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 A B S T R A C T

Drone-based remote sensing combined with AI-driven methodologies has shown great potential for accurate 
mapping and monitoring of coral reef ecosystems. This study presents a novel multi-scale approach to coral reef 
monitoring, integrating fine-scale underwater imagery with medium-scale aerial imagery. Underwater images 
are captured using an Autonomous Surface Vehicle (ASV), while aerial images are acquired with an aerial 
drone. A transformer-based deep-learning model is trained on underwater images to detect the presence of 31 
classes covering various coral morphotypes, associated fauna, and habitats. For aerial analysis these predictions 
are refined (some classes are merged, others are retained, while some are removed) resulting in a final set 
of 12 ecological categories that serve as annotations for training a second model applied to aerial images. 
The transfer of information across scales is achieved through a weighted footprint method that accounts for 
partial overlaps between underwater image footprints and aerial image tiles. The results show that the multi-
scale methodology successfully extends fine-scale classification to larger reef areas, achieving a high degree 
of accuracy in predicting coral morphotypes and associated habitats. The method showed a strong alignment 
between underwater-derived annotations and ground truth data, reflected by an AUC (Area Under the Curve) 
score of 0.9251. This shows that the integration of underwater and aerial imagery, supported by deep-learning 
models, can facilitate scalable and accurate reef assessments. This study combines multi-scale imaging and AI to 
provide scientific information on coral reef monitoring and conservation. Our approach leverages underwater 
and aerial imagery, aiming for the precision of fine-scale analysis while extending it to cover a broader reef 
area.
1. Introduction

Coral reefs are among Earth’s richest ecosystems in terms of biodi-
versity. Moreover, they provide a number of key services: they function 
as natural barriers safeguarding coastlines from erosion and extreme 
weather events and serve as habitats and breeding grounds for innumer-
able marine species (Hoegh-Guldberg et al., 2008). Additionally, they 
support local economies by offering resources for fishing, tourism and 
potential medicinal compounds (Rogers et al., 2017; Bruckner, 2002). 
However, these ecosystems are under serious threat from human activ-
ities. Destructive and illegal fishing practices (Hidayati et al., 2022), 
anthropogenically derived chemical pollutants (van Dam et al., 2011) 
and coastal development (Hughes et al., 2003) are some of the main 
causes of coral reef degradation. Climate change poses an even greater 
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risk through ocean acidification and warming, leading to widespread 
coral bleaching and habitat loss (Hughes et al., 2017).

In December 2022 the Global Biodiversity Framework was adopted 
at the 15th Conference of the Parties (COP15) with the objective of 
protecting 30% of Earth’s lands, oceans, coastal areas, and inland water 
by 2030 (Anon, 2022). This ambitious goal requires the development 
of innovative monitoring techniques to assess the status of marine 
ecosystems and guide conservation efforts.

Emerging deep learning techniques are transforming biodiversity 
monitoring (Tuia et al., 2022; Besson et al., 2022). In Lamperti et al. 
(2023) the authors developed a deep-learning based method for mon-
itoring marine biodiversity using environmental DNA (eDNA). Be-
sides, Morand et al. (2024) proposed the use of convolutional neural 
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Fig. 1. On the left, an aerial orthophoto captures a complex coral assemblage. The image was acquired by an UAV flying at an altitude of 60 m, resulting in a spatial resolution 
of 0.91 cm/pixel. However, distinguishing between specific morphotypes is challenging because of the limited resolution. The red rectangle highlights the location of the fine-scale 
underwater image shown on the right. This image was captured by an ASV-mounted camera 35 cm above the seabed (with depth measured via onboard echosounder), providing 
sub-millimeter resolution. The underwater image provides a higher level of detail, allowing the identification of distinct coral morphotypes and specific classes, such as 𝐴𝑙𝑔𝑎𝑒 , 
that are difficult to identify in aerial imagery.
networks (CNNs) to predict species distributions in the open ocean by 
leveraging environmental data and species occurrences. Artificial Intel-
ligence (AI) models can also be used, coupled with Autonomous Surface 
Vehicles (ASVs), to classify spatialised underwater images generating 
high resolution species distribution maps (Misiuk and Brown, 2024; 
Contini et al., 2025). This approach enables fine-grained annotations 
and predictions, allowing the distinction of coral morphotypes and the 
identification of specific classes, such as algae, that are often difficult to 
discern. The main drawback of survey methods based solely on ASVs 
is that, since underwater images are taken at a very fine scale, it is 
difficult to cover large areas of coral reefs. This implies that, when areas 
on the order of tens of hectares are to be monitored, the method poses 
challenges in terms of cost, processing time and ease of deployment.

Recent advances in imaging technologies have opened up new pos-
sibilities for large-scale coral reef monitoring. Drone-based imaging has 
emerged as a valuable tool for coastal habitat mapping and monitoring, 
providing a cost-effective method for high-resolution habitat classifica-
tion when combined with machine learning techniques (Doukari and 
Topouzelis, 2022). The main limitation of using only aerial images 
is that they do not directly provide detailed information on indi-
vidual benthic organisms. Thus, the annotation of aerial images is 
usually made on broader classes (e.g., hard bottom, mixed substrate, 
soft bottom and seagrass). Here we argue that they contain suffi-
cient information to infer the benthic community as a whole if they 
are combined with fine-grained predictions inferred from underwater 
images.

To give an illustration of this problem, Fig.  1 shows an orthophoto 
obtained from aerial images on the left and an underwater image on 
the right, collected by an ASV, corresponding to the zone delimited 
by the red rectangle. The medium-scale image on the left shows a 
complex assemblage of corals. However, due to the resolution of the 
image, although one can guess the presence of several morphotypes 
of corals, identifying them individually remains a difficult task. This 
challenge becomes significantly easier when the corresponding un-
derwater images are available. The underwater image on the right 
provides clear distinctions between coral assemblages and other classes, 
such as 𝐴𝑙𝑔𝑎𝑒 , which are often difficult to observe in aerial imagery. 
Propagating those fine-grained annotations to the aerial image yields a 
finer classification of the benthic habitat.

Integrating aerial imagery with human-collected ground truth data 
can be a first solution to map coastal habitats with high accuracy, as 
demonstrated in Kvile et al. (2024). The authors provide a detailed pro-
tocol, from drone imagery collection to orthophoto annotation through 
GIS softwares, allowing the training of segmentation CNN models on 
aerial images. In Ventura et al. (2023), the authors use both aerial 
2 
and underwater imagery, processed with Support Vector Machines 
(SVM) and Object-Based Image Analysis (OBIA) for benthic habitat 
classification. They used UAVs (Unmanned Aerial Vehicles) to capture 
high-resolution aerial imagery of coastal areas and USVs to collect 
ultra-high-resolution underwater images. The data from both platforms 
were processed separately using Structure from Motion (SfM) to create 
orthophoto mosaics and Digital Surface Models (DSMs). These products 
were then classified using OBIA and SVM algorithms. However, their 
approach does not fully leverage the complementarity of the two data 
sources. Indeed, there is an opportunity to exploit areas where both 
types of data (fine-scale underwater and medium-scale aerial) are avail-
able, in order to improve the model. In particular, they do not employ 
data from the same zones to train models that can infer fine-scale 
details from medium-scale data in regions where only aerial imagery 
is available. This limitation precludes the potential for synergistic use 
of overlapping datasets to enhance benthic habitat classification on a 
broader scale.

The aim of this study is to introduce a novel multi-scale deep-
learning approach that integrates underwater and aerial imagery for 
fine-grained assessment of coral reefs at broad spatial scales.

Specifically, we used a transformer-based deep learning model to 
predict the presence/absence of 31 different classes of corals, asso-
ciated fauna and habitats in the underwater images. To extend this 
classification to aerial images, we employed the concept of knowl-
edge distillation (Gou et al., 2021; Wang and Yoon, 2021), where the 
underwater model acts as the teacher and the aerial model as the 
student. The objective is for the student model to learn from teacher’s 
outputs, allowing it to achieve comparable performance by mimicking 
the teacher’s knowledge. Concretely, as illustrated in Fig.  2, a first 
fine-scale model (the teacher) is trained on the underwater images 
associated with fine-grained manual annotations. A second model is 
then trained on the aerial images, using the underwater predictions and 
image metadata to generate annotations. The transfer of information 
across the two scales is achieved through a weighted footprint method 
that accounts for partial overlaps between underwater image footprints 
and aerial image tiles.

By reducing the time-consuming annotation process to a single step 
on underwater images, this approach allows the aerial model to classify 
images at a larger scale while maintaining as much as possible the 
fine-scale information provided by the underwater model.

The fine-scale teacher model was trained on images collected over 
several years from multiple islands in the Indian Ocean, including Sey-
chelles, Mauritius, Mayotte and Europa Island, as part of the Seatizen 
Atlas Image Dataset (Contini et al., 2024a). This training ensures robust 
generalization capabilities across diverse reef ecosystems in the region. 
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Fig. 2. Workflow of the multi-scale approach for coral reef monitoring.
 

Despite the UAV dataset being limited to Reunion Island, it captures 
key features of Indian Ocean reef ecosystems, making it suitable for 
demonstrating our methodology. A central advantage of our approach 
is the aerial student model’s ability to inherit knowledge from the 
fine-scale teacher model. As a result, when UAV data from additional 
islands in the Indian Ocean become available, the student model will 
seamlessly adapt, leveraging the pre-existing knowledge encoded by the 
teacher model.

This research offers a powerful tool for coral reef monitoring through
an accurate classification of coral morphotypes and associated marine 
organisms. Compared to traditional ASV surveying techniques, this 
method provides significant advantages in terms of cost efficiency, as 
it reduces the human time required for ASV deployments to cover the 
same surface area. UAVs are also easy to deploy; from the beach, we 
can access sites that are kilometers away without losing control of the 
drone. Additionally, this approach eliminates the risk of sending ASVs 
into dangerous zones where they could become stuck or damaged, en-
suring safer operations and minimal disturbance to the reef ecosystem. 
By demonstrating the combination of advanced technologies such as 
ASVs, drones, and deep learning models, the study contributes to the 
development of more effective and efficient conservation strategies (Ul-
lah et al., 2024), showcasing the potential of multi-scale monitoring for 
environmental protection.

To our knowledge, this is the first time that such a cascade of deep 
learning models has been used to classify aerial images. This opens up 
new possibilities for upscaling a computer vision model trained on fine-
scale images to a larger scale. Although being developed for marine 
applications, this method could be used for terrestrial ecosystems. 
Further studies could consider simultaneous underwater and aerial data 
collection. This would allow the monitoring of slow-moving species, 
such as sea cucumbers, which can be observed in aerial imagery but 
require temporally aligned datasets for precise identification.

2. Materials and methods

2.1. Underwater image acquisition

Underwater images were collected using an Autonomous Surface 
Vehicle (ASV) equipped with a GoPro Hero 8 camera and a differential 
GPS Emlid Reach M2 mounted on a waterproof case. The version of 
the ASV builds on a previous version developed in Gogendeau et al. 
(2024). The cost of this ASV, approximately 2,434$, is significantly 
lower compared to other ASV platforms, making it accessible for use in 
institutes in developing regions. In order to end up with georeferenced 
images embedded with attitude metadata (roll, pitch and yaw angles), 
the following steps were taken:

1. Time synchronization between the camera and the GPS clocks.
2. GPS position correction.
3. Bathymetry data correction using local geoid parameters and 
attitude data of the ASV.
3 
4. Image georeferencing using the corrected GPS position and atti-
tude data.

50 missions were carried out in the lagoon of Reunion Island: 30 in 
the Saint-Leu lagoon and 20 in the Trou d’eau lagoon.

2.1.1. Time synchronization
Videos were cut into frames with a rate of 2.997 fps, so that the 

cutting frame rate 𝑓𝑐 = 2.997 fps is a divisor of the video frame rate 
𝑓𝑣 = 23.976, ensuring that the ratio 𝑓𝑣𝑓𝑐  is an integer.

Since we use time in order to synchronize metadata and images, 
we need a method to assign a precise timestamp to each frame. Before 
each data acquisition, as differences of several seconds/minutes can be 
observed between the clocks of the different devices (the GPS receiver 
clock is not the same as the camera), the user films the time given 
by a GPS application on his mobile phone with the camera in order 
to associate the exact satellite time (UTC+0) to a specific frame or 
image. In the case where the time filmed with the camera follows UTC 
standards, leap seconds caused by the difference between UTC time 
and GPS time must be taken into account when synchronizing the GPS 
position with the images. This specific frame can then be used as a 
starting point to correct the timestamp of all images by using the frame 
rate 𝑓𝑐 and the number of frames between the starting frame and the 
frame of interest.

Cutting frames with a rate that is a divisor of the video frame rate 
is particularly important when working with precise position accuracy.

