing conditions. Moreover, to take into
account the internal aberrations of the AO bench (optical elements defects), the computation of
the different sets of specific matrices could be done on the AO bench directly if it is equipped
with an internal calibration source. By applying AO residuals on the DM, all the additional error
terms from the optics will be taken into account. Regarding the OG computation, using a GSC for
frame-by-frame gain tracking can be computationally demanding. However, this study32 has
shown that recalculating gains every few frames yields similar results to real-time calculations,
thereby reducing computational requirements while maintaining system performance. With
advanced real-time computers (RTCs), gain tracking can be conducted on millisecond time-
scales, making this method feasible.

In Ref. 17, the authors demonstrate that the numerical complexity of their nonlinear iterative
approach is comparable to that of linear methods, enabling a potential implementation at 1 kHz.
Similarly, Ref. 14 explores the feasibility of running complex nonlinear reconstructors using
deep learning and concludes that the numerical complexity remains within computational limits
for operating an AO system at 1 kHz. Consequently, the proposed hybrid reconstructor—com-
bining matrix-vector multiplication and convolutive products to compute the OG—can be imple-
mented in a real system, as its complexity is lower than the aforementioned examples.
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Fig. 7 Closed-loop r 0 ¼ 6.9 cm and average wind speed of v ¼ 6.7 m:s−1, loop gain = 0.4.
Comparison between the classical modulated PWFS rmod ¼ 3 λ∕D blue-dashed curve and the dif-
ferent reconstructors using the nonmodulated PWFS. The classical interaction matrix in the red-
dashed curve, the modal gain compensation in the green curve, and the full gain compensation in
the yellow-dotted curve. The fitting error is plotted in cyan.
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4.4.2 Rainbow approach

It has been shown that obtaining the specific matrix requires access to push–pull matrices con-
structed around moving operating points from ϕr to ϕr þ δϕ. Two conditions are necessary:
(i) performing push–pull calibrations faster than the input perturbation timescale. Because the
specific matrix depends on the phase to be measured, it must be updated before the input
changes. (ii) Accessing moving operating points: the calibration must be performed around the
shifting operating points corresponding to the phase δϕ with t ∈ ½0;1�.

This paragraph focuses on an alternative approach to obtaining and computing the specific
matrix by scaling the wavefront with the wavelength. Indeed, the computation of the specific
matrix requires calculating push–pull matrices at different operating points. Using wavelength
scaling, the moving operating points are defined as

EQ-TARGET;temp:intralink-;e028;114;597tδϕ with t ∈ ½0;1�: (28)

By performing push–pull calibration of the WFS simultaneously at several wavelengths, the
specific matrix can be computed. It should be noted that this approach is valid only for certain
Fourier filtering WFSs, specifically those whose response is achromatic with respect to
wavelength.

The unmodulated PWFS, operating around the zero-reference phase (ϕr ¼ 0), is an example
of such an achromatic sensor. In this specific case, the specific matrix can be obtained from the
push–pull matrices at various wavelengths using the following equations:

EQ-TARGET;temp:intralink-;e029;114;489Mðδϕ; 0Þ ¼
Z

1

0

dtMð0; tδϕÞ ¼
Z

∞

λ0

λ0
λ2

dλM
�
0;
λ0
λ
δϕ

�
: (29)

where the parameter t is linked to the ratio λ0∕λ, λ0 is the sensing wavelength, and λ represents the
additional wavelengths chosen for push–pull calibration.

The use of a broadband detector, such as microwave kinetic inductance detectors (MKIDs)
(e.g., Ref. 33), allows a single-phase residual to be applied to the DM. This setup enables the
derivation of push–pull matrices across multiple wavelengths and would be made possible with
the computation of the specific matrix.

