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Abstract
Background Caryophylliidae is one of the most diverse scleractinian families, however it was recovered
as polyphyletic in multiple molecular studies. Recently, the mitochondrial gene order was proposed as a
character for a taxonomic revision of the family. Here we describe the �rst mitogenome of the
caryophylliid genus Crispatotrochus, whose phylogenetic position remains uncertain.

Methods and results The complete mitochondrial genomes of Crispatotrochus rubescens and
Crispatotrochus rugosus were sequenced, assembled, and annotated. The two mitogenomes are identical
and circular, have a length of 16,536 bp, a GC content of 35.9%, and contain 13 protein-coding genes, 2
ribosomal RNAs and 2 transfer RNAs. Both species have a transposition of a three-genes block – cob,
nad2, and nad6 – similarly to a group of caryophylliid genera that were recovered as monophyletic and
include the type species (Caryophyllia) of the family. The phylogenetic analyses recovered
Crispatotrochus within the clade that presents the gene rearrangement and speci�cally as sister taxa of
the genus Caryophyllia, a result consistent with previous studies and the similar gross morphology of the
two genera.

Conclusions We determined the mitochondrial genomes of the genus Crispatotrochus to investigate their
relations within Scleractinia. Results from this study provide insights on the phylogenetic position of the
genus and corroborate that the mitochondrial gene order could be used as taxonomic character for the
family Caryophylliidae.

Introduction
Corals belonging to the order Scleractinia are distributed worldwide and are the engineers of complex
shallow and deep-water reef ecosystems. Despite their importance, a well-resolved phylogeny of the order
has not yet been achieved (e.g., [1]), hampering the study of longstanding evolutionary questions. Since
the advent of the �rst molecular studies, scleractinian corals have been divided into two (e.g., [2–4]) or
three (e.g., [5–6]) main clades at the suborder level, and several families and genera have been recovered
as para- or polyphyletic (see [1]).

Within the Vacatina/Robust clade, the family Caryophylliidae Dana, 1846 is currently one of the most
diverse, comprising solitary and colonial species, of which the latter includes important components of
deep-water reefs [7]. However, recent phylogenetic reconstructions recovered the family as polyphyletic
with its members divided into several clades spread across the scleractinian phylogeny (e.g., [1, 5]).
Moreover, many taxa belonging to this family still lack molecular information. Therefore, the evolutionary
history of this family is still obscure, and its taxonomic revision is in progress. In a recent study, Seiblitz
and colleagues [6] showed that all components recovered in a monophyletic clade that harbors the
caryophylliid genera Caryophyllia (type taxon of the family), Desmophyllum, Premocyathus, and
Solenosmilia have a transposition of a three-genes block (Fig. 1) from the canonical scleractinian
mitochondrial gene (mtgene) order (rearrangement previously known only for the genera Desmophyllum
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and Solenosmilia [8–11]). However, this rearrangement was not observed in any other analyzed
mitogenome from genera formally belonging to the family, such as Heterocyathus, Polycyathus, and
Trochocyathus. Therefore, such a mtgene order was proposed as a taxonomic character/synapomorphy
of the “true” Caryophylliidae, leading to the hypothesis that this family is much smaller than previously
thought – but data from several genera are still needed in order to come to a de�nitive conclusion.

The caryophylliid genus Crispatotrochus Tenison-Woods, 1878 is distributed worldwide and comprehends
14 extant azooxanthellate and solitary species. Despite being recovered as closely related to Caryophyllia
in three studies [1, 12–13], only C. rugosus has nucleotide sequences available to date (two nuclear
markers – i.e., 28S rDNA, 12S rDNA, and one mitochondrial marker − 16S rDNA). Hence the phylogenetic
position of the genus is still under debate. In this study, we obtained the complete mitochondrial genomes
of C. rubescens and C. rugosus, compared them with other caryophylliid mitogenomes, and investigated
the phylogenetic position of the genus. The data herein represent a step forward for untangling
relationships between azooxanthellate species and will be fundamental for a future revision of the family.

