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Abstract Primitive‐equation models are essential tools for studying ocean dynamics and their ever‐
increasing resolution uncovers ever finer scales. At mesoscales and submesoscales, baroclinic instability is one
of the main drivers of turbulence, but spurious numerical instabilities can also arise, leading to nonphysical
dynamics. This study investigates a spurious instability termed Baroclinic Instability of Computational Kind
(BICK), discovered in Arakawa and Moorthi (1988, https://doi.org/10.1175/1520‐0469(1988)045<1688:
BIIVDS>2.0.CO;2) and Bell and White (2017, https://doi.org/10.1016/j.ocemod.2017.08.001), through
idealized configurations using a vertical (Modified) Lorenz grid. Here, we explore the growth of BICK within
quasi‐geostrophic (QG) and hydrostatic primitive‐equation (HPE) frameworks for different setups: the
canonical Eady configuration, stratification‐modified Eady configurations, and a surface‐intensified jet
configuration. Our results confirm that the emergence of BICK is specific to the vertical staggering of the
(Modified) Lorenz grids. Its growth is consistent with linear QG theory, and BICK is confined near the surface
and bottom boundaries. In HPE simulations, the nonlinear evolution of BICK generates small‐scale spurious
eddies and reduces frontal sharpness. Increasing the number of levels reduces BICK's horizontal scale down to
below the model's effective resolution. We illustrate this property using regional HPE simulations with a
varying number of levels. BICK is found to significantly affect the vertically under‐resolved simulations by
introducing small‐scale noise from both the bottom and surface boundaries. Our recommendation is to keep the
ratio between the model horizontal (δx) and vertical (δz) resolution greater than 2N/ f , where N is the Brunt‐
Väisälä frequency and f the Coriolis parameter, to minimize the impact of BICK on the dynamics.

Plain Language Summary Numerical simulations of the ocean circulation are routinely used to
investigate regional dynamics. In recent years, increases in their resolution have allowed the community to
explore new ranges of fine‐scale dynamics. However, these new regimes of dynamics come with new numerical
challenges inherent to the increase in resolution. In addition to physical instabilities, numerical instabilities
artificially introduce spurious fine‐scale dynamics. Here, we investigate such an instability called Baroclinic
Instability of the Computational Kind (BICK), identified in previous studies. We study BICK in different
configurations, from idealized to realistic setups. We show that BICK is initially excited close to the bottom or
surface boundaries, especially where the density changes rapidly over small scales along the boundaries. We
illustrate the effects of this instability on a regional simulation of the Mozambique Channel circulation.
Specifically, we show that, contrary to common practices, the vertical resolution of the grid has to be refined
hand‐in‐hand with the horizontal resolution in order to tone down BICK. By identifying the conditions that
trigger BICK, we aim to unravel the physical dynamics and numerical artifacts of small‐scale ocean simulations.

1. Context and Motivation
Primitive‐equation models are powerful tools for studying regional ocean dynamics. They have been widely used
in recent decades. Their resolution has increased and the physics they represent has become more realistic (e.g.,
state of the art is reviewed in Fox‐Kemper et al., 2019). A ubiquitous feature of ocean dynamics is baroclinic
instability (BI, e.g. Chapter 6 in Vallis, 2006). BI is a major source of balanced turbulence, acting through a wide
range of spatial and temporal scales, from basin scales to mesoscales and submesoscales (Capet et al., 2016;
Hochet et al., 2015; Smith, 2007). It was furthermore shown to be active in surface (Boccaletti et al., 2007) and
bottom (Wenegrat et al., 2018) boundary layers. In addition to physical instabilities, numerical (nonphysical)
instabilities can arise spontaneously in simulations (e.g., Barham et al., 2018; Ducousso et al., 2017; Hall-
berg, 2005). These instabilities lead to spurious dynamics with consequences that remain difficult to quantify on,
for example, energy balance or tracer transport and mixing.
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The motivation for this work is as follows. Using a regional simulation of the
Mozambique Channel circulation based on the primitive‐equation Coastal
and Regional Ocean Community model (CROCO, Auclair et al. (2024),
detailed in Section 3), we detected a potentially spurious instability devel-
oping in the surface layer. This is illustrated in Figure 1, which shows
snapshots of relative vorticity in simulations that only differ by the number of
vertical levels. One can see that at low vertical resolution (30 levels), thin
stripes of vorticity patterns ubiquitously populate the field. Increasing the
resolution to 90 levels and further to 360 levels dramatically reduces these
noisy patterns. We hypothesized this numerical artifact to be related to Bar-
oclinic Instability of the Computational Kind (BICK), as first named by
Arakawa and Moorthi (1988). They showed that BICK can develop when the
Lorenz vertical staggering of variables is used (hereafter L‐grid, as illustrated
in Figure 2). This staggering is such that the densities are not at the same
points as the vertical velocities but between them. Analysis of Arakawa and
Moorthi (1988) has shown that discretization of the Quasi‐Geostrophic (QG)
equations based on this vertical staggering not only gives rise to physical BI
of the Eady or Green type, but also allows unstable spurious modes to develop
on small horizontal scales and at the upper and lower boundaries. Further-
more, their study indicates that the discretization of the same equations using
the Charney‐Phillips vertical staggering (hereafter CP‐grid), where the den-
sity is collocated with the vertical velocity, prevents the growth of short‐wave
BICK. The same authors demonstrated that the BICK occurrence is not
limited to the discretization of QG equations but also extends to the dis-
cretization of primitive equations. This has prompted some to prefer the
Charney‐Phillips staggering when designing atmospheric general circulation
models (e.g., Arakawa & Konor, 1996; Konor & Arakawa, 1997). This
approach seems to have been little adopted for the design of quasi‐Eulerian
vertical coordinate ocean models, for which Lorenz staggering is most
often used. This is the case with CROCO, which is therefore likely to let
BICK grow. An important property of BICK shown by Arakawa and
Moorthi (1988) is that its characteristic horizontal scale shifts to small scales
with increasing vertical resolution, until it may no longer be supported by the
finite grid size of the model. The sensitivity of the noise to vertical resolution
in our Mozambique simulations (Figure 1) follows this rule and leads us to
believe that it is BICK.

Bell and White (2017) developed an analytical framework for the QG Eady
problem that provides growth rates and scales for BICK. They developed their
analysis on a Modified‐Lorenz grid (hereafter ML‐grid, see Figure 2). ML‐
grid discretization is a natural choice for hydrostatic balance and its proper-
ties are very similar to those of the L‐grid (Bell, 2003).