Indeed if the cutting frame rate is not a divisor of the video frame 
rate, it may happen that during the cutting process of the video a 
frame is skipped or duplicated, causing a misalignment between the 
timestamp and the corresponding frame. This is represented in Fig.  3, 
where blue arrows represent frames extracted from the video timeline 
with a rate of 𝑓𝑐 = 2.997 fps and red arrow represent a frame extracted 
with a random frame rate. In the first case, there is a perfect alignment 
between video frames and frames extracted from it. In the second case, 
we can see that for the required frame rate there is no corresponding 
frame in the original video timeline. So that, depending on the chosen 
option, either the frame is skipped or the closest frame is duplicated. In 
both cases, an error is introduced in the extracted frame timestamp. A 
difference in the timestamp will result in a misalignment between the 
real GPS position and the calculated one, which is proportional to the 
speed at which the ASV acquired the data. For more information about 
camera video setting, please refer to Appendix  A.1.

2.1.2. Metadata correction
Since the ASV is equipped with a differential GPS, PPK (Post-

Processed Kinematic) corrections can be applied to the GPS position 
of the rover in order to get a centimetric accuracy.

Indeed, for each data collection event a mobile base station has 
been strategically deployed near the field mission. The mobile base 
station, connected to the CentipedeRTK network which provides real-
time corrections to the GPS base station, ensures a high precision of 
the GPS base position (Ancelin et al., 2023). This allows to refine the 
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Fig. 3. Frame extraction alignment from GoPro video. The top timeline shows the original video recorded at 23.976 frames per second (fps), with black dots marking frame 
positions spaced at 0.0417 s. The bottom timeline shows frame extraction at a user-defined rate. When the chosen extraction frame rate is a divisor of the video frame rate the 
extracted frames (blue arrows) align exactly with existing video frames, ensuring consistent and accurate timestamping. In contrast, if the extraction rate is not a divisor of the 
video frame rate (red arrow), a misalignment between the timestamp and the corresponding frame is introduced. Later causing an error in assigning the GPS position to the frame.
Fig. 4. Example of two images taken in the Trou d’eau lagoon in Reunion Island at a distance of 6.062 cm from each other and 24 min and 49 s apart. The similarity between 
the two images is an important visual criterion to validate a data collection event.
GPS position of the rover in a post processing step using corrections 
from the base station.

We can then attach to each frame the corresponding position, using 
the timestamp as a reference.

Underwater images positioning was checked in two different ways:

1. Firstly we computed the standard deviation on the east and north 
axis of the GPS position of the rover. If the value was below the 
centimeter for both axis then the session was considered as a 
good one.

2. Secondly a visual check was done by visually comparing images 
that had a very close GPS position but a different timestamp. 
If the two images represent the same zone then the session was 
considered as a good one. An example is given in Fig.  4. The two 
images taken in the Trou d’eau lagoon in Reunion Island are at 
a distance of 6.062 cm from each other and are taken 24 min 
and 49 s apart. It is clear how, except from the sea cucumber 
that has moved a little bit between the two images, the two 
frames represent the same zone, validating in this way the data 
collection event.

Moreover, since the ASV is equipped with an IMU (Inertial Mea-
surement Unit) that provides the roll, pitch and yaw angles of the 
rover, it could be possible to correct the bathymetry data using local 
geoid parameters and the attitude data of the ASV. This data were then 
attached to each frame using, again, the timestamp as a reference.

2.2. Aerial image acquisition

Aerial drone images were taken with a DJI Mavic 2 Pro drone. 
Images were collected following good practices in use in aerial im-
agery (Slocum et al., 2019).

Since this drone is not equipped with a differential GPS, once images 
were taken and the SfM model was built, the orthophoto was georef-
erenced by collecting ground control points (GCPs) using a differential 
GPS.

To obtain a high-resolution orthophoto with high positioning preci-
sion, the following steps were taken:
4 
1. Mission planning: check the equipment, request authorizations 
from French authorities, weather conditions and plan the flight 
mission.

2. Mission execution: fly the drone at an altitude of 60 m over 
the area of interest adapting camera settings to the specific 
conditions of the day.

3. Image processing: build the Structure from Motion (SfM) model 
using images taken during the flight mission. This was done 
using OpenDroneMap.

4. GCP collection: collect GCPs using a GPS with centimetric accu-
racy.

5. Orthophoto georeferencing: georeference the orthophoto using 
the GCPs.

Two missions were carried out in the lagoon of Reunion Island: one 
in the Saint-Leu lagoon and the other in the Trou d’eau lagoon. For 
further details on mission planning, execution, and image processing, 
please refer to Appendix  B, where these aspects are explained in detail.

2.2.1. Orthophoto georeferencing
Since the drone was not equipped with a differential GPS, once 

the orthophoto was built, Ground Control Points (GCPs) were chosen 
on fixed and easily distinguishable objects on land (e.g. manhole cov-
ers, corners of basketball courts, etc.) and easy-to-distinguish corals 
(e.g., large Porites or 𝐴𝑐𝑟𝑜𝑝𝑜𝑟𝑎 𝑇 𝑎𝑏𝑢𝑙𝑎𝑟  corals). GCPs position was 
then collected using a GPS with centimetric accuracy and then the 
orthophoto was reconstructed by forcing pixels representing GCPs to 
be at the ground truth collected position. GCPs examples are shown in 
Fig.  5 with a pink point on the image. This strategy allows the reuse of 
the same GCPs across multiple survey campaigns, facilitating consistent 
and repeatable monitoring over time. By relying on natural, immobile 
features instead of artificial signalized markers, we avoided the need to 
physically install and retrieve ground markers for each mission, simpli-
fying logistics while maintaining georeferencing accuracy (Kurczyński 
et al., 2019).

The Trou d’eau lagoon mission measured a surface of 189,682 m2

and 10 GCP were collected. The Saint-Leu lagoon mission measured a 
surface 204,748 m2 and 9 GCP were collected.



M. Contini et al. Ecological Informatics 89 (2025) 103149 
Fig. 5. Examples of Ground Control Points (GCPs) collected in Reunion Island in order to correct the aerial orthophoto position. Both human made objects (on the left) and easily 
distinguishable corals (a Porites coral on the right) can be used to set GCPs.
Table 1
GCP errors statistics for Trou d’eau Lagoon and Saint-Leu Lagoon.
 Lagoon Error Type Mean Standard Deviation RMS Error 
 Trou d’eau X Error (meters) 0.001 0.011 0.011  
 Y Error (meters) −0.001 0.010 0.010  
 Z Error (meters) −0.011 0.028 0.030  
 Total 0.022  
 Saint-Leu X Error (meters) −0.001 0.003 0.003  
 Y Error (meters) −0.000 0.001 0.001  
 Z Error (meters) 0.000 0.004 0.004  
 Total 0.003  

Final orthophoto positioning was checked by computing the Root 
Mean Square Error (RMSE) between the GCPs and the orthophoto.

In Table  1 we show the error statistics for GCPs collected in the Trou 
d’eau and the Saint-Leu lagoons. We can observe that the RMSE is below 
2.5 cm for both lagoons, which is a satisfactory level of precision for 
the continuation of the study.

2.3. Multi-scale positioning

Since the objective is to pass information from a fine scale (un-
derwater images) to a larger scale (drone images), the precision of 
the relative position between underwater and drone images is cru-
cial. Indeed, the benthic substrate can vary significantly across small 
distances, so that an error in the georeferencing of the underwater 
images would result in annotations from the underwater teacher model 
being transferred to an incorrect tile in the aerial student image. 
Similarly, an error in the georeferencing of the aerial tile position would 
cause the teacher annotations to be assigned to the wrong tile during 
the matching process. These potential mismatches emphasize the im-
portance of achieving high positioning accuracy for both underwater 
and aerial images to ensure reliable multi-scale data integration. To 
ensure consistency in the georeferencing process, all spatial data were 
referenced using the EPSG:32740 coordinate reference system (WGS 
84/UTM zone 40S).

In order to validate the georeferencing of underwater images with 
respect to aerial images, we used data from IGN (Institut national 
de l’information géographique et forestière1). Each 3 to 4 years, IGN 
produces BD ORTHO®: a collection of orthophotos with a default 
resolution of 20 cm. The last orthophoto produced by IGN on Reunion 

1 IGN is the French public state administrative establishment that has the 
main objective of producing and maintaining geographical information for 
France and its overseas departments and territories.
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Island was in 2022, so we decided to use this data as a reference to 
validate the georeferencing of our data.

Two visual criteria were then used to confirm the georeferencing 
of the underwater and aerial images with respect to the BD ORTHO®
orthophoto:

• Relative georeferencing: find the presence of easily recognizable 
objects in both underwater and aerial orthophoto and compare 
them on a GIS software. Often the presence of Porites corals can 
be used to compare the two scales since their contours are easily 
recognizable in both types of images. See Fig.  6(a).

• Aerial absolute georeferencing: find the presence of easily recog-
nizable coral colonies in both aerial and BD ORTHO® orthophoto 
and compare them on a GIS software. See Fig.  6(b).

The combination of the relative georeferencing between underwater 
and aerial images and the aerial absolute georeferencing with respect 
to the BD ORTHO® orthophoto allowed us to crosscheck the georef-
erencing of the underwater images with respect to national baseline 
data.

2.4. Underwater image classification

The underwater deep learning model builds on the DinoV2 archi-
tecture, which is a vision transformer model that has been shown 
to outperform convolutional neural networks on image classification 
tasks (Oquab et al., 2023). The model has been trained on the open 
source dataset SeatizenAtlasimagedataset composed of 51 distinct clas-
ses of corals, associated fauna, and habitats (Contini et al., 2024a). De-
tails about the dataset can be found in Contini et al. (2025). The model 
architecture and hyperparameters settings are described in Appendix  C.

Once the model was trained, we ran inference on 56,653 georef-
erenced images in Trou d’eau lagoon and 58,076 images in Saint-Leu
lagoon in Reunion Island which are included in the area covered by an 
aerial drone.

For more information on the data splitting technique used to train 
the model, please refer to Appendix  D.

2.5. Upscaling predictions

Once the orthophoto is georeferenced and underwater inference 
is done, the key step is to correctly pass the information from the 
underwater model to the aerial model. The objective is to train an 
aerial model based on underwater predictions, without spending time 
on manual annotations of aerial images.

This is achieved by following the steps below:

https://zenodo.org/records/12819157
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Fig. 6. Visual georeferencing criteria to validate the georeferencing of underwater and aerial images with respect to the BD ORTHO® orthophoto. On the left (a) underwater 
images georeferenced with respect to the aerial orthophoto. On the right (b) aerial orthophoto georeferenced with respect to the BD ORTHO® orthophoto produced by the French 
National Geographic institute (IGN). The lighter part on the left corresponds to the drone-based orthophoto and the darker part on the right corresponds to the BD ORTHO®.
1. Split aerial orthophoto into tiles, ensuring consistency in ground 
surface representation of each tile across different sessions. Each 
tile represents an area of 1.5 m × 1.5 m. See Section 2.5.1.

2. Filter useless aerial tiles (e.g., black tiles issued from SfM process-
ing errors or tiles without corresponding underwater images). 
See Section 2.5.2.

3. Associate each aerial tile with underwater images whose camera 
GPS position is within the tile boundaries. See Section 2.5.3.

4. Compute the footprint of each underwater image and filter aerial 
tiles with not enough underwater coverage. See Section 2.5.3.

5. Transform underwater predictions into aerial annotations. See 
Section 2.5.4.

2.5.1. Orthophoto tiling
The first step is to split the aerial orthophoto into tiles. This is 

done by taking into account the ground sample distance (GSD) of each 
orthophoto. This approach guarantees that while tile dimensions in 
pixels may vary due to different GSDs, each tile consistently represents 
a fixed area on the ground. This method allows for standardized com-
parison and analysis of images across different datasets and sessions, 
maintaining a consistent spatial resolution. Splitting the orthophoto 
into too small tiles results in images without enough context to be cor-
rectly classified and/or with an insufficient resolution. On the contrary, 
splitting the orthophoto into too large tiles results in good classification 
performances but does not allow for a fine-grained analysis of the data. 
Searching for the best compromise, we fix this area to be 1.5 m × 1.5 m.

2.5.2. Filtering useless tiles
The second step is to filter out useless tiles. This is done by removing 

tiles with a high percentage of black pixels (due to errors in SfM pro-
cessing) and tiles with no corresponding underwater images. Examples 
of such tiles are shown in Fig.  7. In Fig.  7(a) we can see an example 
of a tile extracted from the aerial orthophoto of the Saint Leu lagoon in 
Reunion Island with a high percentage of black pixels.