Material And Methods

DNA extraction and genome sequencing
Total genomic DNA from C. rubescens and C. rugosus (MNHN-IK-2016-2379 and MNHN-IK-2012-17869,
respectively) was extracted using the DNeasy Blood and Tissue kit (Qiagen) following the manufacturer’s
animal tissue protocol. DNA quality and integrity were assessed on a microvolume spectrophotometer
(Nanodrop, Thermo Fisher Scienti�c) and in a 1% agarose gel electrophoresis, respectively. DNA
concentration before and after library preparation was quanti�ed with Qubit �uorometer (Thermo Fisher
Scienti�c). Libraries were prepared using the TruSeq DNA Nano Library Preparation kit (Illumina) with
modi�cations in index adapter concentration and the number of PCR cycles (see [6]). Libraries were then
sequenced on an Illumina NovaSeq 6000 (150 bp PE reads, two lanes combined with 71 samples from
other studies) at the Human Genome and Stem Cell Research Center (CEGH-CEL, USP).

Mitochondrial Genome Assembly And Annotation
Quality control of sequencing data was performed with Trimmomatic [14] and trimmed sequences were
assembled into contigs using SPAdes v 3.1 [15] (--careful parameter). For both species, the mitogenome
was recovered as a single and circular contig. Genes were annotated using MITOS2 online tool [16] with
the parameters genetic code 4 (mold) and RefSeq 89 Metazoa. Annotation was manually veri�ed using
Geneious Prime 2022.2.1 (Biomatters Ltd. Auckland, New Zealand) with four published Caryophylliidae
mitogenomes used as reference sequences (Caryophyllia scobinosa, OL584334; Desmophyllum
pertusum, KC875348; Desmophyllum dianthus, KX000893; Solenosmilia variabilis, KM609293).
Boundaries of all genes were then con�rmed using BLAST [17] against either the NCBI nucleotide
database or non-redundant protein sequences database.
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Phylogenetic Analysis
Once mitogenomes were fully annotated, they were included in a phylogenetic reconstruction together
with 25 published mitogenomes of species belonging to the Vacatina/Robust clade and one outgroup
(Porites lobata belonging to the Refertina/Complex clade) for a total of 28 mitogenomes. Sequence
alignments of protein coding, transfer RNA, and ribosomal RNA genes were performed with MUSCLE
3.8.425 [18]. Alignments were visually inspected for ambiguous sites and successively concatenated
resulting in a �nal alignment of 14,741 bp. For the phylogenetic reconstruction a Maximum Likelihood
analysis was performed with a gene partition set on RAxML v8.2.12 [19] using the GRT + GAMMA model,
1000 rapid bootstrap replicates and 20 random starting trees.

Results And Discussion

Mitochondrial genome features
The average assembly coverages for C. rubescens and C. rugosus were 232.2 and 245.1 X, respectively.
The two determined mitochondrial genomes (Genbank accession numbers: XXXX; XXXX) are identical
and circular, with a total length of 16,536 bp and a GC content of 35.9% (Fig. 1 and Table 1). With few
exceptions, members of the two scleractinian groups Vacatina/Robust and Refertina/Complex exhibit
divergent characteristics of their mitogenomes. In general, Refertina/Complex species show longer
mitogenomes with higher GC content (Refertina/Complex: length from ~ 17.0 kbp to ~ 19.5 kbp, and from
~ 36.2 to ~ 40.5% GC; Vacatina/Robust: length from ~ 14.9 to ~ 17.8 kbp, and from ~ 29.1 to ~ 35.1% GC
[but Caryophyllia scobinosa 36.6%]; [6, 20]). Hence, Crispatotrochus mitogenomes characteristics re�ect
those from vacatinian species. They represent the longest known mitogenomes within “true”
caryophylliids (clade comprised by all species with the mitochondrial transposition; Fig. 2) and have a GC
content most similar to C. scobinosa (Table 1).
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Table 1
Species, GenBank accession number, and information of the mitochondrial genomes available for

the components of the clade that present the mtgene rearrangement.
Species Genbank Length (bp) GC content % References