This paper aims to identify the conditions that lead to BICK and to provide
recommendations on numerical choices to mitigate it. We revisit and expand
on previous work related to BICK, with a special attention toward more
realistic applications. The structure of the paper is as follows. In Section 2, we
analyze linear instabilities within the QG and Hydrostatic Primitive Equation
(HPE) frameworks through various case studies. These include the classical

Eady configuration, and modified Eady configurations with variable surface stratification to better represent
oceanic conditions. We then extend the analysis to a surface‐intensified jet configuration. In Section 3, we
investigate the nonlinear evolution of BICK within the aforementioned idealized configurations through HPE
simulations performed with CROCO. Finally, in Section 4, we summarize our findings and discuss their
implications.

Figure 1. Surface relative vorticity snapshots after 105 days of simulations
within the Mozambique Channel with horizontal resolutions of 500 m, and
with three distinct vertical discretizations, stretched to increase the
resolution near the surface: (a) 30 levels, (b) 90 levels, and (c) 360 levels
(with vertical resolution varying from 4 cm at surface to 60 m at depth).
Spurious noise is mainly observed for the lowest vertical resolutions.
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2. Linear Instabilities
In this section, we perform a linear stability analysis of four idealized configurations that are representative of
open ocean currents. The first case is the well‐known Eady configuration (e.g., Chapter 6 in Vallis, 2006). The
next two cases are slightly modified from the Eady configuration to account for modified stratification near the
surface. The final case is a surface intensified jet on an f plane. Figure 3 shows the different configurations.

2.1. 1D Linearized Inviscid Equations

2.1.1. QG Equations

We consider the QG equations, linearized around a base state comprising a zonal flow U(z), with no lateral
variation, and a temperature field Tb(z) + T( y, z), where Tb(z) represents the background temperature profile
and T( y, z) is the component in geostrophic balance with the zonal flow. We assume a fluctuation eigenmode
solution with its streamfunction of the form ϕ(z)exp(i(kxx + kyy) + σt) and the QG potential vorticity
q(z)exp(i(kxx + kyy) + σt). The real part of σ, R(σ), is the growth rate and the opposite of its imaginary part,
− I(σ/kx) , is the phase speed in the direction of increasing x.

(σ + ikxU) q + ikx[− f 2∂z (
Uz

N2(z)
)]ϕ = 0 (1a)

q = [− k2x − k2y + f 2∂z(
1

N2(z)
∂z)]ϕ, (1b)

with

N2 = −
g
ρ0
ρz, (2a)

ρ = ρ0 [1 − αT (T − Tref )], (2b)

Figure 2. The staggering of variables used by the Charney‐Phillips grid (left), the original (middle) and modified (right)
Lorenz grids for QG (blue) and HPE (black) variables.
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g the gravity, ρ0 the density in the Boussinesq approximation, and αT the thermal expansion.

The set of equations leads to matrix eigenvalue problems, which we solve using the eigensolver provided by the
SciPy package in Python. The boundary conditions are derived by requiring w = 0 at the upper and lower
boundaries. Two vertical discretisations are implemented: the CP‐grid, as described by Arakawa and Moor-
thi (1988), and the ML‐grid, as detailed in Bell and White (2017). Discretisations are written in Appendix A1
and A2.

2.1.2. Hydrostatic Primitive Equations

We have considered HPE linearized around the base state to compute the full set of eigenmodes beyond the QG
framework for the two vertical discretisations, L‐grid, as described in the appendix of Molemaker et al. (2005) and
CP‐grid which is a modified version of the L‐grid code following Figure 2. Discretisations are written in Ap-
pendix A3 and A4.

The base state is the same as in the previous section with U(z),P(z),Tb(z) + T( y, z) in geostrophic balance. We
assume a fluctuation eigenmode solution form of {u(z),v(z),w(z),p(z),θ(z)} exp(i(kxx + ky y) + σt) . The line-
arized inviscid HPE equations are:

Figure 3. The four different idealized base states studied in section. Colors are for the zonal velocity and continuous lines are
isopycnals. The left side of each plot shows the vertical profile of the Brunt‐Väisälä frequency and generalized QG‐potential
vorticity gradient (cf. Equation 4) in the center of the domain. Insets show zooms of the generalized QG‐potential vorticity
gradient down to 1,500 m. In the case of the surface intensified jet (d), the y‐dependent base state is used as the initial
conditions of the numerical integrations (Section 3.5), while the linear stability analysis (Section 2.4) is computed at the
center of the domain, without considering the y‐dependence.
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σu + ikxUu + Uyv + Uzw − f v +
1
ρ0
ikxp = 0 (3a)

σv + ikxUv + f u +
1
ρ0
ikyp = 0 (3b)

1
ρ0
pz − gαTθ = 0 (3c)

ikxu + ikyv + wz = 0 (3d)

σθ + Tyv + ikxUθ + (Tb
z + Tz)w = 0 (3e)

The HPE matrix eigenvalue problem is also solved with the eigensolver of the SciPy package in Python. For
inviscid equations, the boundary condition is reduced to the no‐normal flow condition to the surface such
that w = 0.

2.2. The Eady Case

The base state is a zonal flow with speedU(z) that depends linearly on the vertical coordinate z, and a stratification
that is the sum of a background linear profile and a field that depends on the meridional coordinate y and that is in
geostrophic balance with the zonal flow (Figure 3a). In other words, the background temperature and zonal
velocity are written as Tb(z) = T0

H (z − zbottom) , and U(z) = ΔU
H (z − zmid) . In our study, the parameters are: the

Brunt‐Väisälä frequency N = 1.3 × 10− 3 s− 1, the Coriolis parameter f = 4 × 10− 4 s− 1, the difference between
top and bottom velocity amplitudes ΔU = 1 ms− 1, the total depth H = 4000 m, the gravity g = 9.81 s− 1,
ρ0 = 1025 kgm− 3, αT = 2.7 × 10− 4◦C− 1 and T0 =

N2H
gαT

= 2.5°C.

We checked that the set up was unstable regarding the generalized potential vorticity gradient Charney‐Stern‐
Pedlosky criterion (e.g., Chapter 6 in Vallis, 2006). It requires a change of sign of the meridional gradient of
the QG potential vorticity,

Qy = f ∂z
by
N2 +

f 2

N2
dU
dz
(δupper − δlower), (4)

with b = −
ρg
ρ0
(see Equation 6.1 in Arakawa & Moorthi, 1988). Figure 3a shows the change of sign between the

surface and the bottom for the classic BI in the Eady case.