The outlined approaches provide practical methods to construct the hybrid reconstructor or
the specific matrix for real applications. On-sky, a combination of simulations and real-time gains
tracking offers a feasible method for AO systems. By leveraging focal plane cameras (GSC) and
dense gain matrices, it becomes possible to build an optimized reconstructor at each frame.
In laboratory settings, push–pull matrices can be calibrated across a variety of phases and wave-
lengths. This allows stable closed-loop operation for nonlinear WFSs, such as the unmodulated
PWFS, even under challenging seeing conditions.

5 Conclusion
This paper has demonstrated that the nonlinearity of Fourier filtering WFSs can be accurately
described using a matrix formalism. The key lies in defining a specific matrix, which is con-
structed as the average of push–pull matrices around dynamic operating points. This matrix
depends on the phase being measured. It accurately captures the loss of sensitivity resulting from
the expansion of the electromagnetic field at the focal mask, making it possible to interpret non-
linearity as a self-modulation of the wavefront.

An algorithm has been presented for computing the specific matrix in numerical simulations,
and its pseudo-inverse has been shown to provide accurate phase estimations over a wide range of
input amplitudes. These results confirm that it is feasible to determine a matrix reconstructor even
outside the WFS’s typical dynamic range, which is particularly relevant for high-sensitivity
WFSs, such as the unmodulated PWFS. The main limitation of this formalism is that it relies
on the knowledge of the phase one tries to estimate.

For achromatic sensors such as the unmodulated PWFS, it is possible to obtain the specific
matrix experimentally. This can be achieved by leveraging the scaling of phase with wavelength.
In this approach, the push–pull interaction matrices are calculated at different wavelengths,
corresponding to the dynamic operating points, and then used to compute the specific matrix.
This method can even handle highly wrapped phases, thanks to its polychromatic basis.
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However, practical implementation raises challenges due to the dependency of the specific
matrix on the phase being measured, requiring real-time updates for each frame. To address these
challenges, the OG formalism has been adapted. This redefinition of OG accounts for the self-
induced over-modulation caused by the wavefront’s amplitude. By extracting the accurate OG
from the specific matrix and complementing it with cross-talk terms, the phase estimation accu-
racy is significantly improved.

Two practical approximations for the specific matrix have been proposed: the average matrix
(Mav) and the median matrix (Mð0;ϕr þ δϕ∕2Þ). These approximations have been evaluated,
demonstrating that the average matrix yields modal gains that closely match those of the specific
matrix. The coupling terms, derived statistically for expected seeing conditions, enhance the
performance of the reconstructor. By combining these gains and coupling terms, a hybrid recon-
structor is created, blending statistical and frame-by-frame approaches.

Importantly, this hybrid method allows for stable closed-loop operation of an unmodulated
PWFS under harsh seeing conditions, down to 1.3″. Although compensating for nonlinearity
might increase noise propagation in systems using faint guide stars, an optimal reconstructor
that considers noise could be a valuable extension of this work. In the presented results, the
noise was not included, allowing for simpler reconstructors to be implemented using data
fusion with a focal plane camera to dynamically optimize the reconstructor during each loop
iteration.

6 Appendix: Proof of the Specific Matrix Formula
For a Fourier filtering system with a tip/tilt modulation stage, the detector intensity may be
obtained from the Fraunhofer diffraction laws
EQ-TARGET;temp:intralink-;e030;117;451

Iðϕr þ δϕÞj ~R ¼
Z
R4

d2~r 0d2~rIPj~r 0IPj~reıðϕrj~r 0−ϕrj~rÞ

m̂j ~R−~r 0 ¯̂mj ~R−~rŵj~r 0−~reıðδϕj~r 0−δϕj~rÞ; (30)

where IP is the indicator function of the pupil, m is the transparency function of the Fourier

filtering mask, and w is the modulation weighting function. ~r 0; ~r and ~R are the 2D spatial var-
iables. The reduced intensity is by definition

EQ-TARGET;temp:intralink-;e031;117;360ΔIðδϕ;ϕrÞ ≡ IðϕÞ − IðϕrÞ; (31)

