Journal of Applied Phycology

Physiological responses to light regime of a Mediterranean lagoon strain of *Chaetoceros tenuissimus* and a collection strain of *Chaetoceros calcitrans*

Clément Pereto^{1,2†}, Viviana Ligorini^{1†}, Daniel Grzebyk³, Philippe Soudant⁵, Antoine Aiello¹, Loriane Alonso¹, Philippe Cecchi^{3,4}, Vanina Pasqualini^{1*}

¹ SPE, Stella Mare, Univ. Corse Pasquale Paoli, CNRS, Corte, France

² EPOC, Univ. Bordeaux, CNRS, Bordeaux INP, Pessac, France

³ MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France

⁴ MARBEC, CRO, Abidjan, Côte d'Ivoire

⁵ Univ. Brest, CNRS, IRD, Ifremer, UMR 6539, LEMAR, Plouzané, France

[†] These two authors contributed equally to this work

* *Corresponding author:* Viviana Ligorini <u>ligorini_v@univ-corse.fr</u>

Supplementary Material

Figure S1. Samples of micrographs taken at day 1, day 4 and day 7, in the CTEN and CCAL cultures under the two photoperiod treatments, showing changes in cell morphology, including cell chain elongation in CTEN during exponential growth phase. Micrographs were used for measurements of cell section area.

Figure S2. Variation in chl *a* biomass (eq μ g L⁻¹; mean \pm SD) estimated from in vivo PAM fluorescence, in triplicate cultures during photoperiod experiments for CTEN (dark grey; top figure) and CCAL (light grey; bottom figure), under 24:00 L:D (full bar) or 12:12 L:D (hatched bar) photoperiod. Error bars represent the standard deviation (n = 3). Statistical comparisons (Kruskal-Wallis test) were made between days for each photoperiod treatment and within strains (different letters represent significant differences (p-value < 0.05) between days).

Table S1. Evolution of cell concentrations (cell mL⁻¹) in the experiments carried out for setting the concentration of the inoculum, in the CTEN (10×10^3 ; 50×10^3 ; 100×10^3 ; 300×10^3 cell mL⁻¹) and CCAL (10×10^3 ; 50×10^3 ; 100×10^3 cell mL⁻¹) cultures.

Time	CTEN (cell mL^{-1})			CCAL (cell mL^{-1})			
(day)	CTEN 10	CTEN 50	CTEN 100	CTEN 300	CCAL 10	CCAL 50	CCAL 100
0	1.04E+04	5.00E+04	1.00E+05	2.91E+05	1.00E+04	6.27E+04	1.00E+05
1	3.40E+04	8.00E+04	2.09E+05	9.36E+05	2.67E+04	8.00E+04	1.97E+05
2	8.00E+04	2.73E+05	6.44E+05	2.83E+06	5.93E+04	1.62E+05	4.36E+05
3	1.97E+05	7.29E+05	1.25E+06	4.48E+06	1.19E+05	3.65E+05	9.18E+05
4	4.02E+05	1.87E+06	2.80E+06	4.34E+06	1.33E+05	6.53E+05	2.23E+06
5	9.24E+05	3.67E+06	4.33E+06	4.33E+06	2.81E+05	1.42E+06	5.04E+06
6	1.67E+06	3.95E+06	3.68E+06	4.59E+06	5.76E+05	2.38E+06	8.91E+06
7	3.17E+06	4.37E+06	4.57E+06	3.66E+06	1.35E+06	4.28E+06	1.23E+07
8	3.99E+06	3.81E+06	3.85E+06	3.61E+06	2.77E+06	6.76E+06	1.59E+07
9	4.21E+06	2.55E+06	3.71E+06	2.95E+06	5.86E+06	9.02E+06	1.71E+07
10	3.87E+06	2.00E+06	3.35E+06	2.49E+06	9.29E+06	1.44E+07	2.01E+07
11	3.47E+06		2.36E+06		1.21E+07		2.13E+07
12	2.61E+06		2.02E+06		1.72E+07		2.64E+07
13	2.42E+06		1.75E+06		2.00E+07	2.80E+07	3.14E+07
14	1.92E+06		1.52E+06		2.56E+07		3.04E+07
Exponential k	1.15	1.38	1.37	1.64	1.01	0.98	1.17
Period (days)	(0 - 7)	(1 - 5)	(0 - 4)	(0 - 2)	(0 - 8)	(1 - 6)	(1 - 5)

Table S2. Variation in cell concentration, day per day growth rate, cell section area, maximum quantum yield and chl*a* content for CTEN and CCAL cultures under the two photoperiod treatments (24:00 L:D; 12:12 L:D). Data are the mean \pm SD, n = 3.