2.2.1. Analytical BICK QG Eigen Modes

On the L‐grid, in a QG framework, Arakawa and Moorthi (1988) showed that the Eady flow develops BICK
modes, while Bell and White (2017) further formulated on the ML‐grid an analytical approximation to compute
their characteristics. As the approximate solutions reproduce accurately the numerical solutions, we present a few
results from this approximation to give an initial overview of the problem. For a perturbation streamfunction on an
integer level k, written as ψ ḱ = ϕk exp[ikx (x − ct)] sin(ky y) , the growth rate of the perturbation is kxI(c) and
its phase speed is R(c). The BICKmodes can be characterized by the position of their critical level between k = j
and k = j + 1, in which the mean flow Uj+ 1/2 is closest to the growing mode's phase speed R(c).

Since the approximation in Bell andWhite (2017) was developed for BICK, where the most unstable mode occurs
when j is the closest to the boundaries, they focus on critical layers near the boundaries. Consequently, they select
small values of j, and because the Eady problem is vertically symmetric, the results apply equally well to the
opposite boundary.

Bell and White (2017) consider constant N2 and δz, and make two approximations: (a) they neglect the potential
vorticity gradient of the mean flow and the variation of U within each vertical layer other than the critical layer;
(b) they neglect the component of the solution that grows exponentially for k > j + 1 in the equations for
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k < j + 1. Using (a) the equation for the streamfunction of the perturbation at all half‐levels other than
k = j + 1/2 is given by

(1 −
m2

2
)(ϕk+3/2 + ϕk− 1/2) − (2 + m2)ϕk+1/2 = 0, (5a)

m2 ≡
N2δz2 ( k2x + k2y)

2f 2
, (5b)

where δz is the vertical grid spacing. Bell and White (2017) give the solution of this equation as

ϕk = as− (k− j− 1/2) + bs(k− j− 1/2), (6)

where a and b are arbitrary constants (determined by the boundary conditions) and

s2 − 2τs + 1 = 0, s < 1, (7a)

τ ≡
2 + m2

2 − m2 . (7b)

From there, they obtain an equation for the complex phase speed c in the case of an arbitrary vertical shear (cf.
their Equation 24) and also one corresponding to the Eady case of constant vertical shear which is considered here.
A non‐dimensional complex number cj is introduced such that

cj ≡
c − Uj+1/2

δU
, (8)

with δU = Uk+ 1 − Uk = ΔU/K, K being the number of levels and ΔU = UK+ 1/2 − U1/2. Hence, Bell and
White (2017) end up with the growth rate of the perturbation as the solution of a simple quadratic equation:

μ2c2j + μ1cj + μ0 = 0, (9)

with

μ2 = 16(1 − s), (10a)

μ1 = aμ + bμ, (10b)

aμ = − 4(1 + s)2 + 16(j −
1
2
)(1 − s), (10c)

bμ = 2s2j− 1(1 − s)3, (10d)

μ0 =
1
2
s2( j− 1)(1 − s)2[(1 + s)2 + (j −

1
2
) 4s(1 − s)]. (10e)

In the case of BI and BICK in the Eady case, the most unstable eigenmode is found for ky = 0 (not shown here).
As a first approximation, we keep this assumption in our four case studies. For perturbations with no lateral
variation (ky = 0) , the growth rate kxI(c) is given by:

kxI(c) = mI(cj)
̅̅̅
2

√
fΔU
NH

. (11)

Figure 4a shows approximate growth rates computed from Equation 9 for our Eady configuration. Growth rates
are calculated for modes with critical levels in layers 1 to 5. The most unstable mode is the one whose critical level
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is closest to the boundary ( j = 1). However, BICK instabilities have positive growth rates for several wavelength
ranges. As we move away from the boundary (increasing j), the modes of BICK that are likely to be destabilized
have lower growth rates, and affect larger and larger scales.

In the QG framework, the analytical development of Bell and White (2017) gives us some insight into how the
setup of our configuration can affect the BICK properties. Figure 4b shows that the wavelengths of the most
unstable spurious modes become smaller as δz decreases (increasing number of levels). Figure 4c shows that the
larger the shear, the faster the spurious modes grow. Finally, Figure 4d illustrates that as N decreases, BICK
occurs at smaller scales with higher growth rates. Note that this is exactly the opposite for f , since N and f always
appear in the calculation as the ratio N/ f .

2.2.2. QG and HPE Eigen Modes

In Figure 5a, the top panel shows the growth rates of unstable modes of BI and BICK solved from the 1D
linearized QG equations. For both vertical discretisations, the BI mode is found at scales predicted by theory
LEady = (2πNH/ f )/1.61 ∼ 50 km (cf. Gill, 1982). Considering the ML‐grid, the BICK modes are in very close
agreement with the Bell and White (2017) calculations. Considering the CP‐grid, no BICK mode appears. The
ML‐grid supports two types of BICKmodes: one with a positive phase speed and one with a negative phase speed

Figure 4. Growth rate of the BICK instability according to Bell and White (2017)'s short‐wave approximation on a Lorenz
grid in a QG regime. (a): computation for 16 levels, ΔU = 1. m.s− 1 and N = 1.3 × 10− 3 s− 1. Vertical dashed dot lines are
aligned with the highest growth rates resulting from Bell and White (2017) calculations for the first 3 critical levels with
m1 = 1.1, m2 = 0.37 and m3 = 0.24. Dashed purple and black vertical lines are aligned with Nyquist frequencies for high and
coarse resolution simulations respectively, discussed in Section 3.3. Dotted purple and black vertical lines are aligned with
effective resolutions for the same simulations. (b–d) show the influence of the number of levels, velocity shear amplitude and
stratification, respectively, on the predicted growth rates.
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(Figure 5b), corresponding to the BICK modes near the upper boundary and near the lower boundary, respec-
tively. The critical levels, defined as the levels where the phase speed of the BICKmodes is equal to the base flow,
are at half‐integer levels for the ML‐grid, as shown in Bell and White (2017). In Figure 5a, the lower panel shows
the growth rates of unstable modes of BI and BICK solved from the 1D linearized HPE. The growth rates of the
BICK modes in the ML‐grid are still in good agreement with the QG predictions of Bell and White (2017). We
evaluate dimensionless numbers as the Rossby number Ro = U0/ f L and the Burger number Bu = (NH/ f L)2,
with L a characteristic length. This characteristic length is 50 km for the BI mode, and gives Ro = 0.02 and
Bu = 0.07. For the first BICK mode, the characteristic length is 3.3 km, giving Ro = 0.4 and Bu = 15.5. Yet,

Figure 5. BI and BICK eigenmodes solved from linearized QG and HPE 1D equations for 16 levels. (a) Growth rates from the
QG equations in the top panel and the HPE equation in the bottom panel. Blue dots are for the L‐ orML‐grid and red and coral
crosses are for the CP‐grid. Black dashed curves are the analytical QG approximations from Bell and White (2017) of the
BICK growth rates. Blue vertical dashed lines are aligned with their maxima. Gray vertical dashed line is the expected
highest growth rate of the BI in a QG framework. (b) Corresponding phase speeds. Gray horizontal dashed lines are aligned
with discrete values ofU initialized at integer levels. (c) Vertical profiles of the HPE eigenmodes for the BI and the first three
BICK eigenmodes, respectively. The BICK eigenmode with the highest growth rate is confined very close to the boundary.
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QG approximation is relevant for Ro≪ 1 and Bu = O(1). In both cases, we are not too far from QG conditions
and HPE formulation does not change QG results. Considering the CP‐grid, some modes appear between those of
the L‐grid, with very small growth rates and at critical levels at j integer levels (Figure 5b, lower panel). However,
their growth rates are small compared to the growth rates of BI modes, hence they are not likely to develop in a
simulation.