2.5.3. Footprint calculation and tile coverage assessment
The third step involves associating underwater predictions with 

aerial tiles. This assignment is achieved by identifying underwater 
images whose camera position center falls within the boundaries of the 
aerial tiles. After associating underwater images to aerial tiles, the next 
step is to compute the footprint of each underwater image to filter out 
aerial tiles with not enough underwater coverage. In Fig.  8, we outline 
the process to calculate the footprint of underwater images based on 
data from ASV sensors. Using bathymetric data from the echosounder, 
we measure the distance between the camera and the seabed, which 
determines the scale of the area captured in each image. The camera 
orientation in the XYZ axis plane is defined by the roll, pitch, and 
6 
yaw angles, which determine how the field of view (FOV) is directed 
relative to the seafloor. Finally the FOV, divided into horizontal (𝐹𝑂𝑉ℎ) 
and vertical (𝐹𝑂𝑉𝑣) angles, defines the area visible to the camera. 
By projecting these angles down to the seafloor, we calculate the 
intersection points, forming a polygonal footprint that represents the 
region covered by the image. This footprint is necessary to associate 
each underwater image with a specific area of the seafloor. Merging 
the footprints of all underwater images associated with a tile, we obtain 
the union of the footprints, which represents the area covered by the 
underwater images associated with the tile.2

This allows us to filter out tiles with not enough underwater cov-
erage. An example of such a tile is shown in Fig.  7(b), where a 
group of tiles extracted on the same orthophoto is shown. Tiles whose 
center is represented by a red point are classified as useful, since they 
are completely covered by underwater images. On the contrary, tiles 
represented by an orange triangle are classified as useless, since they 
do not have enough coverage of underwater images.

2.5.4. Transforming underwater predictions into aerial annotations
The fifth step is to transform underwater predictions into aerial 

annotations. The trivial approach would be to associate the presence 
of a class 𝑐 in a tile 𝑡 if at least one underwater image associated with 
the tile is predicted as belonging to the class 𝑐 by the teacher model. 
Or, in other words, if class 𝑐 is not predicted as being absent on all 
underwater images associated with tile 𝑡, which can be formulated as: 
∀𝑐 ∈ , ∀𝑡 ∈  , 𝐼(𝑦𝑐 = 1 ∣ 𝑡) = 1 −

∏

𝑥∈(𝑡)

[

1 − ℎteacher𝑐 (𝑥)
]

(1)

where :

•  is the set of classes described in Section 2.5.5
•   is the set of tiles
• 𝑦𝑐 ∈ {0; 1} is the binary label associated with the presence/abse-
nce of class 𝑐

• 𝐼(𝑦𝑐 = 1 ∣ 𝑡) ∈ {0; 1} is a binary function indicating the presence 
or absence of class 𝑐 in tile 𝑡.

• (𝑡) is the set of underwater images associated with tile 𝑡
• ℎteacher𝑐 (𝑥) ∈ {0; 1} is the binary prediction associated with the 
presence/absence of class 𝑐 in underwater image 𝑥

The drawback of this approach is that it does not consider the 
footprint of underwater images, tending to overestimate the presence 
probability of a class in a tile.

2 More informations about footprint calculation can be found on 
drone-upscaling Github.

https://github.com/SeatizenDOI/drone-upscaling
https://github.com/SeatizenDOI/drone-upscaling
https://github.com/SeatizenDOI/drone-upscaling
https://github.com/SeatizenDOI/drone-upscaling
https://github.com/SeatizenDOI/drone-upscaling
https://github.com/SeatizenDOI/drone-upscaling
https://github.com/SeatizenDOI/drone-upscaling
https://github.com/SeatizenDOI/drone-upscaling
https://github.com/SeatizenDOI/drone-upscaling
https://github.com/SeatizenDOI/drone-upscaling
https://github.com/SeatizenDOI/drone-upscaling
https://github.com/SeatizenDOI/drone-upscaling
https://github.com/SeatizenDOI/drone-upscaling
https://github.com/SeatizenDOI/drone-upscaling
https://github.com/SeatizenDOI/drone-upscaling
https://github.com/SeatizenDOI/drone-upscaling
https://github.com/SeatizenDOI/drone-upscaling
https://github.com/SeatizenDOI/drone-upscaling
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https://github.com/SeatizenDOI/drone-upscaling
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Fig. 7. Examples of useless tiles extracted from the aerial orthophoto of the Saint Leu lagoon in Reunion Island: (a) Example of a tile extracted from the aerial orthophoto of the
Saint Leu lagoon in Reunion Island, with a high percentage of black pixels (b) Example of a group of tiles extracted from the aerial orthophoto of the Saint Leu lagoon in Reunion 
Island, with corresponding underwater images. The tiles in the middle do not have enough coverage of underwater images.
Fig. 8. Footprint calculation of underwater images based on echosounder data, camera 
field of view and ASV angles.

A more realistic approach, since not all underwater images footprint 
fall entirely within the boundaries of a specific tile, needs to compute 
the intersection between the underwater image footprint and the corre-
sponding tile. This allows us to give more weight to underwater images 
that are completely within a tile and less weight to underwater images 
that are only partially within a tile.

The orthophoto in Fig.  9 gives an example with the correspond-
ing predictions on underwater images. In the right part of Fig.  9(a), 
a colony of 𝐴𝑐𝑟𝑜𝑝𝑜𝑟𝑎 𝑇 𝑎𝑏𝑢𝑙𝑎𝑟  corals is visible. Proceeding with tile 
extraction from the orthophoto, we obtain the tile in Fig.  9(b). Since 
the 𝐴𝑐𝑟𝑜𝑝𝑜𝑟𝑎 𝑇 𝑎𝑏𝑢𝑙𝑎𝑟  corals do not fall within the tile, we would like 
that, after computing the tile annotation starting from underwater pre-
dictions, the probability for the class 𝐴𝑐𝑟𝑜𝑝𝑜𝑟𝑎 𝑇 𝑎𝑏𝑢𝑙𝑎𝑟  associated with 
this tile will be weak. Unfortunately, it may happen that underwater 
images that have the center within the tile (but not all the footprint) 
include classes that are outside the tile bounds: as shown in Fig.  9(c), 
where a part of the 𝐴𝑐𝑟𝑜𝑝𝑜𝑟𝑎 𝑇 𝑎𝑏𝑢𝑙𝑎𝑟  coral colony is visible in the right 
part of the underwater image. In these cases, weighting underwater 
predictions based on the intersection between the underwater image 
footprint and the tile allows reducing the impact of these images on 
the final aerial annotations. This is shown in Fig.  9(d) where predictions 
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on underwater images are represented with circles on a red ramp and 
aerial annotations are represented with stars on a blue ramp. Even if in 
the underwater image in Fig.  9(c) on the right of the tile the presence of 
the 𝐴𝑐𝑟𝑜𝑝𝑜𝑟𝑎 𝑇 𝑎𝑏𝑢𝑙𝑎𝑟  class is predicted, the overlap between the under-
water image and the aerial tile is weak. Consequently, the probability of 
presence of the 𝐴𝑐𝑟𝑜𝑝𝑜𝑟𝑎 𝑇 𝑎𝑏𝑢𝑙𝑎𝑟  class on the tile is mitigated: ending 
up with an annotation of 0.4 (while the blue star on the tile just on the 
right indicates a probability of presence of 0.98).

To take account of the intersection between the underwater image 
footprint and the tile bounds, we can consider that the probability 
of presence is proportional to the intersection area relative to the 
underwater image area. Therefore, we can modify Eq. (1) as follows: 

∀𝑐 ∈ , ∀𝑡 ∈  , 𝑃 (𝑦𝑐 = 1 ∣ 𝑡) = 1 −
∏

𝑥∈(𝑡)

[

1 −
𝑠(𝑥 ∩ 𝑡)
𝑠(𝑥)

ℎteacher𝑐 (𝑥)
]

(2)

where:

• 𝑃 (𝑦𝑐 = 1 ∣ 𝑡) ∈ [0, 1] is the probability of presence of class 𝑐 in tile 
𝑡

• 𝑠(𝑥) is the area of the underwater image 𝑥
• 𝑠(𝑥 ∩ 𝑡) is the area of intersection between the underwater image 
𝑥 and the tile 𝑡

The product over all underwater images gives the probability that 
class 𝑐 is absent in all underwater images associated with the tile 𝑡.

To get a better estimation of the presence probability, we can also 
take into account the confidence of the teacher model. Therefore, 
we can replace the binary output of the classifier ℎteacher𝑐 (𝑥) by the 
probabilistic output 𝑝teacher(𝑦𝑐 = 1 ∣ 𝑥) leading to: 

∀𝑐 ∈ , ∀𝑡 ∈  , 𝑃 (𝑦𝑐 = 1 ∣ 𝑡) = 1−
∏

𝑥∈(𝑡)

[

1 −
𝑠(𝑥 ∩ 𝑡)
𝑠(𝑥)

𝑝teacher(𝑦𝑐 = 1 ∣ 𝑥)
]

(3)

where:

• 𝑝teacher(𝑦𝑐 = 1 ∣ 𝑥) ∈ [0, 1] is the probabilistic output of the teacher 
model for class 𝑐 in the underwater image 𝑥, obtained through a 
sigmoid function on top of the final layer of the model. If the 
model is trained with the binary cross-entropy loss function (as 
in our experiments), the output is asymptotically converging to 
the true conditional probability that class 𝑐 is present in image 
𝑥 (Lorieul, 2020).

It is worth noting that when the probability 𝑝teacher(𝑦𝑐 = 1 ∣ 𝑥) is equal 
to 1, then Eq. (3) is equivalent to Eq.  (2). But in the general case, it is 
comprised in the interval ]0, 1[. In the literature related to knowledge 
distillation (Gou et al., 2021), such probabilistic labels passed to the 
student model are often called soft labels in opposition to hard labels 
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Fig. 9. Example of the upscaling process from underwater predictions to aerial annotations, depending on the intersection between underwater images footprint and drone tiles, 
the probability of presence of a class in a tile can be mitigated: (a) Aerial orthophoto of the Trou d’eau lagoon in Reunion Island (in the right part of the image a colony of 
𝐴𝑐𝑟𝑜𝑝𝑜𝑟𝑎 𝑇 𝑎𝑏𝑢𝑙𝑎𝑟  corals is visible), (b) Drone tile extracted from the aerial orthophoto in Fig.  9(a) (the 𝐴𝑐𝑟𝑜𝑝𝑜𝑟𝑎 𝑇 𝑎𝑏𝑢𝑙𝑎𝑟  corals are not visible in the tile), (c) Superposition of 
the underwater image in the top right corner of the tile and the drone tile (the 𝐴𝑐𝑟𝑜𝑝𝑜𝑟𝑎 𝑇 𝑎𝑏𝑢𝑙𝑎𝑟  coral colony is outside the drone tile), (d) Underwater predictions associated 
with the tile in Fig.  9(b) (the 𝐴𝑐𝑟𝑜𝑝𝑜𝑟𝑎 𝑇 𝑎𝑏𝑢𝑙𝑎𝑟  corals is predicted on the top right underwater image of the tile, but weakly predicted on the tile)
such as the one in Eq.  (1). Training the student model on soft labels 
rather than hard labels enables a better transfer of information from 
the teacher to the student. The probability of presence actually captures 
valuable information on the uncertainty of the teacher model, and 
allows us to place less weight on ambiguous cases in the loss function 
of the student.

2.5.5. Aerial dataset
Following the upscaling process detailed in Section 2.5, starting 

from two aerial orthophotos of the Trou d’eau and Saint-Leu lagoons 
in Reunion Island measuring 189,682 m2 and 204,748 m2 respectively, 
we ended up with 4,911 and 6,832 annotated tiles respectively for a 
total of 11,743 annotated tiles.

Since the upscaling process implies a loss in the image resolution, 
we made some changes about the classes to be predicted:

1. The first change was to merge Algae classes into a single class 
called Algae, indeed distinguishing between the different types 
of algae (𝐴𝑙𝑔𝑎𝑙 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑎𝑔𝑒 , 𝐴𝑙𝑔𝑎𝑒 𝐻𝑎𝑙𝑖𝑚𝑒𝑑𝑎 , 𝐴𝑙𝑔𝑎𝑒 𝐶𝑜𝑟𝑎𝑙𝑙𝑖𝑛𝑒
and 𝐴𝑙𝑔𝑎𝑒 𝑇 𝑢𝑟𝑓 ) is a task that requires a higher resolution than 
the one we have.3

3 In the case of Eq.  (2) this was done by assigning ℎteacher𝐴𝑙𝑔𝑎𝑒 (𝑥) = 1 if at 
least one type of algae (𝐴𝑙𝑔𝑎𝑙 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑎𝑔𝑒 , 𝐴𝑙𝑔𝑎𝑒 𝐻𝑎𝑙𝑖𝑚𝑒𝑑𝑎 , 𝐴𝑙𝑔𝑎𝑒 𝐶𝑜𝑟𝑎𝑙𝑙𝑖𝑛𝑒
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2. The second change was to remove underwater classes that do not 
have a corresponding aerial class: 𝐵𝑙𝑢𝑟𝑟𝑒𝑑  images (an underwa-
ter blurred image does not imply a blurred aerial image) and 
𝐻𝑜𝑚𝑜 𝑆𝑎𝑝𝑖𝑒𝑛𝑠  (since human body parts in underwater images 
do not imply human body parts in aerial images).