Photoperiod		Time (days)	Cell concentration $(10^{3} cell mL^{-1} \pm SD)$	Growth rate $(div d^{-1} \pm SD)$	Cell section area $(\mu m^2 \pm SD)$	Fv/Fm (± <i>SD</i>)	Chlorophyll <i>a</i> $(\mu g L^{-1} \pm SD)$
		0	100 ± 13		59.1 ± 21.2	0.39 ± 0.02	27.47 ± 1.14
		1	136 ± 30	0.43 ± 0.40	42.4 ± 21.9		
	~	2	1043 ± 445	2.86 ± 0.36	33.6 ± 10.0	0.62 ± 0.02	215.97 ± 88.50
	3	3	2652 ± 663	1.41 ± 0.30	34.1 ± 9.7		
	0	4	3903 ± 452	0.58 ± 0.35	46.3 ± 16.1	0.55 ± 0.03	1264.82 ± 198.29
	2	5	3910 ± 92	0.01 ± 0.17	66.1 ± 34.8		
	C	6	3528 ± 128	-0.15 ± 0.09	78.2 ± 28.7	0.35 ± 0.03	941.86 ± 76.44
-		7	3230 ± 128	$\textbf{-0.13} \pm 0.11$	77.9 ± 42.5		
E		8	2370 ± 814	-0.50 ± 0.42	91.0 ± 41.8	0.21 ± 0.04	621.67 ± 189.39
E		0	100 ± 1		66.1 ± 19.7	0.41 ± 0.02	50.76 ± 4.14
-		1	130 ± 14	0.36 ± 0.15	53.3 ± 22.6		
		2	146 ± 14	0.18 ± 0.23	47.2 ± 35.6	0.47 ± 0.02	48.75 ± 6.67
	Ē	3	214 ± 26	0.55 ± 0.04	40.9 ± 20.7		
	12	4	403 ± 56	0.91 ± 0.12	27.9 ± 6.6	0.60 ± 0.01	97.69 ± 13.66
	12:	5	863 ± 43	1.11 ± 0.20	34.7 ± 11.6		
	-	6	1868 ± 431	1.09 ± 0.39	38.2 ± 8.8	0.61 ± 0.04	422.06 ± 119.84
		7	2203 ± 504	0.24 ± 0.05	48.9 ± 16.0		
		8	2565 ± 854	0.19 ± 0.15		0.50 ± 0.01	426.23 ±216.64
		0	117 ± 9		40.3 ± 7.9	0.61 ± 0.06	47.81 ± 2.86
		1	402 ± 14	1.78 ± 0.16	45.0 ± 10.4		
	A	2	2010 ± 339	2.31 ± 0.25	43.2 ± 11.3	0.60 ± 0.03	1504.64 ± 105.59
	L:	3	7097 ± 565	1.83 ± 0.14	37.3 ± 7.7		
	00	4	12555 ± 1110	0.82 ± 0.01	37.9 ± 7.9	0.66 ± 0.03	3862.78 ± 160.59
	24:	5	19313 ± 2506	0.62 ± 0.06	38.3 ± 7.1		
		6	24220 ± 1682	0.33 ± 0.10	39.9 ± 8.1	0.68 ± 0.02	4823.87 ± 436.15
AL		7	28600 ± 3776	0.23 ± 0.18	39.0 ± 9.0		
		8	32567 ± 4004	0.19 ± 0.02	34.7 ± 8.7	0.67 ± 0.02	6236.47 ± 1046.70
č		0	96 ± 1		34.5 ± 8.1	0.56 ± 0.04	30.44 ± 0.06
		1	151 ± 14	0.65 ± 0.16	33.3 ± 9.7		
	A	2	444 ± 25	1.56 ± 0.22	34.6 ± 8.7	0.65 ± 0.01	184.95 ± 15.16
	L	3	1424 ± 173	1.68 ± 0.20	36.1 ± 9.0		
	12	4	4563 ± 1690	1.63 ± 0.34	30.0 ± 5.1	0.67 ± 0.00	1872.28 ± 301.69
	12:	5	8420 ± 1206	0.93 ± 0.36	28.8 ± 5.7		
		6	13230 ± 2485	0.64 ± 0.11	37.6 ± 6.0	0.68 ± 0.01	3606.04 ± 134.45
		7	14950 ± 1653	0.19 ± 0.15	32.3 ± 8.3		
		8	18660 ± 2421	0.32 ± 0.24		0.71 ± 0.04	4448.91 ± 568.62

Table S3. Cellular pigment content (pg cell⁻¹; mean \pm SD; n = 3), in CTEN and CCAL cultures under the two photoperiod treatments (24:00 L:D; 12:12 L:D) on day 4. Statistical comparisons (Kruskal-Wallis test) of the content of each pigment were carried out between the two photoperiod treatments for each strain (*; p-value < 0.05).