Figure 5c shows in the first panel the vertical structure of the canonical Eady BI modes with a smooth structure
over the whole column. Conversely, other panels show the BICK modes relatively confined to a boundary (to the
upper boundary in the figure, those confined to the lower boundary are not shown, but are symmetric). The most
unstable BICK mode is the one most tightly confined to a boundary.

2.3. Two Modified Eady Flows

2.3.1. With a Surface‐Intensified Stratification

We set up amodified Eady configurationwhere the background stratification is increased near the surface tomimic
springtime restratification (Figure 3b). The configuration is the same as the previous Eady configuration, except

that the background stratification is changed to: Tb(z) = T0
H (z − zbottom) + 3.1T0 exp(− (1 − 4(z − zsurf

H ))
2
) .

The vertical variation ofQy is smoother at the surface than in the classic Eady case (Equation 3b). This prevents the
growth of BICK at the surface.

Results of the stability analysis are shown in Figures 6a and 6b. Essentially, BICK modes with critical levels near
the surface do not grow or grow slowly, while BICK modes with critical levels near the bottom and BI modes are
very similar to those obtained in the reference Eady case. In other words, the increased stratification mutes the
growth of BICK modes. Actually, N appears in the denominator of the growth rate Equation 11. It implies that as
N increases, the growth rate decreases (Figure 4d). Moreover, as demonstrated in the results of Bell and
White (2017), BICK modes are triggered by two adjacent levels and are confined to a few levels. Therefore, it is
reasonable to consider the local N in the growth rate rather than the depth average as it is the case in the Eady
problem. That is why changes in stratification near a boundary have a significant impact on BICK modes.

2.3.2. With a Surface Low Stratification

In contrast, we set up a modified Eady configuration with a stratification that decreases at the surface to account
for destratification effects (Figure 3c). The configuration is the same as the previous Eady configuration, except

that the background stratification is modified as: Tb(z) = T0
H (z − zbottom) − 0.31T0 exp(− (1 − 4(z − zsurf

H ))
2
) .

There are two scales over which Qy changes sign (Figure 3c). We retrieve the large scale BI, and there is an
additional change of sign at small vertical scale that corresponds to surface mixed layer instability (Boccaletti
et al., 2007).

Results of the linear stability analysis are shown in Figures 6c and 6d. CP‐grid has now unstable modes at small
scales. Their growth rates have shifted maxima compared to those of the L‐grid, but the growth rates of both grids
increase drastically at small scales, converging to a same curve when increasing the number of levels (see light
blue dots and orange crosses in Figure 6c). This small scale instability is not spurious because it is due to the
change of sign of Qy close to the surface, caused by the low subsurface stratification. It shares similarities with
mixed layer instabilities (Boccaletti et al., 2007).

2.4. The Surface Intensified Jet Case

We set up a last idealized configuration that features a more realistic water column dynamics than the simple Eady

problem. This consists in a surface intensified zonal flow with no lateral shear U(z) = ΔU exp ( zHHjet
) with a

constant background stratification Tb(z) = z − zbottom. This set up, even if no y‐dependence is taken into ac-
count, is relevant to interpret the result of the HPE simulations in the next section (Figure 3d). We have set
N = 4. × 10− 3 s− 1, f = 1. × 10− 4 s− 1, ΔU = 0.6 m.s− 1, H = 3000 m, Hjet = 1000 m.
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In this case (Figures 6e and 6f), BI develops around 250 km. On the L‐grid, the largest growth rate of BICK
(λx = 30 km) is more than twice as large as the BI growth rate and the most unstable wavelengths are still
accurately estimated by Bell andWhite (2017)'s theory. The CP‐grid also supports a subsidiary maximum at small
scales. However, as the number of levels increases, this subsidiary maximum is transformed into multiple sub-
sidiary maxima and shifted to smaller scales with decreasing growth rates. This is not the case for the L‐grid,
where the highest growth rate is shifted to smaller scales as the number of levels is increased, but is maintained at
the same magnitude. The L‐grid supports BICK, while the CP‐grid supports subsidiary maxima due to the dis-
cretization, as in Bell and White (1988), where spurious subsidiary maxima are identified with the following
characteristics:“as the number of levels increases, (a) the number of subsidiary maxima increases and (b) the
magnitude of each subsidiary maxima decreases, so that the growth rates approach the monotonic variation
obtained with a very large number of levels.”

Figure 6. BI and BICK eigenmodes solved from linearized 1D HPE with 16 levels in the cases where: (a, b) the stratification
increases at the surface, (c, d) the stratification decreases at surface, and (e, f) the velocity is a surface intensified jet. Blue and
light blue dots are for the L‐grid. Red and coral crosses are for the CP‐grid. In panels (c–f), the light blue dots are the
computation for 100 levels on the L‐grid, while the orange crosses are the computation for 100 levels on the CP‐grid.
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3. Hydrostatic Primitive‐Equation Simulations
We now analyze the free evolution of the different idealized base states in the primitive‐equation ocean model
CROCO.

3.1. Ocean Model Configuration

CROCO (Auclair et al., 2024) solves the Hydrostatic Primitive Equations on a horizontal C‐grid and a L‐grid in
the vertical (see Figure 2). The domain is a flat‐bottom re‐entrant channel in the zonal direction. It has a free
surface, a free‐slip bottom and free‐slip walls in the north and south. The Coriolis parameter is set constant over
the domain (f‐plane). The advection scheme in the horizontal is a 5th‐order upstream biased scheme (UP5) for
both momentum and tracers, and a fourth‐order centered parabolic spline reconstruction (SPLINES) in the
vertical. We do not use explicit dissipation and diffusion in the horizontal and vertical.