EQ-TARGET;temp:intralink-;e032;117;324¼IðδϕþϕrÞ − IðϕrÞ; (32)

which leads to
EQ-TARGET;temp:intralink-;e033;117;309

ΔIðδϕ;ϕrÞj ~R ¼
Z
R4

d2~r 0d2~rIPj~r 0IPj~reıðϕrj~r 0−ϕrj~rÞm̂j ~R−~r 0 ¯̂mj ~R−~r
ŵj~r 0−~r

�
eıðδϕj~r 0−δϕj~rÞ − 1

�
: (33)

The last term is then modified as follows:

EQ-TARGET;temp:intralink-;e034;117;244eıðδϕj~r 0−δϕj~rÞ − 1 ¼ eıðδϕj~r 0−δϕj~rÞ − 1

ıðδϕj~r 0 − δϕj~rÞ
ıðδϕj~r 0 − δϕj~rÞ: (34)

It allows us to split the integral of Eq. (33) into two parts
EQ-TARGET;temp:intralink-;e035;117;194

ΔIðδϕ;ϕrÞj ~R ¼
Z
R4

d2~r 0d2~rIPj~r 0IPj~reıðϕrj~r 0−ϕrj~rÞm̂j ~R−~r 0 ¯̂mj ~R−~r

ŵj~r 0−~r
�
eıðδϕj~r 0−δϕj~rÞ − 1

ıðδϕj~r 0 − δϕj~rÞ
�
ıδϕj~r 0 −

Z
R4

d2~r 0d2~rIPj~r 0IPj~r

eıðϕrj~r 0−ϕrj~rÞm̂j ~R−~r 0 ¯̂mj ~R−~rŵj~r 0−~r
�
eıðδϕj~r 0−δϕj~rÞ − 1

ıðδϕj~r 0 − δϕj~rÞ
�
ıδϕj~r; (35)

and then to invert ~r and ~r 0 in the first integral because they are dummy variables
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EQ-TARGET;temp:intralink-;e036;114;736

ΔIðδϕ;ϕrÞj ~R ¼
Z
R4

d2~r 0d2~rIPj~r 0IPj~reıðϕrj~r−ϕrj~r 0 Þm̂j ~R−~r ¯̂mj ~R−~r 0

ŵj~r−~r 0
�
eıðδϕj~r−δϕj~r 0 Þ − 1

ıðδϕj~r − δϕj~r 0 Þ
�
ıδϕj~r −

Z
R4

d2~r 0d2~rIPj~r 0IPj~r

eıðϕrj~r 0−ϕrj~rÞm̂j ~R−~r 0 ¯̂mj ~R−~rŵj~r 0−~r
�
eıðδϕj~r 0−δϕj~rÞ − 1

ıðδϕj~r 0 − δϕj~rÞ
�
ıδϕj~r: (36)

It leads to
EQ-TARGET;temp:intralink-;e037;114;634

ΔIðδϕ;ϕrÞj ~R ¼
Z
R4

d2~r 0d2~rIPj~r 0 ðIPj~rδϕj~rÞı
�
eıðϕrj~r−ϕrj~r 0 Þm̂j ~R−~r ¯̂mj ~R−~r 0

ŵj~r−~r 0
�
eıðδϕj~r−δϕj~r 0 Þ − 1

ıðδϕj~r − δϕj~r 0 Þ
�
− eıðϕrj~r 0−ϕrj~rÞm̂j ~R−~r 0 ¯̂mj ~R−~r

ŵj~r 0−~r
�
eıðδϕj~r 0−δϕj~rÞ − 1

ıðδϕj~r 0 − δϕj~rÞ
��

: (37)

Moreover,

EQ-TARGET;temp:intralink-;e038;114;524eıðϕrj~r−ϕrj~r 0 Þ ¼ eıðϕrj~r 0−ϕrj~rÞ; (38)