3. The third change was to remove underwater classes that are 
not relevant for the aerial images, i.e. 𝐹 𝑖𝑠ℎ , 𝑆𝑒𝑎 𝑐𝑢𝑐𝑢𝑚𝑏𝑒𝑟  and 
𝑆𝑒𝑎 𝑢𝑟𝑐ℎ𝑖𝑛 . The first two classes, even if visible in some aerial 
images, were removed because underwater and aerial images 
are not taken at the same time, so that the presence of a sea 
cucumber or a fish in an underwater image does not imply the 
presence of those organisms in the corresponding aerial image. 
The last one was removed since those organisms are not visible 
at all in aerial images.

Finally, we retained only classes for which there was a sufficient 
number of annotations. Thus, removing classes that have less than 200 
annotations in the aerial dataset, we ended up with 12 classes:

and 𝐴𝑙𝑔𝑎𝑒 𝑇 𝑢𝑟𝑓 ) was predicted as present on the fine scale image 𝑥, oth-
erwise ℎteacher𝐴𝑙𝑔𝑎𝑒 (𝑥) = 0. In the case of Eq.  (3) this was done by assigning to 
𝑝teacher(𝑦𝐴𝑙𝑔𝑎𝑒 = 1 ∣ 𝑥) the maximum between all the probabilities predicted by 
the underwater model for algae classes (𝐴𝑙𝑔𝑎𝑙 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑎𝑔𝑒 , 𝐴𝑙𝑔𝑎𝑒 𝐻𝑎𝑙𝑖𝑚𝑒𝑑𝑎 , 
𝐴𝑙𝑔𝑎𝑒 𝐶𝑜𝑟𝑎𝑙𝑙𝑖𝑛𝑒  and 𝐴𝑙𝑔𝑎𝑒 𝑇 𝑢𝑟𝑓 ).
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• Coral
1. 𝐴𝑐𝑟𝑜𝑝𝑜𝑟𝑎 𝐵𝑟𝑎𝑛𝑐ℎ𝑖𝑛𝑔
2. 𝐴𝑐𝑟𝑜𝑝𝑜𝑟𝑎 𝐷𝑖𝑔𝑖𝑡𝑎𝑡𝑒
3. 𝐴𝑐𝑟𝑜𝑝𝑜𝑟𝑎 𝑇 𝑎𝑏𝑢𝑙𝑎𝑟
4. 𝐷𝑒𝑎𝑑 𝑐𝑜𝑟𝑎𝑙
5. 𝑁𝑜𝑛 − 𝑎𝑐𝑟𝑜𝑝𝑜𝑟𝑎 𝐸𝑛𝑐𝑟𝑢𝑠𝑡𝑖𝑛𝑔
6. 𝑁𝑜𝑛 − 𝑎𝑐𝑟𝑜𝑝𝑜𝑟𝑎 𝑀𝑎𝑠𝑠𝑖𝑣𝑒
7. 𝑁𝑜𝑛 − 𝑎𝑐𝑟𝑜𝑝𝑜𝑟𝑎 𝑀𝑖𝑙𝑙𝑒𝑝𝑜𝑟𝑎
8. 𝑁𝑜𝑛 − 𝑎𝑐𝑟𝑜𝑝𝑜𝑟𝑎 𝑆𝑢𝑏𝑚𝑎𝑠𝑠𝑖𝑣𝑒

• Habitat
1. 𝑅𝑜𝑐𝑘
2. 𝑅𝑢𝑏𝑏𝑙𝑒
3. 𝑆𝑎𝑛𝑑

• Other Organisms
1. Algae

It is important to note that we use a multi-label approach where each 
aerial tile can be assigned one or more of the 12 retained classes. If a 
tile contains both known and unknown categories (e.g., a combination 
of coral morphotypes, sand and an unrecognized benthic organism such 
as sponges), the model will only predict the classes it was trained on 
(e.g., coral morphotypes and sand). In cases where the tile is fully 
covered by an unknown category, the model may assign it to the 
most visually similar known class, often with low confidence. Apply-
ing a threshold to the prediction probabilities can help identify such 
potentially novel classes.

2.5.6. Aerial deep learning model (student model)
To train the student model with soft labels, we use the Binary 

Cross-Entropy (BCE) with logits loss function. This loss measures the 
divergence between the predicted logits of the student model and the 
soft labels 𝑃 (𝑦𝑐 = 1 ∣ 𝑡) ∈ [0, 1] generated by the teacher model. 
Specifically, the loss for class 𝑐 in tile 𝑡 is given by:

BCE(𝑡, 𝑐) = −
[

𝑃 (𝑦𝑐 = 1 ∣ 𝑡) ⋅ log(𝑝student(𝑦𝑐 = 1 ∣ 𝑡))

+ (1 − 𝑃 (𝑦𝑐 = 1 ∣ 𝑡)) ⋅ log(1 − 𝑝student(𝑦𝑐 = 1 ∣ 𝑡))
]

(4)

where:

• 𝑃 (𝑦𝑐 = 1 ∣ 𝑡) ∈ [0, 1] is the soft label provided by the teacher 
model for class 𝑐 in tile 𝑡, as described in Eqs. (2) and (3)

• 𝑝student(𝑦𝑐 = 1 ∣ 𝑡) ∈ [0, 1] is the probabilistic output of the student 
model for class 𝑐 in tile 𝑡, obtained through a sigmoid function on 
top of the final layer of the model.

To maintain consistency with underwater predictions, we used the 
same architecture for the student model as the one used for the teacher 
model (i.e. the DinoV2 model (Oquab et al., 2023), please refer to 
Appendix  C).

The only difference is that, since the underwater model was trained 
with binary values and the aerial model has to be trained on probabil-
ities, when computing evaluation metrics during the training process 
we cannot use the accuracy, precision, recall and F1-score metrics. 
Instead, we will compute the Root Mean Squared Error (RMSE), the 
Mean Absolute Error (MAE) and the Kullback–Leibler (KL) divergence 
metrics. The student model can be found in Contini et al. (2024d).

2.6. Test zone and model evaluation

To evaluate the performance of the aerial deep learning model, we 
selected a test zone within the Trou d’eau lagoon, see Fig.  10. This 
area was chosen due to its diverse composition of coral morphotypes, 
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Fig. 10. Test zone within the Trou d’eau lagoon, selected for model evaluation. The 
area measures 63 m2 and comprises 194 underwater images corresponding to 28 aerial 
tiles.

habitats, and other marine organisms, representing a challenging envi-
ronment for model validation. The test zone comprises 194 underwater 
images, corresponding to 28 aerial tiles, for a total of 63 m2.

The annotation process for the aerial tiles is carried out as follows:

1. For each aerial tile, underwater images with centroids located 
within the tile boundaries are identified.

2. These underwater images are then projected in QGIS to as-
sess the portions of each image that intersect the aerial tile 
boundaries.

3. Each cropped underwater image is manually annotated with 
fine-grained precision.

4. As a result, each aerial tile is annotated with a level of detail 
comparable to that of underwater imagery and is therefore 
considered as ground truth data.

These aerial tiles were not used during model training, ensuring an 
unbiased evaluation of the aerial model.

Both Eqs.  (2) and (3) were used to generate aerial annotations 
starting from underwater predictions in the test zone. The generated 
annotations were then compared with ground truth data to evaluate 
the goodness of the upscaling process using the AUC (Area Under the 
Curve) metric, which is commonly used metric in the evaluation of 
Species Distribution Models (SDMs) (Elith et al., 2006).

Finally, in order to evaluate the aerial model, we compared the 
predictions on the test zone with the ground truth data using the AUC 
metric.

3. Results

3.1. Upscaling process evaluation

In order to evaluate the upscaling process, we compared the gener-
ated annotations with ground truth annotations in the geospatial test 
zone in the Trou d’eau lagoon. We first evaluated the quality of the soft 
labels generated with our methods described in Eqs. (2) and (3). As they 
provide a presence probability for each class, we can actually measure 
their AUC on the ground truth annotations. With a value of 0.9211 
for annotations generated through Eq. (2) and 0.9251 for annotations 
generated through Eq. (3), both methods show a high level of accuracy 
in transferring information across scales.

To further evaluate both methods, we then measured the per-
formance of the student model trained with either method. In the 
following, we will call Model_spatial_only the model trained 
from annotations generated through Eq. (2) and Model_distilled
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Fig. 11. Prediction maps generated by the aerial model superposed on the aerial orthophoto: (a) Prediction map for the 𝐴𝑐𝑟𝑜𝑝𝑜𝑟𝑎 𝐵𝑟𝑎𝑛𝑐ℎ𝑖𝑛𝑔  class in the Trou d’eau lagoon. Red 
patches indicate the presence of corals. (b) Zoomed-in prediction map for the 𝑁𝑜𝑛 − 𝑎𝑐𝑟𝑜𝑝𝑜𝑟𝑎 𝑀𝑎𝑠𝑠𝑖𝑣𝑒  class in the Saint-Leu lagoon. Red patches indicate the presence of corals.
Table 2
Comparison of Model_spatial_only and Model_distilled on various perfor-
mance metrics.
 Model RMSE MAE KL Divergence 
 Model_spatial_only 0.2019 0.1446 0.9802  
 Model_distilled 0.1546 0.1143 0.3931  

the model trained from the annotations generated through Eq. (3). Only 
the second model integrates information about the teacher’s model 
confidence (= knowledge distillation). The first model integrates the 
hard labels predicted by the teacher and the spatial coverage. We first 
looked at the evaluation metrics measured on the soft labels themselves 
(using the random test set). The results are shown in Table  2.

The results show that Model_distilled trained using knowl-
edge distillation (i.e. with Eq. (3)) allows a better prediction of the 
soft labels than Model_spatial_only trained without knowledge 
distillation (i.e. Eq. (2)) on all metrics. This means that the information 
they contain is more predictable from the aerial image contents.

Finally, comparing the predictions generated with both Model_
spatial_only and Model_distilled on the ground truth data 
of the geospatial test zone in the Trou d’eau lagoon, we obtain an AUC 
of 0.7753 and 0.7952 respectively. This confirms that the best upscaling 
method is the one using knowledge distillation (Eq. (3)) and that
high AUC values can be achieved by the aerial model using this
method.

3.2. Prediction maps

Once the aerial (student) model is trained, we can use it in inference 
mode to generate high resolution maps of large areas. In particular, 
we ran it on 20,027 tiles in the Trou d’eau lagoon and 61,059 tiles 
in the Saint-Leu lagoons. For each tile, we used the output of the 
student model as the probability of presence of each class and then we 
generated prediction maps for each class.

In Fig.  11 we show two examples of prediction maps generated by 
the aerial model for the 𝐴𝑐𝑟𝑜𝑝𝑜𝑟𝑎 𝐵𝑟𝑎𝑛𝑐ℎ𝑖𝑛𝑔  class in the Trou d’eau
lagoon and the 𝑁𝑜𝑛 − 𝑎𝑐𝑟𝑜𝑝𝑜𝑟𝑎 𝑀𝑎𝑠𝑠𝑖𝑣𝑒  class in the Saint-Leu lagoon. 
The granularity of the prediction raster is fixed at 1.5 m × 1.5 m, which 
is the same as the aerial tiles. Different spatial scales are shown in Figs. 
11(a) and 11(b), in order to highlight the model’s ability to cover large 
areas while still being able to capture fine-scale details.
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4. Discussion

This study demonstrates the potential of combining underwater and 
aerial imagery to improve monitoring and management of coral reef 
ecosystems. Although previous research has highlighted the advan-
tages of using both imaging techniques, this work, to our knowledge, 
is the first to synergize AI models across different scales. By using 
high-resolution underwater AI predictions to train a larger-scale aerial 
model, we ensure the precision of underwater analysis while extending 
it to cover a broader reef area. This multi-scale approach has the 
potential to advance marine monitoring, and it can also be applied to 
other fields such as agriculture, forestry, urban planning, and so forth.

4.1. Transferring information across scales: model independence and flexi-
bility

4.1.1. Upscaling process evaluation
While having a well-performing fine-scale model is needed for 

reliable medium-scale annotations, working on the model architecture 
in order to gain a few percentage points of accuracy is not the core 
of our methodology. The primary objective of our workflow is to train 
a medium-scale student model to mimic the behavior of a fine-scale 
teacher model, without the need to reannotate medium-scale images.

Two different techniques were used to generate aerial annotations 
starting from underwater predictions: the first one was based on pres-
ence/absence values obtained by thresholding underwater predictions 
(Eq. (2)), while the second one was based on knowledge distillation,
i.e., on integrating the probability values predicted by the underwater 
model in the soft labels passed to the student (Eq. (3)).