For the Eady configuration, the number of points on the horizontal grid is 70× 35 (corresponding to a grid spacing
of 1.4 km in both directions) and 560 × 280 (corresponding to a grid spacing of 180 m in both directions) for 16
vertical levels (corresponding to a constant vertical spacing of 250 m). For the surface intensified jet configu-
ration, the number of points is 400 × 400 (corresponding to a grid spacing of 2 km in both directions), for 16, 32,
54 and 200 levels (corresponding to a constant vertical spacing of 187.5 m, 93.7 m, 55.5 m and 15.0 m). In this
study case, the vertical grid spacing is set constant using standard CROCO parameters (Auclair
et al., 2024): θs = 0.,θb = 0.,hc = 106.

Given a grid spacing, we consider two different length scales. First, the Nyquist length scale is the minimum
wavelength that can theoretically be represented in the model without aliasing. It is twice the grid spacing.
Second, the effective resolution is defined as the cutoff length scale below which numerical dissipation pro-
gressively damps the dynamics (Ménesguen et al., 2018; Soufflet et al., 2016). Given the horizontal advective
schemes (a 5th order upstream scheme), the horizontal effective resolution is 8 times the grid spacing (Ménesguen
et al., 2018). In the vertical, effective resolution is less documented.

3.2. The Base States

In all cases, the initial flow is in geostrophic balance, such that the surface height η and the temperature T are
defined as:

η(x,y) =
− f
g
∫

y

0
Usurf dy,

T(x,y, z) = Tb(z) −
f

gαT
∫

y

0
∂zU dy,

(12)

with

x ∈ [− Lx/2,Lx/2], y ∈ [− Ly/2,Ly/2], z ∈ [− H, 0],

Tb(z) = Tsurf +
Tsurf − Tbottom

H
z + τ(z).

Tb is the background temperature for the three stratifications discussed in the study. It has a surface expression
τ(z), which is defined as τ(z) = 10 exp (− (1 − 4z/H)2) in the surface‐intensified stratification case, τ(z) = 0 in
the constant stratification case and τ(z) = − exp (− (1 − 4z/H)2) in the surface low stratification case. We use a
linear equation of state ρ = ρ0 [1 − αT (T − Tref )] . Parameters are defined in Table 1.

In the Eady configuration,

UEady = Usurf (
2z − H

H
) (1 + 5 × 10− 3 × R),

with R a random white noise between 0 and 1.
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In the surface intensified jet configuration,

Ujet = Usurf exp(− (
y − y0
Ljet

)

2

) exp (
z

Hjet
) (1 + 5 × 10− 3 × R),

with y0, centered in the domain.

3.3. Eady Configuration

In Section 2.2.2, we built upon Arakawa and Moorthi (1988)'s and Bell and
White (2017)'s studies to show that BICK modes grow in the HPE Eady
configuration if the horizontal resolution is fine enough to resolve their
horizontal wavelengths. We showed that the QG framework provides a good
approximation of BICK properties in our case studies.

The theory predicts that the most unstable Eady mode in our configuration is
LEady ∼ 50 km, that is, half the domain in the x direction. With the

70 × 35 × 16 grid (Figure 7), the Nyquist length scale is about 3 km and the effective resolution is about 12 km
(see Section 3.1 for definitions). Consequently, the model configuration cannot accurately resolve the fastest
growing modes of BICK (λx ∼ 3.6 km) because it falls within the dissipative range of the model (cf. Figure 4a).
Indeed, BICK is absent from the dynamics at time scales relevant to its growth (Figure 7 for the dynamics and
Figure 5a for the growth rate), and the overall pattern aligns well with expectations for the Eady configuration,
featuring the development of deep modes and the emergence of a coherent structure. With the 560 × 280 × 16
grid, the Nyquist length scale is 360 m and the effective horizontal resolution is about 1.4 km. The fastest growing
mode of BICK is resolved and Figures 8a and 8c show additional small structures blurring the BI signal near the

Table 1
Parameters for the Different Configurations

General Eady configuration Surface‐intensified jet

g = 9.81 m.s− 2 Usurf = 0.5 m.s− 1 Usurf = 0.6 m.s− 1

αT = 2.8.10− 4°C− 1 H = 4000 m H = 3000 m

ρ0 = 1025 kg.m− 3 Lx = 100 km Lx = 800 km

Tref = 25°C Ly = 50 km Ly = 800 km

f = 4.10− 4s− 1 f = 1.10− 4 s− 1

Tsurf = 26°C Tsurf = 23°C

Tbottom = 23°C Tbottom = 4°C

Hjet = 1000 m

Ljet = 40 km

Figure 7. Fields after 10 days (a and c) and 20 days (b and d) for a 70 × 35 × 16 grid in a canonical Eady configuration. As
predicted by theory, only baroclinic instability is triggered.
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upper and lower boundaries. This is consistent with the findings of Arakawa andMoorthi (1988), showing that the
expression of BICK modes is highly dependent on the horizontal resolution of a model.

In Figure 9 we show energy wavenumber spectra versus time at the level nearest to the surface and at middepth
level. BI and BICK modes are identified by their theoretical length scale. In the two grids the energy grows at the
scale of the BI mode (about 50 km) with a growth rate corresponding to σ = 1.35 days− 1, which is close to the
growth rate predicted by linear theory (about 2.1 days− 1). On the 560× 280× 16 grid, the fastest growing mode of
BICKwith a scale of 3.6 km grows rapidly with a growth rate corresponding to σ = 2 days− 1, which is the growth
rate predicted by linear theory. On the 70 × 35 × 16 grid, the fastest growing mode of BICK is damped by the
dissipation of the model. However, the scale of the second fastest growing mode of BICK (11 km) is at the limit of
the effective resolution (about 12 km), and the energy at the surface shows the growth of this second mode, with a
growth rate corresponding to σ = 0.6 days− 1, which is also well predicted by the linear theory. This second BICK
mode is far less energetic than the BI mode and is visually absent in physical fields (Figure 7).

In summary, we have shown that linear QG theory is a good approximation for predicting BICK properties in the
HPE framework for the Eady configuration. However, in the 3D simulations, the Nyquist scale of the configu-
ration sets the lower bound on the horizontal length scale of the mode that can grow. The lower bounds sets by the
Nyquist scale is potentially shifted to slightly larger scales by the effective horizontal resolution of the model.