EQ-TARGET;temp:intralink-;e039;114;485m̂j ~R−~r ¯̂mj ~R−~r 0 ¼ m̂j ~R−~r 0 ¯̂mj ~R−~r; (39)

EQ-TARGET;temp:intralink-;e040;114;459

�
eıðδϕj~r−δϕj~r 0 Þ − 1

ıðδϕj~r − δϕj~r 0 Þ
�

¼
�
eıðδϕj~r 0−δϕj~rÞ − 1

ıðδϕj~r 0 − δϕj~rÞ
�
: (40)

Finally, the tip/tilt weighting function w is a real function because it codes the time spent for
each tip/tilt. Consequently

EQ-TARGET;temp:intralink-;e041;114;411ŵj~r−~r 0 ¼ ŵj~r 0−~r: (41)

As a conclusion
EQ-TARGET;temp:intralink-;e042;114;373

ΔIðδϕ;ϕrÞj ~R ¼
Z
R4

d2~r 0d2~rIPj~r 0 ðIPj~rδϕj~rÞı
�
eıðϕrj~r−ϕrj~r 0 Þm̂j ~R−~rm̂j ~R−~r 0

ŵj~r−~r 0
�
eıðδϕj~r−δϕj~r 0 Þ − 1

ıðδϕj~r − δϕj~r 0 Þ
�
− c:c

�
: (42)

The reduced intensity can therefore be written with the kernel formalism

EQ-TARGET;temp:intralink-;e043;114;293ΔIðδϕ;ϕrÞj ~R ¼
Z
R2

d2~rðIPj~rδϕj~rÞKðδϕ;ϕrÞj ~R;~r; (43)

where the nonlinear kernel Kðδϕ;ϕrÞ equals
EQ-TARGET;temp:intralink-;e044;114;245

Kðδϕ;ϕrÞj ~R;~r ¼ 2 Im
�
¯̂mj ~R−~r

Z
R2

d2~r 0IPj~r 0m̂j ~R−~r 0ŵj~r 0−~r

eıðϕrj~r 0−ϕrj~rÞ e
ıðδϕj~r 0−δϕj~rÞ − 1

ıðδϕj~r 0 − δϕj~rÞ
�
: (44)

It should then be noted that

EQ-TARGET;temp:intralink-;e045;114;165

eıðδϕj~r 0−δϕj~rÞ − 1

ıðδϕj~r 0 − δϕj~rÞ
¼

Z
1

0

dteıtðδϕj~r 0−δϕj~rÞ: (45)

Consequently, the nonlinear kernel may be written as an integral of a linear kernel with
a moving reference phase

EQ-TARGET;temp:intralink-;e046;114;102Kðδϕ;ϕrÞ ¼
Z

1

0

dtKð0;ϕr þ tδϕÞ: (46)
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This equation is exactly the same as Eq. (22), which gives the relation between the specific
matrix and the push–pull interaction matrices. This is not surprising because kernels and inter-
action matrices are intrinsically linked. Indeed, any interaction matrix may be understood as the
response of the kernel regarding a given phase basis

EQ-TARGET;temp:intralink-;e047;117;688Mij ~R ¼
Z
R2

d2~rðIPj~rΦij~rÞKj ~R;~r: (47)

In the specific matrix case, the previous equation becomes

EQ-TARGET;temp:intralink-;e048;117;640Mðδϕ;ϕrÞij ~R ¼
Z
R2

d2~rðIPj~rϕij~rÞKðδϕ;ϕrÞj ~R;~r; (48)

which becomes with Eq. (46)

EQ-TARGET;temp:intralink-;e049;117;593Mðδϕ;ϕrÞij ~R ¼
Z

1

0

dt
Z
R2

d2~rIPj~rϕij~rKð0;ϕr þ tδϕÞj ~R;~r; (49)

EQ-TARGET;temp:intralink-;e050;117;545 ¼
Z

1

0

dtMð0;ϕr þ tδϕÞij ~R: (50)

This constitutes the mathematical proof of Eq. (22).
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