To compare and validate those methodologies, we evaluated them 
based on underwater predictions with ground truth data in the test zone 
in the Trou d’eau lagoon. The distillation-based method appeared to be 
the best with a high value of the AUC metric (0.9251). This indicates 
that it is a reliable method for transferring information from fine-scale 
to medium-scale images, allowing for a more nuanced estimate of class 
presence compared to using binary predictions (2).

Indeed, the soft labels generated by the teacher model provide 
a more accurate representation of class presence compared to the 
hard targets, since they capture the probability distribution across all 
possible classes, offering continuous values between 0 and 1. This 
approach allows the student model to better learn from the teacher 
model’s uncertainty, leading to improved generalization capabilities 
and performances (Hinton et al., 2015). This result is consistent with 
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the performance of the aerial model trained with annotations generated 
by Eq.  (3), which outperformed the model trained with annotations 
generated by Eq.  (2) on all metrics.

A key advantage of this methodology is its model independence. If 
a more accurate or advanced model becomes available in the future 
(thanks to new annotated images or improved algorithms), our frame-
work allows for easy adaptation. By applying the new model to our 
existing fine-scale data, we can regenerate high-resolution predictions, 
which can then be seamlessly transferred to the medium scale. This 
adaptability ensures that the model continues to benefit from the most 
accurate fine-scale insights.

4.1.2. Aerial model evaluation
The model’s performance on the neural network test set underscores 

its robustness. As shown in Table  2, the RMSE, MAE, and KL Divergence 
metrics are all low, indicating that the model’s predictions closely 
match annotations on the test set. The relatively low MAE compared 
to the RMSE (0.1143 vs. 0.1546) suggests that predictions on average 
deviate from the true values by less than 12%, indicating a high level 
of accuracy. Occasional larger discrepancies make the RMSE slightly 
higher, but the overall results are still very promising. The high AUC 
value (0.7952) computed on the test zone further confirms the model’s 
strong performance, indicating that the model can reliably generate 
probability estimates that closely align with the true distributions of 
the labels.

With regard to possible improvements concerning the deep learning 
model, as previously mentioned, in this study we used DinoV2 as a back-
bone: one of the SOTA (State Of The Art) computer vision models that 
currently performs the best on benchmark datasets. Applying transfer 
learning, we take advantage of the model’s strong generalization capa-
bilities while fine-tuning it to address our specific problem. However, 
we recognize that with the rapid advancements in artificial intelligence, 
our model may already be on the path to obsolescence (Ma et al., 2024). 
Continuously updating the model predictions to train the medium-scale 
model would enable us to incorporate the latest breakthroughs in AI, 
ensuring increasingly refined annotation quality over time.

4.2. Georeferencing challenges in multi-scale monitoring

A framework that enables the transfer of information from fine-
scale to a broader-scale imagery relies essentially on achieving precise 
alignment between the two layers of data. As shown in Fig.  9 the 
benthic substrate can vary significantly across small distances, so that 
in order to upscale underwater predictions to aerial annotations, data 
need to be accurately georeferenced.

Using differential GPS technology is the first step to achieve pre-
cise positioning, but does not guarantee a centimetric accuracy. To 
improve the ASV positioning, we used PPK techniques thanks to the 
CentipedeRTK network,4 ending up with a centimetric accuracy in 
the ASV positioning. Unfortunately, the position of the ASV is not 
the same as the position of the image, since waves can change the 
attitude of the ASV by tilting the direction of the camera from the 
vertical axis (see Fig.  8). To correct this, we used the camera angles 
on the three axes (Roll, Pitch and Yaw) and the echosounder data 
to compute the footprint of underwater images. Ending up with the 
latitude and longitude of the four corners defining the footprint on 
the seabed of each underwater image. A check on the quality of the 
georeferencing of underwater images is then necessary in order to 
validate the image positioning accuracy with an unbiased approach. 
In our case we chose to compare our data with data produced by the 
French National Institute of Geographic and Forest Information (IGN), 
which is a reference in the field of georeferencing. Thanks to a visual 

4 https://docs.centipede.fr/
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comparison between the two datasets, we were able to validate the 
accuracy of the fine scale georeferencing process.

Although using a differential GPS on the platform acquiring images 
is a significant advantage, it is neither a necessary nor a sufficient con-
dition to achieve centimetric accuracy. For instance, our methodology 
demonstrated that combining PPK techniques, GCPs, and validation 
against an external reference such as IGN data can deliver the required 
accuracy for coral reef monitoring. However, since our current setup 
involves UAVs without embedded differential GPS, precise aerial image 
alignment still depends on the manual collection of GCPs, making 
the process time-consuming and labor-intensive. Transitioning to UAVs 
equipped with embedded differential GPS could significantly streamline 
the data collection process. By applying PPK techniques directly to 
aerial images, the need for GCP collection could be minimized to a 
few validation points, reducing mission planning time and increasing 
efficiency. This advancement would enable faster and more scalable 
reef monitoring over large areas while maintaining accurate positio-
ning.

4.3. Expanding spatial coverage and species identification

4.3.1. Satellite imagery upscaling
This study highlights several areas for future improvement. Al-

though the classification accuracy was high across most classes, certain 
coral types remain challenging to differentiate at the aerial scale due 
to image resolution constraints. Addressing this limitation may involve 
refining aerial image resolution by reducing the flight altitude (respect-
ing the regulations in force in the country where the data is collected), 
employing more advanced image processing techniques, using higher-
quality drones/cameras with better sensors (Giusti et al., 2023) or 
even using hyperspectral cameras to capture more detailed information 
about the reef (Rossiter et al., 2020).

Finally, mimicking the idea presented in this study, we could extend 
the methodology to the satellite scale. In Alvarez-Vanhard et al. (2021) 
the authors discuss the complementary nature of UAV and satellite 
data, pointing out that integrating these technologies can improve 
spatial and temporal resolution in remote sensing applications. For 
instance, initiatives like the Allen Coral Atlas (Allen Coral Atlas Partner-
ship, 2020), while offering large-scale reef coverage, often lack region-
specific calibration, leading to inaccuracies in predictions (Nomenisoa 
et al., 2024). Successful integration would allow rapid monitoring of 
large areas, significantly reducing the need for field data collection, 
as satellite imagery is often freely available and collected at regular 
intervals. Furthermore, access to a historical archive of satellite imagery 
provides a unique opportunity to study ecosystem evolution over past 
decades, while supporting long-term monitoring efforts in the future. 
This extended temporal and spatial coverage could greatly improve our 
understanding of ecological change on a global scale.

4.3.2. Expanding to slow-moving species identification through synchro-
nized imaging

The collection of both fine-scale and aerial images simultaneously 
has the potential to enable the identification of certain benthic species, 
which would otherwise be challenging to recognize. To illustrate, slow-
moving organisms such as sea cucumbers are frequently visible in 
aerial images (e.g., Fig.  10). Given that these species move at a slow 
speed, synchronized collection of both image types would provide the 
temporal and spatial alignment necessary for passing the information 
from the fine-scale model to the medium-scale model. Although this 
data collection approach imposes additional constraints compared to 
the method used in this study, where fine-scale and medium-scale data 
can be collected days or even months apart, it offers the advantage 
of providing additional ecological insights that would otherwise be 
inaccessible (Conand et al., 2018).

https://docs.centipede.fr/
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4.4. AI and biodiversity monitoring

The integration of AI into biodiversity and ecological monitoring 
offers many benefits but also introduces risks that should not be un-
derestimated. On the one hand, AI enables unprecedented efficiency 
and accuracy in data collection, processing, and analysis, allowing 
researchers to monitor ecosystems at a scale and depth previously 
unattainable (Tuia et al., 2022; Besson et al., 2022; Reynolds et al., 
2024). On the other hand, the adoption of AI is not without challenges. 
The reliance on advanced technologies risks marginalizing regions with 
limited resources or technical capacity, exacerbating global inequalities 
in biodiversity conservation (Sandbrook, 2024). Transparency of AI 
algorithms is another critical challenge. Conservation AI models often 
rely on ‘‘black-box’’ algorithms and restricted-access data, making it 
difficult for users, including scientists and policymakers, to understand 
how decisions are made. This opacity can lead to mistrust in AI systems 
and reduce their acceptance in conservation practices (Ayoola et al., 
2024). A balance between exploiting the benefits of AI and addressing 
these risks is needed to ensure its effective and equitable use in ecology.

To promote transparency, reproducibility, and equitable access, all 
raw and processed data used in this study are publicly available on 
Zenodo (Contini et al., 2024a,b). These data adhere to community 
standards outlined in Contini et al. (2025), which fosters good practices 
for Open Science and FAIR (Findable, Accessible, Interoperable, and 
Reusable) data management. Standards implemented include Darwin 
Core and GBIF for biodiversity data, GCRMN protocols for scientific 
diving and EXIF & XMP metadata standards for camera imagery.

Similarly, all the codes used to process raw data and train AI models 
are openly accessible on Github and the trained models themselves are 
published on Hugging Face along with their respective configuration 
files.

By making these resources available, we aim to encourage col-
laboration, facilitate reuse of our work, and support the adoption of 
transparent, FAIR-aligned practices in ecological research.

5. Conclusion

In this study, we presented a novel methodology for transferring 
information across scales in coral reef monitoring. Our approach lever-
ages the strengths of high-resolution underwater imagery with medium-
scale aerial data, ensuring the precision of fine-scale analysis while 
extending it to cover a broader reef area. This multi-scale framework 
has the potential to revolutionize marine monitoring, providing a more 
comprehensive and efficient way to assess coral reef health.

By training a medium-scale model to mimic the behavior of a fine-
scale model, we ensure that the system can easily incorporate new 
advances in AI without the need for data re-annotation. This flexibility 
allows us to continuously improve the model’s predictions, ensuring 
that it remains at the cutting edge of coral reef monitoring. Using 
standardized annotation protocols and adhering to FAIR (Findable, Ac-
cessible, Interoperable, and Reusable) data principles can broaden the 
range of ecosystems monitored with our methodology. As done in Con-
tini et al. (2025), sharing scientific-collected and citizen-collected data 
could enable our model to extend its predictions to other geographic 
regions, increasing its applicability for ecosystem monitoring.

Looking ahead, we see great potential for our methodology to be 
extended to the satellite scale. By integrating UAV and satellite data, we 
can enhance spatial and temporal resolution in remote sensing applica-
tions, providing a more comprehensive view of coral reef ecosystems. 
This extended coverage could greatly improve our understanding of 
ecological change on a global scale, supporting long-term monitor-
ing efforts and contributing to the conservation of these vital marine 
ecosystems.

Moreover, the proposed upscaling methodology shows promise for 
applications in a number of different fields beyond the monitoring of 
coral reefs. In terrestrial environments, it could be used to support 
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forestry management by extending detailed ground-based observations 
to regional scales. In a completely different domain, like in urban 
planning, ground-level observations of pedestrians, traffic or vegetation 
could inform city-wide analyses using aerial or satellite imagery. These 
examples demonstrate the versatility of this approach, which could be 
applied across a range of disciplines and environments.
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Table 3
Video File Parameters.
 Parameter Value  
 File Type Extension MP4  
 MIME Type video/mp4  
 Time Scale 60 000  
 Preferred Rate 1  
 Preferred Volume 1  
 Firmware Version HD8.01.02.51.00  
 Camera Model Name HERO8 Black  
 Auto Rotation U  
 Digital Zoom Y  
 Pro Tune Y  
 White Balance 6500K  
 Sharpness HIGH  
 Color Mode FLAT  
 Auto ISO Max 400  
 Auto ISO Min 100  
 Rate 2_1SEC  
 Field Of View L  
 Sensor Readout Time 7.9200005531311  
 Electronic Image Stabilization N/A  
 Image Width 1920  
 Image Height 1080  
 Graphics Mode 0  
 X Resolution 72  
 Y Resolution 72  
 Compressor Name GoPro AVC encoder 
 Bit Depth 24  
 Video Frame Rate 59.9400599400599  
 Avg Bitrate 45266194  

Appendix A. ASV supplementary informations

A.1. Camera settings

GoPro camera setting can be found in Table  3.

Appendix B. UAV supplementary informations

B.1. Mission planning

Imaging the seabed, even in tropical environments with very clear 
waters, is often complicated by reflections of sunlight from the water 
surface. Direct sun rays reflections can be extremely bright and cause 
oversaturated areas on aerial images. These reflections overexpose the 
image, making it difficult to see the seafloor structure, as shown in Fig. 
12.

If the seafloor is not visible in the image, SfM algorithms cannot map 
these areas effectively. It is thus necessary to avoid these reflections in 
the images. A solution is to take images when the sun is at a low angle, 
which reduces the reflection of sunlight on the water surface (Slocum 
et al., 2019). This can be achieved by surveying the desired area early 
in the morning or late in the afternoon, or on a cloudy day. In our 
case, images were taken between daybreak and sunrise, which is the 
best time to avoid reflections on the water surface on the west part of 
Reunion Island.