3.4. Eady Modified Configurations With Variable Stratification

Starting from the Eady configuration, we slightly modified it by increasing and decreasing the background
stratification near the surface (cf. Section 2). In the first case, Figure 10 shows that, as expected from linear
studies, BICK is significantly reduced at the surface as compared to the bottom layer that features typical BICK
modes. In the second case, as the stratification decreases near the surface, BICK develops very rapidly as
compared to the bottom layer (Figure 11). The small‐scale instability observed at the surface at a wavelength of

Figure 8. Fields after 10 days (a and c) and 20 days (b and d) for a 560 × 280 × 16 grid in a canonical Eady configuration.
With an effective horizontal resolution of 1.4 km, BICK can develop alongside BI.
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about 6 km is similar to the second unstable mode of BICK (Figure 6c). The most unstable linear BICKmode is at
the limit of the effective resolution of this configuration and may be damped or superimposed on the second.

3.5. Surface Intensified Jet Configuration

The jet case simulations presented in this section confirm the results of the Eady cases, and allow us to develop an
intuition on the effect of varying the vertical resolution. Figure 12 shows the relative vorticity at the surface,
around the jet position, for the four different vertical resolutions used in the study. Following Section 2.2.1, the
length scale of the BICK fastest growing mode is given by λx = 2π/ kx ∼ 4Nδz/ f . Consequently, as we observe
in Figure 12, in the two lower vertical resolutions where BICK is resolved, the horizontal length scale of BICK is
smaller in the 32‐level configuration than in the 16‐level configuration. The 54‐level configuration should feature
BICK instability with a characteristic length scale of 9.3 km. This scale lies in the range where the dynamics are
progressively dissipated by the model between the effective resolution and the Nyquist cutoff. BICK mode is
actually strongly damped. The last configuration with 200 levels sets BICK's length scale to be less than the
Nyquist cutoff and prevents BICK from developing in the simulation.

Figure 13 shows surface relative vorticity fields in the four configurations at later stages, when the nonlinear
dynamics have fully developed. The coarser vertical resolution has developed many small‐scale eddies that we
suspect to be the nonlinear evolution of BICK. Note that these simulations do not have a surface mixed layer, so
the typical small scales eddies in Figure 13a cannot be attributed to mixed layer instabilities (Boccaletti
et al., 2007). The finer vertical resolution shows sharper fronts and fewer small scale eddies (Figure 13d). It is
possible that BICK is acting to destroy sharp fronts and create small scales, potentially increasing dissipation. In
the different configurations, a single change in the number of levels produces very different nonlinear

Figure 9. Eady case's power spectra versus time of the total energy field Etot = 0.5(uʹ2 + vʹ2) + 0.5 g2
ρ20N

2ρʹ2, where ′ is the

perturbation relative to the initial state. The top row is for the 70 × 35 × 16 grid and the bottom line is for the 560 × 280 × 16
grid. (a, d) are spectra of the surface field where BICK modes are enhanced. (b, e) are mid‐depth field spectra where BI is
present and BICK modes have reduced amplitude. The black dashed lines indicate the length scale of the BI unstable mode.
Blue dashed‐dot lines indicate the length scales of the three most unstable BICK modes. The white dotted lines indicate the
horizontal effective resolution of the configurations. (c, f) are spectra along the BI and BICK length scales. Fields are saved
every 8 hr in the 12 first days.
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developments in turbulence. Note that although only the linear phase around the initial state of the jet is docu-
mented in this paper, we suspect that the growth of BICK in the coarser vertical resolution configuration generates
more small scales throughout the run that have an impact at later stages than in the finer vertical resolution
configuration.

4. Conclusion and Discussion
This study is a follow‐up to previous studies, which demonstrated the existence of BICK on the original or
modified Lorenz grid in an Eady configuration (Arakawa &Moorthi, 1988; Bell &White, 2017). We highlighted
the growth of BICK in different idealized configurations, combining linear analyses and numerical simulations
with CROCO. The strongest BICK is characterized by critical levels close to the surface and bottom boundaries
and its growth depends on the local Coriolis parameter, the local velocity shear and the local stratification. It has
been shown that flattened isopycnals at the surface reduce or even inhibit BICK growth near the surface
(Figures 6a and 10), while steeper isopycnals increase the instability (Figures 6c and 11). Similar observations can
be made at the bottom, for example, in the case of a slope. When the slope of a topography follows the bottom
isopycnals, BICK is greatly reduced, whereas a topography with a slope opposite to that of the isopycnals in-
creases instability (not shown). The direct consequence of BICK is the growth of small scales near the boundaries
(top or bottom). The long‐term effects are substantial, distorting the life cycle of physical instabilities. As
Figure 13 shows, where BICK is likely to grow, a smoothing of the fronts occurs. This feature is reminiscent of the
impact of other numerical instabilities, such as the Symmetric Instability of the Computational Kind (SICK)
(Ducousso et al., 2017).

A pertinent question is how to configure numerical models to prevent the development of BICK instabilities. Our
findings, consistent with previous studies, indicate that the horizontal length scale of BICK decreases with
reduced vertical cell thickness. A straightforward way to prevent BICK in simulations is to use a fine vertical grid

Figure 10. In a configuration with a surface intensified stratification, fields after 10 days for a 560 × 280 × 16 grid. (a) At
surface, only BI is triggered. (b) Bottom fields are similar to what observed in the canonical Eady configuration—Figure 8a.
(c) Velocity vertical section at the same time.
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spacing near boundaries to dampen the dynamics at BICK's horizontal length scale. In practice, modelers often
aim to resolve horizontal processes at specific length scales, which may include BICK if the vertical grid spacing
allows its growth. Based on the Eady flow model, the maximum growth rate is expected at a horizontal length
scale of λx ∼ 4Nδz/ f . Scales smaller than δxeff are progressively dissipated numerically, and scales below 2δx
(Nyquist scale) remain unresolved. Consequently, δx/δz> 2N/ f is required to safely prevent BICK from being
resolved at the grid scale. However, the numerical horizontal dissipation also acts to dampen the growth of scales
between the Nyquist scale and the effective resolution scale. Consequently, depending on the numerical choices
of the model, the threshold can be slightly crossed and still prevent BICK growth. In other words, the vertical
resolution should be chosen such that δz< δx × f /2N to keep BICK safely unresolved but can be slightly crossed,
depending on the numerical dissipation.