Caryophyllia scobinosa OL584334 16,105 36.63 Seiblitz et al. 2022

Crispatotrochus rubescens   16,536 35.90 This study

Crispatotrochus rugosus   16,536 35.90 This study

Desmophyllum dianthus KX000893 16,310 35.10 Addamo et al. 2016

Desmophyllum dianthus KX000894 16,229 35.10 Addamo et al. 2016

Desmophyllum pertusum FR821799 16,150 34.90 Emblem et al. 2011

Desmophyllum pertusum OL584333 16,150 34.87 Seiblitz et al. 2022

Desmophyllum pertusum KC875349 16149 34.90 Flot et al. 2013

Desmophyllum pertusum KC875348 16149 34.90 Flot et al. 2013

Solenosmilia variabilis KM609293 15,968 34.70 Zeng et al. 2016

Solenosmilia variabilis KM609294 15,968 34.70 Zeng et al. 2016

Solenosmilia variabilis OL584335 15,969 34.67 Seiblitz et al. 2022

Premocyathus sp. OL584331 15,816 34.97 Seiblitz et al. 2022

Similar to other scleractinians, the studied mitogenomes contain 13 protein coding, 2 transfer RNA, and 2
ribosomal RNA genes (Fig. 1). A common feature found in several scleractinian mitogenomes is the
presence of an intron in the gene cox1 [21]. Nevertheless, the intron is absent in the mitogenomes from
both Crispatotrochus, as in all caryophylliids sequenced to date [6]. Both Crispatotrochus mitogenomes
have the transposition of three genes cob, nad2, and nad6, between the nad5 5′ and the trn-Trp (Fig. 1),
similarly to the other “true” caryophylliid species [6]. An interesting feature of the Crispatotrochus
mitogenomes is the presence of a long intergenic region (IGR) between atp8 and cox1 (Fig. 1). Such a
long IGR, not observed in any other caryophylliid mitogenome, results in the longest mitogenomes known
for all representatives of the clade. Furthermore, Emblem and colleagues [8] reported the presence of
repeated regions at the end of nad1 and the beginning of cob in the mitogenome of D. pertusum and
proposed they played a role in the mechanism of the genes transposition. Later, Seiblitz and colleagues
[6] found the same repeated regions in Caryophyllia and Solenosmilia, but not in Premocyathus, possibly
due to a secondary loss of this characteristic. The aforementioned repeated regions were also found in
the Crispatotrochus mitogenomes but when their repeated regions are aligned, they have more base pair
differences than Caryophyllia scobinosa, for example. This result supports the hypothesis that these
repeated regions might have been independently lost more than once in the family Caryophylliidae.
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Interestingly, although both species have marked morphological autapomorphies (see [22]), their
mitogenomes are identical. This is somehow unusual since base pair variations have been recovered
even within specimens belonging to the same species (e.g., Desmophyllum pertusum – see [6, 9]; and
Solenosmilia variabilis – see [10]). Nevertheless, it is renowned that scleractinian mitochondrial genomes
show slow rates of evolution [23], and their identical mitogenome sequences might indicate recent
speciation.

Phylogenetic Position
In the phylogenetic reconstruction (Fig. 2), the genus Crispatotrochus was recovered inside the
monophyletic clade composed by the caryophylliid genera that present the mtgene rearrangement, which
is consistent with the mtgene order recovered for this genus. Speci�cally, Crispatotrochus was recovered
as sister taxa of the genus Caryophyllia, a result that mirrors the similar gross morphological features of
the two genera [24]. The phylogenetic position of Crispatotrochus is also consistent with the results from
Romano and Cairns [12] and Barbeitos and colleagues [13] that recovered the genera Caryophyllia and
Crispatotrochus as sister taxa using a combination of mitochondrial and nuclear markers (16S/28S and
12S/28S respectively).

Reliable phylogenetic reconstructions are the base for the understanding of diversi�cation processes in
different groups of animals, and evolutionary studies of the order Scleractinia have been long suffering
an undersampling of azooxanthellate and deep-sea species [25]. In this scenario, results from this study
expand our knowledge about molecular features of the azooxanthellate caryophylliid genus
Crispatotrochus, provide the �rst molecular data available for the species C. rubescens and will be
fundamental for a future revision of the taxonomic challenging family Caryophylliidae. Moreover, they
add evidence to the hypothesis that the gene transposition could be a diagnostic feature and a
synapomorphy of “true” caryophylliids and that, consequently, the family is in fact smaller than
previously thought.
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Figure 1

Mitochondrial gene map of the scleractinians Crispatotrochus rubescens and C. rugosus. Scaling is
approximate. Protein-coding, tRNA, and rRNA genes were abbreviated as in the text. Blank regions
between genes represent intergenic spacers. The ND5 intron is indicated by the inner gray line.
Transposed genes are marked in bold and an asterisk (*) indicates the canonical position of this gene
block for Scleractinia

Figure 2
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Maximum Likelihood phylogenetic tree based on a concatenated alignment of all the protein-coding,
ribosomal RNA, and transfer RNA genes. Number at nodes are bootstrap values. Sequences from this
study are in bold. The green box indicates the monophyletic clade characterized by the gene block
rearrangement