B.2. Mission execution

In SfM surveys, overlap and sidelap refer to the percentage to 
which each consecutive image overlaps with the preceding image and 
the images on adjacent flight lines. In order to obtain a good 3D 
model, it is important to have a high overlap and sidelap between 
images. The overlap and sidelap should be at least 70% for a good 3D 
model (Westoby et al., 2012). In our case, the overlap and sidelap were 
both set to 80%.
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Fig. 12. Example of an overexposed image, taken by a Mavic 2 Pro drone in the
Saint-Leu lagoon in Reunion Island. The sun reflection on the water surface makes it 
impossible to see the seafloor structure.

Table 4
OpenDroneMap Processing Settings.
 Setting Value 
 Auto-boundary True  
 DEM Resolution 2.0  
 DSM True  
 Orthophoto Resolution 1.0  
 Point Cloud Quality Ultra  
 Rolling Shutter True  

For what concerns the flight altitude, a lower one implies a higher 
resolution point cloud in the SfM process since more details of the 
seabed will be visible but on the other hand the wave induced refrac-
tion is more visible. On the contrary, setting a too high flying altitude 
will reduce the resolution of the point cloud, making it difficult to 
distinguish characteristics of study objects (e.g., coral colonies, habitats, 
etc.). In our case, the flight altitude was set to 60 m.

B.3. Image processing

Many photogrammetry softwares are available to build a 3D model 
from images. In our case, since the objective was to create an open-
source pipeline, the software package OpenDroneMap was used.
OpenDroneMap is a commercial-grade open-source software package 
for SfM photogrammetric processing (initially developed for aerial 
images) that can be used to generate georeferenced orthophotos, point 
clouds, elevation models and textured 3D models from aerial images.

Settings used for the processing images from both missions are 
shown in Table  4.

Appendix C. Fine scale deep-learning model

DinoV2, a family of state-of-the-art transformer models in computer 
vision produces general-purpose visual features (i.e., features that work 
across image distributions and tasks without fine-tuning), and is com-
patible with classifiers as simple as linear layers. Meaning that the 
model can be readily applied to various tasks like image classifica-
tion or segmentation without necessitating encoder fine-tuning (Oquab 
et al., 2023). This implies that instead of training the entire model on 
a specific dataset, we can simply fine-tune a classification head atop 
the frozen encoder.5DinoV2 comprises four distinct models based on 
different sizes: small, base, large, and giant.

5 To give an idea, the large version of the model (Vit-L) has 0.3B of 
parameters and the giant version (Vit-g) 1.1B parameters.
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Fig. 13. Architecture of DinoVdeau model.
Table 5
Model size comparison.
 Model Loss F1 Micro F1 Macro Roc Auc Accuracy Steps per second 
 DinoVdeau-small 0.1320 0.8009 0.6614 0.8649 0.2903 0.164  
 DinoVdeau-base 0.1260 0.8131 0.6976 0.8760 0.3014 0.207  
 DinoVdeau-large 0.1209 0.8228 0.7175 0.8813 0.3111 0.21  
 DinoVdeau-giant 0.1208 0.8209 0.7101 0.8812 0.3080 0.66  

In our study, following a performance evaluation against training 
time experiment, we opted for the large model. Transitioning from the 
small to base version and from base to large version, demonstrates a 
performance increase for all the metrics (F1 Micro, F1 Macro, Roc Auc, 
and Accuracy) with a reasonable uptick in training time, see Table  5. 
The giant version of the model, despite having slightly lower loss than 
the large model, has lower performances for all the metrics and the 
training steps per second are almost multiplied by three, inducing a 
considerable increase in total training time.

For the classification head, we used a more complex model than a 
simple linear classifier in order to improve the expressiveness of the 
model and capture more complex interactions between the variables 
extracted by the backbone model. Specifically, we added a bottleneck 
layer block consisting of a linear layer, a ReLU, a batch normalization, 
and a dropout layer. The resulting model is called DinoVdeau and the 
architecture is shown in Fig.  13.

Introducing the bottleneck layer block instead of a single linear 
classifier results in a performance gain of approximately 0.006% and 
0.015% for the F1 Micro and the Accuracy metrics respectively.

Using DinoV2 as the backbone compared to a Resnet50 baseline 
model results in a performance gain of approximately 0.098% and 
0.140% for the F1 Micro and the Accuracy metrics respectively.

The model was trained for 93 epochs, incorporating an early stop-
ping mechanism with a patience of 10 epochs to mitigate overfitting. 
Maintaining a fixed batch size of 32, the initial learning rate was 
established at 10−3, and was decreased by a factor of 0.1 whenever 
the model’s performance plateaued for more than 5 epochs. Network 
weight updates were executed using the Adam optimization algorithm 
with a weight decay of 10−4. More information about the model 
training can be found on DinoVdeau Github.

The training lasted 75 h, on the Datarmor supercomputer equipped 
with an NVIDIA Tesla V100 PCIe 32 GB GPU and 32 Intel 
Xeon-Gold 4216 (2.1GHz/16-core/100 W) CPUs. All the train-
ings were done using the Huggingface Transformers library (Wolf 
et al., 2020). The teacher model can be found in Contini et al. (2024c).
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Appendix D. Data splitting

As explained in Morais et al. (2019), the process of data splitting is 
a crucial step in the construction of image classification models. This 
is essential to assess their effectiveness with an unbiased approach. To 
achieve this, we employ preprocessing techniques and leverage prior 
knowledge of the dataset. The approach involves dividing the samples 
into three distinct parts: the training set 𝐷𝑡𝑟, the validation set 𝐷𝑣𝑎𝑙, 
and the test set 𝐷𝑡𝑒𝑠𝑡. It is important to note that our task involves 
multilabel classification, where an input can have multiple labels. This 
complicates the stratification process compared to monolabel classifica-
tion. Traditional single-label approaches to stratifying data fall short in 
providing balanced dataset divisions in the multilabel case because it 
is not feasible to create tuples (image, label), given that each image 
corresponds to a variable number of labels. Consequently, once an 
image is assigned to a dataset, all corresponding labels are assigned 
to it.

To build a model with high generalization capabilities, we opt for 
a temporal criterion to independently divide the dataset into three 
subdatasets. The goal is to maximize the diversity of the training dataset 
by including images from different periods and islands in the Indian 
Ocean. This temporal splitting criterion corresponds to a spatial one 
as well, considering that images are typically collected during data 
collection campaigns in specific locations. This approach ensures that 
the training dataset is not only temporally diverse but also representa-
tive of various spatial contexts. Subsequently, we employ the scikit 
multilabel data stratification technique to split each subdataset 
into three subsets (Sechidis et al., 2011). For the purpose of achieving 
optimal predictive performance for our neural network, we implement 
the algorithm represented by the following pseudo-code:
Algorithm 1 Dataset splitting algorithm
1: for 𝑖 = 1,… , 𝑁𝑏_𝑦𝑒𝑎𝑟𝑠 do
2:  1.Split the 𝐷𝑖 into 𝑡𝑟𝑎𝑖𝑛𝑖 and 𝑣𝑎𝑙− 𝑡𝑒𝑠𝑡𝑖 sets using the Multi-label 
data stratification technique

3:  2.Split the 𝑣𝑎𝑙 − 𝑡𝑒𝑠𝑡𝑖 set into 𝑣𝑎𝑙𝑖 and 𝑡𝑒𝑠𝑡𝑖 sets using the 
Multi-label data stratification technique.

4:  3.Concatenate the current 𝑡𝑟𝑎𝑖𝑛𝑖, 𝑣𝑎𝑙𝑖, and 𝑡𝑒𝑠𝑡𝑖 datasets to the 
overall 𝐷𝑡𝑟𝑎𝑖𝑛, 𝐷𝑣𝑎𝑙 and 𝐷𝑡𝑒𝑠𝑡datasets.

5: end for
In Table  6, we present the total number of images for each class, 

along with their corresponding distribution in the training, validation, 
and test sets. The results indicate a well-balanced class distribution.
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Table 6
Class frequency distribution across training, validation, and test sets.
 Class Train Frequency Validation Frequency Test Frequency Total 
 Acropore_branched 0.666666 0.167702 0.165632 1206 
 Acropore_digitized 0.690607 0.160059 0.149552 674  
 Acropore_tabular 0.640284 0.183073 0.177643 1507 
 Algae_assembly 0.609174 0.194251 0.195574 3562 
 Algae_limestone 0.601715 0.198876 0.199408 2207 
 Algae_sodding 0.606493 0.197214 0.196293 3426 
 Dead_coral 0.613217 0.194557 0.193226 1839 
 Fish 0.643513 0.169074 0.169413 1359 
 Human_object 0.599117 0.198823 0.200059 678  
 Living_coral 0.604631 0.198982 0.195387 2916 
 Millepore 0.612976 0.208060 0.178964 571  
 No_acropore_encrusting 0.602345 0.207921 0.188734 682  
 No_acropore_foliaceous 0.742105 0.119298 0.136842 285  
 No_acropore_massive 0.595306 0.204966 0.200388 1548 
 No_acropore_sub_massive 0.623316 0.187305 0.188379 1930 
 Rock 0.606011 0.197692 0.196297 6171 
 Sand 0.599165 0.200334 0.199501 5990 
 Scrap 0.590874 0.201673 0.207453 3586 
 Sea_cucumber 0.600769 0.195385 0.204615 1300 
 Sea_urchins 0.589441 0.186291 0.224267 321  
 Sponge 0.581487 0.192027 0.226486 389  
 Syringodium_isoetifolium 0.600307 0.198256 0.201437 1949 
 Thalassodendron_ciliatum 0.600921 0.199232 0.199846 1304 
 Useless 0.601836 0.199179 0.199985 977  
Data availability

The data that support the findings of this study are openly available 
in Zenodo at Seatizen Atlas (Contini et al., 2025, 2024b). In order 
to facilitate access to the input and output data of this study, they 
have also been grouped in this repository. All code for data processing 
associated with the current submission is available on drone-upscaling
Github. The code for downloading data associated with the current 
submission is available on zenodo-tools Github. The code used to train 
the neural network model used in the current submission is available 
on DinoVdeau Github.

References

Allen Coral Atlas Partnership, 2020. Allen coral Atlas maps of the benthic cover and 
geomorphic zones of coral reefs in western Micronesia. http://dx.doi.org/10.5281/
zenodo.3953053, Zenodo.

Alvarez-Vanhard, Emilien, Corpetti, Thomas, Houet, Thomas, 2021. UAV & satellite 
synergies for optical remote sensing applications: A literature review. Sci. Remote. 
Sens. 3, 100019.

Ancelin, Julien, Ladet, Sylvie, Heintz, Wilfried, 2023. Le real time kinematic col-
laboratif, lowcost et open source. positionnement GNSS temps réel, cinématique, 
collaboratif et en accès libre et à faible coût. In: Badard, Thierry, Pouliot, Jacynthe, 
Noucher, Ma8hieu, Villanova-Oliver, Marlène (Eds.), Spatial Analysis and GEO-
matics 2023. In: Actes de la conférence Spa1al Analysis and GEOma1cs (SAGEO) 
2023, GDR MAGIS Méthodes et Applications pour la Géomatique et l’Information 
Spatiale and Centre de Recherche en Données et Intelligence Géospatiales de 
l’Université Laval (Québec), Québec, Canada, pp. 184–197, URL https://hal.inrae.
fr/hal-04144737.

Anon, 2022. COP15: Nations adopt four goals, 23 targets for 2030 in landmark 
UN Biodiversity Agreement. Conv. Biol. Divers. URL https://www.cbd.int/article/
cop15-cbd-press-release-final-19dec2022.

Ayoola, Victoria Bukky, Idoko, P.I., Eromonsei, Samson Ohikhuare, Afolabi, Olusegun, 
Apampa, A.R., Oyebanji, O.S., 2024. The role of big data and AI in enhancing 
biodiversity conservation and resource management in the USA. World J. Adv. 
Res. Rev. 23 (02), 1851–1873.

Besson, Marc, Alison, Jamie, Bjerge, Kim, Gorochowski, Thomas E., Høye, Toke T., 
Jucker, Tommaso, Mann, Hjalte M.R., Clements, Christopher F., 2022. Towards 
the fully automated monitoring of ecological communities. Ecol. Lett. 25 (12), 
2753–2775.

Bruckner, Andrew W., 2002. Life-saving products from coral reefs. Issues Sci. Technol. 
18 (3), 39–44.

Conand, Chantal, Ribes-Beaudemoulin, Sonia, Trentin, Florence, Mulochau, Thierry, 
Boissin, Emilie, 2018. Marine biodiversity of La Reunion Island: Echinoderms. West. 
Indian Ocean. J. Mar. Sci. 17 (1), 111–124, URL https://hal.univ-reunion.fr/hal-
01906874.
15 
Contini, Matteo, Barde, Julien, Bonhommeau, Sylvain, Illien, Victor, Joly, Alexis, 
2024a. Seatizen Atlas Image Dataset. Zenodo, http://dx.doi.org/10.5281/zenodo.
13951614.