This concept is illustrated using realistic simulations in the Mozambique Channel with varying numbers of
vertical levels. The vertical grid is stretched to increase the resolution near the surface (the vertical resolution is
stretched from 4 cm at the surface to 60 m at depth, keeping 10 m resolution at 800 m depth, with code parameters
θs = 6, θb = 0 and hc = 10 m, Auclair et al. (2024)). Consistent with the idealized simulations, we use the UP5
advection scheme for both momentum and tracers in the horizontal, and the SPLINE scheme in the vertical,
without explicit horizontal dissipation and diffusion, but adding a vertical turbulent scheme in the form of the k‐
omega equations (Umlauf & Burchard, 2003). Figure 1 demonstrates the impact of vertical resolution on surface
dynamics. Figure 14 further reveals that although BICK is inherent to boundaries, and in particular to the bottom
boundary in these simulations, we see that their nonlinear evolution contaminates the ocean interior with grid‐
scale noise‐like patterns, mainly in cases with lower vertical resolution. In cases with higher vertical resolu-
tion, these scales are confined to regions with steep topography. To compare small‐scale formation with the
proposed criterion, we have added contours of the quantity 2Nδz/ f δx, which should be less than 1 to safely avoid
BICK. This condition is not met in the 30‐level configuration. In the 360‐level configuration, the resolution
appears to be safe from BICK above approximately 100 m depth. However, the ratio deviates from the ideal value

Figure 11. In a configuration with a surface decreased stratification, temperature (a, b) and velocity fields after 5 days for a
560 × 280 × 16 grid. Small scale features are rapidly present at surface (a, c).
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Figure 12. Relative vorticity over the Coriolis parameter ( f ), depicted at the surface after 20 days in simulations of surface
intensified jets. The simulations employ a horizontal resolution of δx = 2 km, with progressively finer resolutions (from a to
d subpanels). Subfigures provide a close‐up view of the mid‐latitude region within the domain.

Figure 13. Surface‐relative vorticity over the Coriolis parameter ( f ) during the final stage of simulations spanning 200 days,
showing increasing vertical resolutions (from a to d subpanels).
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of 1, particularly near steep topographies, coinciding with observed small‐scale features. This supports the hy-
pothesis that BICK forms when the criterion is not satisfied. For models using sigma coordinates, such as
CROCO, a compromise must be found to choose the number of levels and their distribution: thin enough bottom

Figure 14. Snapshots of relative vorticity (at constant sigma‐levels) along a given latitude in the middle of our domain after
105 days of simulations conducted within the Mozambique Channel. The horizontal resolution is 500 m and the vertical
discretizations uses: (a) 30 levels, (b) 90 levels, and (c) 360 levels. Black dashed lines are few isopycnals. Green contour
denotes (2Nδz)/( f δx) = 1 and warm colors contours are when this ratio equals 5, 10, 15, 35, and 50. In the 360‐levels
configuration, the ratio is less than 1 above approximatively 100 m and is more than 5 at few spot close to the topography were
noise is observed.
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cells would avoid an over‐representation of BICK; but bottom cells have also to be thick enough to prevent
pressure gradient errors (Shchepetkin & McWilliams, 2003).

In the design of primitive‐equation model configurations, it is now standard to set up a horizontal grid spacing of a
few kilometres or less, and down to a few hundreds of meters (e.g., Chassignet & Xu, 2017; Chassignet &
Xu, 2021; Rocha et al., 2016; A. L. Stewart et al., 2018; Uchida et al., 2022). Nonetheless, the vertical grid spacing
often remains an overlooked parameter, despite its importance for resolving both physical processes (Nelson
et al., 2020; K. Stewart et al., 2017) and impeding numerical instabilities such as BICK. Our results highlight the
importance of carefully setting the vertical grid as the horizontal resolution increases. We propose a criterion to
design the grid aspect ratio in order to avoid BICK in such simulations. Figure 15 shows examples of the f δx/2N
ratio for two simulations: LLC4320 (Rocha et al., 2016; A. L. Stewart et al., 2018) and GIGATL3 (Gula
et al., 2021). LLC4320 is a global simulation of the MITgcm with a spatial resolution of about 2.3 km. GIGATL3
is a CROCO simulation of the Atlantic with a spatial resolution of about 3 km. The ratio corresponds to a
minimum δz required at the bottom of the ocean to avoid BICK.We should also note that BICK grows faster when
a strong velocity shear is present. That is why special care should be taken in the grid design near western
boundaries for example, as BICK could feed on the deep currents that feature intense shear. With a resolution of
δx = 3km, the criterion is not restrictive in the abyssal plains, as a minimum δz of 500 m is required. Over the
Mid‐Atlantic Ridge, the criterion specifies a minimum δz of 200 m. The requirement becomes stricter in the South
Atlantic, where δz values below 50 m are needed at the bottom, and even more so on the continental shelves and
western margins, where δz at the bottom can drop below 20 m in some areas. Note that these threshold values must
be divided by three if the horizontal grid spacing is divided by three to reach ∼1 km. Thus, as the horizontal
resolution increases, the threshold becomes more restrictive.

Appendix A: Discretized Equations
A1. Linearized QG Equations on a CP‐Grid

Following Arakawa and Moorthi (1988), by combining the simplest vertical discretisations of the relative
vorticity equation centered at full levels and the density equation centered at half levels, we obtain the following
discrete equation of the QG potential vorticity centered at full levels

Figure 15. f δx/2N ratio at the ocean bottom. It represents the maximum cell height to avoid BICK near topography. Maps are
computed at the bottom of two simulations: LLC4320 (a) and GIGATL3 (b). LLC4320 is a global simulation of the MITgcm
with a spatial resolution of about 2.3 km. The date shown in panel (a) is 14 November 2012. GIGATL3 is a simulation of the
Atlantic performed by CROCO with a spatial resolution of about 3 km. The date shown in panel (b) is 20 September 2008.
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δz1
Dg1

Dt
(∇2

hψ1 + f ) +
Dg1

Dt
(

f 20
N2

3/2

ψ2 − ψ1
δz3/2

) = 0, (A1a)

δzk
Dgk

Dt
(∇2

hψk + f ) +
Dgk

Dt
(

f 20
N2

k+1/2

ψk+1 − ψk
δzk+1/2

−
f 20

N2
k− 1/2

ψk − ψk− 1
δzk− 1/2

) = 0, for 2 ≤ k ≤ K − 1, (A1b)

δzK
DgK

Dt
(∇2

hψK + f ) +
DgK

Dt
(−

f 20
N2

K− 1/2

ψK − ψK− 1
δzK− 1/2

) = 0, (A1c)

where

Dgk

Dt
ϕ = ∂tϕ + ugk.∇hϕ = ∂tϕ + J (ψk,ϕ) (A2)

is the rate of change of any quantity ϕ following the quasi‐geostrophic flow. Linearizing these equations around a
zonal flowU that depends only on the vertical, and looking for a solution in the form ψk(x,y, t) = ϕkei(kxx+ ky y) + σt ,
we obtain the following eigenvalue problem

(U1kx − iσ) (δz1 (− k2x − k2y)ϕ1 +
f 20
N2

3/2

ϕ2 − ϕ1
δz3/2

)

+ kxϕ1(δz1β −
f 20
N2

3/2

U2 − U1

δz3/2
) = 0

(A3a)

(Ukkx − iσ) (δzk (− k2x − k2y)ϕk +
f 20

N2
k+1/2

ϕk+1 − ϕk
δzk+1/2

−
f 20

N2
k− 1/2

ϕk − ϕk− 1
δzk− 1/2

)

+ kxϕk(δzkβ −
f 20

N2
k+1/2

Uk+1 − Uk

δzk+1/2
+

f 20
N2

k− 1/2

Uk − Uk− 1

δzk− 1/2
) = 0

for 2 ≤ k ≤ K − 1,

(A3b)

(UKkx − iσ) (δzK (− k2x − k2y)ϕK −
f 20

N2
K− 1/2

ϕK − ϕK− 1
δzK− 1/2

)

+ kxϕK (δzKβ +
f 20

N2
K− 1/2

UK − UK− 1

δzK− 1/2
) = 0.

(A3c)

Note that β = 0 in the idealized cases studied here.

A2. Linearized QG Equations on a ML‐Grid

Following Bell (2003), Bell and White (2017), by combining the simplest discretisations of the relative vorticity
and density equations both centered at full levels, we obtain the following discrete equation of the QG potential
vorticity centered at half levels

δz1
2

Dg1

Dt
(∇2

hψ1 + f ) +
Dg1

Dt
(
f 20
N2

1

ψ3/2 − ψ1/2

δz1
) = 0 , (A4a)

δzk
2

Dgk

Dt
(∇2

hψk + f ) +
δzk+1
2

Dgk+1

Dt
(∇2

hψk+1 + f )

+
Dgk+1/2

Dt
(

f 20
N2

k+1

ψk+3/2 − ψk+1/2

δzk+1
−

f 20
N2

k

ψk+1/2 − ψk− 1/2

δzk
) = 0

for 1 ≤ k ≤ K − 1

(A4b)

Journal of Advances in Modeling Earth Systems 10.1029/2024MS004600

MÉNESGUEN ET AL. 20 of 23

 19422466, 2025, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024M

S004600 by Ifrem
er C

entre B
retagne B

lp, W
iley O

nline L
ibrary on [22/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



δzK
2

DgK

Dt
(∇2

hψK + f ) +
DgK

Dt
(−

f 20
N2

K

ψK+1/2 − ψK− 1/2

δzK
) = 0, (A4c)

where the streamfunction at full levels is chosen to be expressed as

ψk =
1
2
(ψk− 1/2 + ψk+1/2). (A5)

Linearizing these equations around a zonal flow U that depends only on the vertical, and looking for a solution in
the form ψk(x,y, t) = ϕkei(kxx+ ky y) + σt , we obtain the following eigenvalue problem

(U1kx − iσ) (
δz1
2
(− k2x − k2y)ϕ1 +

f 20
N2

1

ϕ3/2 − ϕ1/2

δz1
)

+ kxϕ1(
δz1
2
β −

f 20
N2

1

U3/2 − U1/2

δz1
) = 0,

(A6a)

(Ukkx − iσ) (
δzk
2
(− k2x − k2y)ϕk) + (Uk+1kx − iσ)(

δzk+1
2

(− k2x − k2y)ϕk+1)

+ (Uk+1/2kx − iσ) (
f 20

N2
k+1

ϕk+3/2 − ϕk+1/2

δzk+1
−

f 20
N2

k

ϕk+1/2 − ϕk− 1/2

δzk
)

+ kx(
δzk
2
ϕk +

δzk+1
2

ϕk+1)β

+ kxϕk+1/2(−
f 20

N2
k+1

Uk+3/2 − Uk+1/2

δzk+1
+

f 20
N2

k

Uk+1/2 − Uk− 1/2

δzk
) = 0

for 1 ≤ k ≤ K − 1,

(A6b)

(UKkx − iσ)(
δzK
2
(− k2x − k2y)ϕK −

f 20
N2

K

ϕK+1/2 − ϕK− 1/2

δzK
)

+ kxϕK (
δzK
2
β +

f 20
N2

K

UK+1/2 − UK− 1/2

δzK
) = 0.

(A6c)

We take U at half levels as known, evaluated analytically.

A3. Linearized HPE Equations on a CP‐Grid

σuk + ikxUkuk + (Uy)kvk +
1
2
((Uz)k+1/2wk+1/2 + (Uz)k− 1/2wk− 1/2)

− f vk +
1
ρ0
ikxpk = 0 (A7a)

σvk + ikxUkvk + f uk +
1
ρ0
ikypk = 0 (A7b)

1
ρ0

pk+1 − pk
δz

− gαTθk+1/2 = 0 (A7c)

ikxuk + ikyvk +
wk+1/2 − wk− 1/2

δz
= 0 (A7d)
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σθk+1/2 + (Ty)k+1/2
1
2
(vk+1 + vk) + ikxUk+1/2θk+1/2

+ (Tb
z + Tz)k+1/2wk+1/2 = 0 (A7e)

All equations are defined for k ∈ [1,K], with w1/2 is set to 0 in (Equation A7a) when k = 1 and with the
exception of (Equations A7c and A7e) which are defined for k ∈ [1,K − 1]. Then, supplemental equations for
boundary conditions are added: wK+1/2 = 0 and vK + 1 = vK .

A4. Linearized HPE Equations on a L‐Grid

σuk + ikxUkuk + (Uy)kvk +
1
2
((Uz)k+1/2wk+1/2 + (Uz)k− 1/2wk− 1/2)

− f vk +
1
ρ0
ikxpk = 0 (A8a)

σvk + ikxUkvk + f uk +
1
ρ0
ikypk = 0 (A8b)

1
ρ0

pk+1 − pk
δz

− gαT
1
2
(θk+1 + θk) = 0 (A8c)

ikxuk + ikyvk +
wk+1/2 − wk− 1/2

δz
= 0 (A8d)

σθk + (Ty)kvk + ikxUkθk

+
1
2
((Tb

z + Tz)k+1/2wk+1/2 + (Tb
z + Tz)k− 1/2wk− 1/2) = 0 (A8e)

All equations are defined for k ∈ [1,K], with w1/2 is set to 0 in (Equation A8a) when k = 1 and with the
exception of (Equation A8c), which is defined for k ∈ [1,K − 1]. Then, a supplemental equation for a boundary
condition is added: wK+1/2 = 0.

Data Availability Statement
The CROCO (Coastal and Regional Ocean COmmunity) model code is available at Auclair et al. (2024).
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