Contini, Matteo, Barde, Julien, Bonhommeau, Sylvain, Illien, Victor, Joly, Alexis, 2024b. 
Seatizen Atlas. http://dx.doi.org/10.5281/zenodo.13951435, Zenodo.

Contini, Matteo, Illien, Victor, Julien, Mohan, Ravitchandirane, Mervyn, Russias, Vic-
tor, Lazennec, Arthur, Chevrier, Thomas, Rintz, Cam Ly, Carpentier, Léanne, 
Gogendeau, Pierre, Leblanc, César, Bernard, Serge, Boyer, Alexandre, Daudon, Jus-
tine Talpaert, Poulain, Sylvain, Barde, Julien, Joly, Alexis, Bonhommeau, Sylvain, 
2025. Seatizen Atlas: a collaborative dataset of underwater and aerial marine 
imagery. Sci. Data (ISSN: 2052-4463) 12, 67. http://dx.doi.org/10.1038/s41597-
024-04267-z.

Contini, Matteo, Leblanc, César, Illien, Victor, 2024c. DinoVdeau-large-2024_04_03-
with_data_aug_batch-size32_epochs150_freeze – Hugging Face. http://dx.doi.org/10.
57967/hf/2947.

Contini, Matteo, Leblanc, César, Illien, Victor, 2024d. drone-DinoVdeau-from-probs-
large-2024_11_15-batch-size32_freeze_probs – Hugging Face. http://dx.doi.org/10.
57967/hf/4022.

Doukari, Michaela, Topouzelis, Konstantinos, 2022. Overcoming the UAS limi-
tations in the coastal environment for accurate habitat mapping. Remote. 
Sens. Appl. Soc. Environ. (ISSN: 2352-9385) 26, 100726. http://dx.doi.org/
10.1016/j.rsase.2022.100726, URL https://www.sciencedirect.com/science/article/
pii/S2352938522000349.

Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R.J., 
Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., 
Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.M., Peterson, A.T., 
Phillips, S.J., Richardson, K., Scachetti-Pereira, R., Schapire, R.E., Soberon, J., 
Williams, S., Wisz, Mary, Zimmermann, N.E., 2006. Novel methods improve predic-
tion of species’ distributions from occurrence data. Ecography (ISSN: 0906-7590) 
29 (2), 129–151. http://dx.doi.org/10.1111/j.2006.0906-7590.04596.x.

Giusti, Elisa, Capria, Amerigo, Saverino, Anna Lisa, Gelli, Samuele, Muñoz-
Castañer, Jorge, Dosil, Raquel, Naya, Jorge, Menéndez, Javier, 2023. A drone-based 
multisensory payload for maritime pollutants detections. IEEE Aerosp. Electron. 
Syst. Mag. 38 (3), 4–18. http://dx.doi.org/10.1109/MAES.2022.3232071.

Gogendeau, Pierre, Bonhommeau, Sylvain, Fourati, Hassen, Julien, Mohan, Con-
tini, Matteo, Chevrier, Thomas, Nieblas, Anne Elise, Bernard, Serge, 2024. An 
open-source autonomous surface vehicle for acoustic tracking, bathymetric and 
photogrammetric surveys. arXiv:2406.18760.

Gou, Jianping, Yu, Baosheng, Maybank, Stephen J., Tao, Dacheng, 2021. Knowledge 
distillation: A survey. Int. J. Comput. Vis. 129 (6), 1789–1819.

Hidayati, Deny, et al., 2022. The importance of the sustainable use of Fishery resources 
to improve the livelihoods of Fishermen on the Islands of Sumatra and Sulawesi, 
Indonesia. In: Proceedings of the 5th Conference on Agribusiness, Green Energy, 
Environment, and Sustainable Development. CAGEES-V5, pp. 120–141.

Hinton, Geoffrey E., Vinyals, Oriol, Dean, Jeffrey, 2015. Distilling the knowledge in 
a neural network. CoRR abs/1503.02531, arXiv:1503.02531, URL http://dblp.uni-
trier.de/db/journals/corr/corr1503.html#HintonVD15.

Hoegh-Guldberg, Ove, Mumby, Peter, Hooten, A.J., Steneck, R.S., Greenfield, Paul, 
Gomez, Erick, Harvell, Catherine, Sale, Peter, Edwards, Alasdair, Caldeira, Ken, 
Knowlton, Nancy, Eakin, C. Mark, Iglesias-Prieto, Roberto, Muthiga, Nyawira, 
Bradbury, Roger, Dubi, Alfonse, Hatziolos, M, 2008. Coral reefs under rapid climate 

https://zenodo.org/records/11125848
https://zenodo.org/records/11125848
https://zenodo.org/records/11125848
https://zenodo.org/records/11125848
https://zenodo.org/records/11125848
https://zenodo.org/records/11125848
https://zenodo.org/records/11125848
https://zenodo.org/records/11125848
https://zenodo.org/records/11125848
https://zenodo.org/records/11125848
https://zenodo.org/records/11125848
https://zenodo.org/records/11125848
https://zenodo.org/records/11125848
https://zenodo.org/records/14735457
https://zenodo.org/records/14735457
https://zenodo.org/records/14735457
https://zenodo.org/records/14735457
https://zenodo.org/records/14735457
https://zenodo.org/records/14735457
https://zenodo.org/records/14735457
https://zenodo.org/records/14735457
https://zenodo.org/records/14735457
https://zenodo.org/records/14735457
https://zenodo.org/records/14735457
https://zenodo.org/records/14735457
https://zenodo.org/records/14735457
https://zenodo.org/records/14735457
https://github.com/SeatizenDOI/drone-upscaling
https://github.com/SeatizenDOI/drone-upscaling
https://github.com/SeatizenDOI/drone-upscaling
https://github.com/SeatizenDOI/drone-upscaling
https://github.com/SeatizenDOI/drone-upscaling
https://github.com/SeatizenDOI/drone-upscaling
https://github.com/SeatizenDOI/drone-upscaling
https://github.com/SeatizenDOI/drone-upscaling
https://github.com/SeatizenDOI/drone-upscaling
https://github.com/SeatizenDOI/drone-upscaling
https://github.com/SeatizenDOI/drone-upscaling
https://github.com/SeatizenDOI/drone-upscaling
https://github.com/SeatizenDOI/drone-upscaling
https://github.com/SeatizenDOI/drone-upscaling
https://github.com/SeatizenDOI/drone-upscaling
https://github.com/SeatizenDOI/drone-upscaling
https://github.com/SeatizenDOI/drone-upscaling
https://github.com/SeatizenDOI/drone-upscaling
https://github.com/SeatizenDOI/drone-upscaling
https://github.com/SeatizenDOI/drone-upscaling
https://github.com/SeatizenDOI/drone-upscaling
https://github.com/SeatizenDOI/zenodo-tools
https://github.com/SeatizenDOI/zenodo-tools
https://github.com/SeatizenDOI/zenodo-tools
https://github.com/SeatizenDOI/zenodo-tools
https://github.com/SeatizenDOI/zenodo-tools
https://github.com/SeatizenDOI/zenodo-tools
https://github.com/SeatizenDOI/zenodo-tools
https://github.com/SeatizenDOI/zenodo-tools
https://github.com/SeatizenDOI/zenodo-tools
https://github.com/SeatizenDOI/zenodo-tools
https://github.com/SeatizenDOI/zenodo-tools
https://github.com/SeatizenDOI/zenodo-tools
https://github.com/SeatizenDOI/zenodo-tools
https://github.com/SeatizenDOI/zenodo-tools
https://github.com/SeatizenDOI/zenodo-tools
https://github.com/SeatizenDOI/zenodo-tools
https://github.com/SeatizenDOI/zenodo-tools
https://github.com/SeatizenDOI/zenodo-tools
https://github.com/SeatizenDOI/DinoVdeau
https://github.com/SeatizenDOI/DinoVdeau
https://github.com/SeatizenDOI/DinoVdeau
https://github.com/SeatizenDOI/DinoVdeau
https://github.com/SeatizenDOI/DinoVdeau
https://github.com/SeatizenDOI/DinoVdeau
https://github.com/SeatizenDOI/DinoVdeau
https://github.com/SeatizenDOI/DinoVdeau
https://github.com/SeatizenDOI/DinoVdeau
https://github.com/SeatizenDOI/DinoVdeau
https://github.com/SeatizenDOI/DinoVdeau
https://github.com/SeatizenDOI/DinoVdeau
https://github.com/SeatizenDOI/DinoVdeau
https://github.com/SeatizenDOI/DinoVdeau
https://github.com/SeatizenDOI/DinoVdeau
http://dx.doi.org/10.5281/zenodo.3953053
http://dx.doi.org/10.5281/zenodo.3953053
http://dx.doi.org/10.5281/zenodo.3953053
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb2
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb2
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb2
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb2
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb2
https://hal.inrae.fr/hal-04144737
https://hal.inrae.fr/hal-04144737
https://hal.inrae.fr/hal-04144737
https://www.cbd.int/article/cop15-cbd-press-release-final-19dec2022
https://www.cbd.int/article/cop15-cbd-press-release-final-19dec2022
https://www.cbd.int/article/cop15-cbd-press-release-final-19dec2022
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb5
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb5
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb5
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb5
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb5
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb5
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb5
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb6
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb6
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb6
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb6
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb6
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb6
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb6
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb7
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb7
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb7
https://hal.univ-reunion.fr/hal-01906874
https://hal.univ-reunion.fr/hal-01906874
https://hal.univ-reunion.fr/hal-01906874
http://dx.doi.org/10.5281/zenodo.13951614
http://dx.doi.org/10.5281/zenodo.13951614
http://dx.doi.org/10.5281/zenodo.13951614
http://dx.doi.org/10.5281/zenodo.13951435
http://dx.doi.org/10.1038/s41597-024-04267-z
http://dx.doi.org/10.1038/s41597-024-04267-z
http://dx.doi.org/10.1038/s41597-024-04267-z
http://dx.doi.org/10.57967/hf/2947
http://dx.doi.org/10.57967/hf/2947
http://dx.doi.org/10.57967/hf/2947
http://dx.doi.org/10.57967/hf/4022
http://dx.doi.org/10.57967/hf/4022
http://dx.doi.org/10.57967/hf/4022
http://dx.doi.org/10.1016/j.rsase.2022.100726
http://dx.doi.org/10.1016/j.rsase.2022.100726
http://dx.doi.org/10.1016/j.rsase.2022.100726
https://www.sciencedirect.com/science/article/pii/S2352938522000349
https://www.sciencedirect.com/science/article/pii/S2352938522000349
https://www.sciencedirect.com/science/article/pii/S2352938522000349
http://dx.doi.org/10.1111/j.2006.0906-7590.04596.x
http://dx.doi.org/10.1109/MAES.2022.3232071
http://arxiv.org/abs/2406.18760
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb18
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb18
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb18
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb19
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb19
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb19
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb19
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb19
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb19
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb19
http://arxiv.org/abs/1503.02531
http://dblp.uni-trier.de/db/journals/corr/corr1503.html#HintonVD15
http://dblp.uni-trier.de/db/journals/corr/corr1503.html#HintonVD15
http://dblp.uni-trier.de/db/journals/corr/corr1503.html#HintonVD15


M. Contini et al. Ecological Informatics 89 (2025) 103149 
change and ocean acidification. Sci. (N. Y. N. Y.) 318, 1737–1742. http://dx.doi.
org/10.1126/science.1152509.

Hughes, Terry P., Baird, Andrew H., Bellwood, David R., Card, Margaret, Con-
nolly, Sean R., Folke, Carl, Grosberg, Richard, Hoegh-Guldberg, Ove, Jack-
son, Jeremy B.C., Kleypas, Janice, et al., 2003. Climate change, human impacts, 
and the resilience of coral reefs. Science 301 (5635), 929–933.

Hughes, Terry P., Kerry, James T., Álvarez-Noriega, Mariana, Álvarez-Romero, Jorge G., 
Anderson, Kristen D., Baird, Andrew H., Babcock, Russell C., Beger, Maria, 
Bellwood, David R., Berkelmans, Ray, et al., 2017. Global warming and recurrent 
mass bleaching of corals. Nature 543 (7645), 373–377.

Kurczyński, Zdzisław, Bakuła, Krzysztof, Pilarska, Magdalena, Ostrowski, Wojciech, 
2019. The problem of using and measurement of identifiable ground control 
points on high resolution aerial images. Arch. Fotogram. Kartogr. I Teledetekcji 
31, 135–144.

Kvile, Kristina Øie, Gundersen, Hege, Poulsen, Robert Nøddebo, Sample, James Ed-
ward, Salberg, Arnt-Børre, Ghareeb, Medyan Esam, Buls, Toms, Bekkby, Trine, 
Hancke, Kasper, 2024. Drone and ground-truth data collection, image anno-
tation and machine learning: A protocol for coastal habitat mapping and 
classification. MethodsX (ISSN: 2215-0161) 13, 102935. http://dx.doi.org/10.
1016/j.mex.2024.102935, URL https://www.sciencedirect.com/science/article/pii/
S2215016124003868.

Lamperti, Letizia, Sanchez, Théophile, Si Moussi, Sara, Mouillot, David, Al-
bouy, Camille, Flück, Benjamin, Bruno, Morgane, Valentini, Alice, Pellissier, Loïc, 
Manel, Stéphanie, 2023. New deep learning-based methods for visualizing ecosys-
tem properties using environmental DNA metabarcoding data. Mol. Ecol. Resour. 
23 (8), 1946–1958.

Lorieul, Titouan, 2020. Uncertainty in Predictions of Deep Learning Models for 
Fine-Grained Classification (Ph.D. thesis). Université Montpellier.

Ma, Yueen, Song, Zixing, Zhuang, Yuzheng, Hao, Jianye, King, Irwin, 2024. A survey on 
vision-language-action models for embodied AI. URL https://arxiv.org/abs/2405.
14093.

Misiuk, Benjamin, Brown, Craig J., 2024. Benthic habitat mapping: A review of three 
decades of mapping biological patterns on the seafloor. Estuar. Coast. Shelf Sci. 
(ISSN: 0272-7714) 296, 108599. http://dx.doi.org/10.1016/j.ecss.2023.108599, 
URL https://www.sciencedirect.com/science/article/pii/S027277142300389X.

Morais, Camilo L.M., Santos, Marfran C.D., Lima, Kássio M.G., Martin, Francis L., 2019. 
Improving data splitting for classification applications in spectrochemical analyses 
employing a random-mutation Kennard-Stone algorithm approach. Bioinformatics 
(ISSN: 1367-4803) 35 (24), 5257–5263. http://dx.doi.org/10.1093/bioinformatics/
btz421.

Morand, Gaétan, Joly, Alexis, Rouyer, Tristan, Lorieul, Titouan, Barde, Julien, 2024. 
Predicting species distributions in the open ocean with convolutional neural 
networks. Peer Community J. 4.

Nomenisoa, Aina Le Don, Todinanahary, Gildas, Edwin, Hubert Zafimampiravo, 
Razakarisoa, Toky, Israel, John Bunyan, Raseta, Saverio, Jaonalison, Henitsoa, 
Mahafina, Jamal, Eeckhaut, Igor, 2024. Remote sensing of coral reef habitats in 
madagascar using Sentinel-2 satellite images. West. Indian Ocean. J. Mar. Sci. 23 
(2), 41–56.

Oquab, Maxime, Darcet, Timothée, Moutakanni, Théo, Vo, Huy, Szafraniec, Marc, 
Khalidov, Vasil, Fernandez, Pierre, Haziza, Daniel, Massa, Francisco, El-
Nouby, Alaaeldin, Assran, Mahmoud, Ballas, Nicolas, Galuba, Wojciech, 
Howes, Russell, Huang, Po-Yao, Li, Shang-Wen, Misra, Ishan, Rabbat, Michael, 
Sharma, Vasu, Synnaeve, Gabriel, Xu, Hu, Jegou, Hervé, Mairal, Julien, 
Labatut, Patrick, Joulin, Armand, Bojanowski, Piotr, 2023. DINOv2: Learning 
robust visual features without supervision. URL arXiv:2304.07193  [cs].
16 
Reynolds, Sam A., Beery, Sara, Burgess, Neil, Burgman, Mark, Butchart, Stu-
art H.M., Cooke, Steven J., Coomes, David, Danielsen, Finn, Di Minin, Enrico, 
Durán, América Paz, et al., 2024. The potential for AI to revolutionize conservation: 
a horizon scan. Trends Ecol. Evolut..

Rogers, Alice, Blanchard, Julia, Mumby, Peter, 2017. Fisheries productivity under 
progressive coral reef degradation. J. Appl. Ecol. 55, http://dx.doi.org/10.1111/
1365-2664.13051.

Rossiter, Thomas, Furey, Thomas, McCarthy, Tim, Stengel, Dagmar B., 2020. UAV-
mounted hyperspectral mapping of intertidal macroalgae. Estuar. Coast. Shelf Sci. 
(ISSN: 0272-7714) 242, 106789. http://dx.doi.org/10.1016/j.ecss.2020.106789, 
URL https://www.sciencedirect.com/science/article/pii/S0272771419308431.

Sandbrook, Chris, 2024. Beyond the hype: Navigating the conservation implications of 
artificial intelligence. Conserv. Lett. e13076.

Sechidis, Konstantinos, Tsoumakas, Grigorios, Vlahavas, Ioannis, 2011. On the 
stratification of multi-label data. In: Gunopulos, Dimitrios, Hofmann, Thomas, 
Malerba, Donato, Vazirgiannis, Michalis (Eds.), Machine Learning and Knowledge 
Discovery in Databases. Springer Berlin Heidelberg, Berlin, Heidelberg, ISBN: 
978-3-642-23808-6, pp. 145–158.

Slocum, Richard K., Wright, W., Parrish, C., Costa, B., Sharr, M., Battista, T.A., 2019. 
Guidelines for bathymetric mapping and orthoimage generation using SUAS and 
SfM, an approach for conducting nearshore coastal mapping.

Tuia, Devis, Kellenberger, Benjamin, Beery, Sara, Costelloe, Blair R., Zuffi, Silvia, 
Risse, Benjamin, Mathis, Alexander, Mathis, Mackenzie W., Van Langevelde, Frank, 
Burghardt, Tilo, et al., 2022. Perspectives in machine learning for wildlife 
conservation. Nat. Commun. 13 (1), 1–15.

Ullah, Fazal, Saqib, Saddam, Xiong, You-Cai, 2024. Integrating artificial intelligence 
in biodiversity conservation: bridging classical and modern approaches. Biodivers. 
Conserv. 1–21.

van Dam, Joost W., Negri, Andrew P., Uthicke, Sven, Mueller, Jochen F., 2011. 
Chemical pollution on coral reefs: exposure and ecological effects. In: Sanchez-
Bayo, Francisco, van den Brink, Paul J., Mann, Reinier M. (Eds.), Ecological Impacts 
of Toxic Chemicals. Bentham Science Publishers, pp. 187–211.

Ventura, Daniele, Grosso, Luca, Pensa, Davide, Casoli, Edoardo, Mancini, Gianluca, 
Valente, Tommaso, Scardi, Michele, Rakaj, Arnold, 2023. Coastal benthic habitat 
mapping and monitoring by integrating aerial and water surface low-cost drones. 
Front. Mar. Sci. 9, 1096594.

Wang, Lin, Yoon, Kuk-Jin, 2021. Knowledge distillation and student-teacher learning 
for visual intelligence: A review and new outlooks. IEEE Trans. Pattern Anal. Mach. 
Intell. 44 (6), 3048–3068.

Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J., Reynolds, J.M., 2012. 
‘Structure-from-motion’ photogrammetry: A low-cost, effective tool for geo-
science applications. Geomorphology (ISSN: 0169-555X) 179, 300–314. http://
dx.doi.org/10.1016/j.geomorph.2012.08.021, URL https://www.sciencedirect.com/
science/article/pii/S0169555X12004217.

Wolf, Thomas, Debut, Lysandre, Sanh, Victor, Chaumond, Julien, Delangue, Clement, 
Moi, Anthony, Cistac, Pierric, Rault, Tim, Louf, Remi, Funtowicz, Morgan, Davi-
son, Joe, Shleifer, Sam, von Platen, Patrick, Ma, Clara, Jernite, Yacine, Plu, Julien, 
Xu, Canwen, Le Scao, Teven, Gugger, Sylvain, Drame, Mariama, Lhoest, Quentin, 
Rush, Alexander, 2020. Transformers: State-of-the-art natural language processing. 
In: Liu, Qun, Schlangen, David (Eds.), Proceedings of the 2020 Conference 
on Empirical Methods in Natural Language Processing: System Demonstrations. 
Association for Computational Linguistics, Online, pp. 38–45. http://dx.doi.org/10.
18653/v1/2020.emnlp-demos.6, URL https://aclanthology.org/2020.emnlp-demos.
6.

http://dx.doi.org/10.1126/science.1152509
http://dx.doi.org/10.1126/science.1152509
http://dx.doi.org/10.1126/science.1152509
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb22
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb22
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb22
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb22
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb22
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb22
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb22
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb23
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb23
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb23
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb23
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb23
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb23
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb23
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb24
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb24
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb24
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb24
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb24
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb24
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb24
http://dx.doi.org/10.1016/j.mex.2024.102935
http://dx.doi.org/10.1016/j.mex.2024.102935
http://dx.doi.org/10.1016/j.mex.2024.102935
https://www.sciencedirect.com/science/article/pii/S2215016124003868
https://www.sciencedirect.com/science/article/pii/S2215016124003868
https://www.sciencedirect.com/science/article/pii/S2215016124003868
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb26
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb26
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb26
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb26
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb26
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb26
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb26
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb26
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb26
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb27
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb27
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb27
https://arxiv.org/abs/2405.14093
https://arxiv.org/abs/2405.14093
https://arxiv.org/abs/2405.14093
http://dx.doi.org/10.1016/j.ecss.2023.108599
https://www.sciencedirect.com/science/article/pii/S027277142300389X
http://dx.doi.org/10.1093/bioinformatics/btz421
http://dx.doi.org/10.1093/bioinformatics/btz421
http://dx.doi.org/10.1093/bioinformatics/btz421
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb31
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb31
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb31
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb31
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb31
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb32
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb32
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb32
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb32
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb32
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb32
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb32
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb32
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb32
http://arxiv.org/abs/2304.07193
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb34
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb34
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb34
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb34
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb34
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb34
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb34
http://dx.doi.org/10.1111/1365-2664.13051
http://dx.doi.org/10.1111/1365-2664.13051
http://dx.doi.org/10.1111/1365-2664.13051
http://dx.doi.org/10.1016/j.ecss.2020.106789
https://www.sciencedirect.com/science/article/pii/S0272771419308431
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb37
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb37
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb37
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb38
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb38
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb38
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb38
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb38
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb38
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb38
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb38
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb38
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb39
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb39
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb39
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb39
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb39
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb40
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb40
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb40
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb40
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb40
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb40
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb40
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb41
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb41
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb41
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb41
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb41
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb42
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb42
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb42
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb42
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb42
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb42
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb42
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb43
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb43
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb43
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb43
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb43
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb43
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb43
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb44
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb44
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb44
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb44
http://refhub.elsevier.com/S1574-9541(25)00158-X/sb44
http://dx.doi.org/10.1016/j.geomorph.2012.08.021
http://dx.doi.org/10.1016/j.geomorph.2012.08.021
http://dx.doi.org/10.1016/j.geomorph.2012.08.021
https://www.sciencedirect.com/science/article/pii/S0169555X12004217
https://www.sciencedirect.com/science/article/pii/S0169555X12004217
https://www.sciencedirect.com/science/article/pii/S0169555X12004217
http://dx.doi.org/10.18653/v1/2020.emnlp-demos.6
http://dx.doi.org/10.18653/v1/2020.emnlp-demos.6
http://dx.doi.org/10.18653/v1/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6

	From underwater to drone: A novel multi-scale knowledge distillation approach for coral reef monitoring
	Introduction
	Materials and methods
	Underwater image acquisition
	Time synchronization
	Metadata correction

	Aerial image acquisition
	Orthophoto georeferencing

	Multi-scale positioning
	Underwater image classification
	Upscaling predictions
	Orthophoto tiling
	Filtering useless tiles
	Footprint calculation and tile coverage assessment
	Transforming underwater predictions into aerial annotations
	Aerial dataset
	Aerial deep learning model (student model)

	Test zone and model evaluation

	Results
	Upscaling process evaluation
	Prediction maps

	Discussion
	Transferring information across scales: model independence and flexibility
	Upscaling process evaluation
	Aerial model evaluation

	Georeferencing challenges in multi-scale monitoring
	Expanding spatial coverage and species identification
	Satellite imagery upscaling
	Expanding to slow-moving species identification through synchronized imaging

	AI and biodiversity monitoring

	Conclusion
	CRediT authorship contribution statement
	Declaration of Generative AI and AI-assisted technologies in the writing process
	Declaration of competing interest
	Acknowledgments
	Appendix A. ASV supplementary informations
	Camera settings

	Appendix B. UAV supplementary informations
	Mission planning
	Mission execution
	Image processing

	Appendix C. Fine scale deep-learning model
	Appendix D. Data splitting
	Data availability
	References