Pigments		СТ	'EN	CCAL		
	(pg cell ⁻¹)	24:00 L:D	12:12 L:D	24:00 L:D	12:12 L:D	
Pigment composition	Chlorophyll a	0.333 ± 0.134	$0.512 \pm 0.031 *$	0.514 ± 0.055	$0.623 \pm 0.049 *$	
	Chlorophyll c	0.119 ± 0.041	0.113 ± 0.009	0.077 ± 0.008	$0.102 \pm 0.010 *$	
	Xanthophylls ⁽¹⁾	0.093 ± 0.036	$0.201 \pm 0.012 *$	0.324 ± 0.036	0.335 ± 0.027	
	Fucoxanthin (F)	0.083 ± 0.034	$0.167 \pm 0.011 *$	0.288 ± 0.034	0.295 ± 0.024	
	Diadinoxanthin (Dd)	0.008 ± 0.003	$0.019 \pm 0.001 *$	0.035 ± 0.003	0.040 ± 0.003	
	Diatoxanthin (Dt)	$< LD^{(2)}$	0.008 ± 0.001	0.001 ± 0.000	$< LD^{(2)}$	
	Zeaxanthin (Z)	0.001 ± 0.000	$0.007 \pm 0.000 *$	< LD ⁽²⁾	$< LD^{(2)}$	
β-carotene		0.009 ± 0.000	$0.011 \pm 0.001 *$	0.014 ± 0.003	$0.019 \pm 0.001 *$	

⁽¹⁾ Sum of pigments fucoxanthin, diadinoxanthin and diatoxanthin, and zeaxanthin. ⁽²⁾ Below the detection limit

Table S4. Pigment and lipid concentrations (mg L^{-1} ; mean \pm SD) in CTEN and CCAL cultures under the two photoperiod treatments (24:00 L:D; 12:12 L:D) on day 4. The sum of the pigments, n-3 PUFA and n-6 PUFA are described below the table.

	Pigments & Lipids	СТ	EN	CCAL		
	$(day 4; mg L^{-1} \pm SD)$	24:00 L:D	12:12 L:D	24:00 L:D	12:12 L:D	
igment composition	Chlorophyll a	0.357 ± 0.204	0.116 ± 0.014	6.436 ± 0.701	2.789 ± 0.796	
	Chlorophyll c	0.467 ± 0.166	0.046 ± 0.007	0.959 ± 0.107	0.462 ± 0.153	
	Xanthophylls ⁽¹⁾	0.359 ± 0.131	0.081 ± 0.006	4.063 ± 0.494	1.500 ± 0.420	
	Fucoxanthin (F)	0.322 ± 0.119	0.067 ± 0.004	3.612 ± 0.46	1.320 ± 0.368	
	Diadinoxanthin (Dd)	0.032 ± 0.013	0.008 ± 0.001	0.442 ± 0.037	0.18 ± 0.052	
	Diatoxanthin (Dt)	$< LD^{(4)}$	0.003 ± 0.001	0.009 ± 0.004	$< LD^{(4)}$	
	Zeaxanthin (Z)	0.005 ± 0.000	0.003 ± 0.000	< LD ⁽⁴⁾	< LD ⁽⁴⁾	
Ч	β-carotene	0.034 ± 0.006	0.004 ± 0.001	0.178 ± 0.029	0.085 ± 0.028	
	Total FA	9.760 ± 3.498	1.005 ± 0.028	61.342 ± 13.944	9.205 ± 2.213	
	BRFA	0.161 ± 0.052	0.017 ± 0.001	0.429 ± 0.092	0.157 ± 0.056	
ds	SAFA	3.137 ± 1.024	0.378 ± 0.011	21.053 ± 6.903	2.086 ± 0.439	
iqi	MUFA	3.015 ± 1.193	0.285 ± 0.014	20.535 ± 5.816	2.078 ± 0.430	
IL	PUFA	3.448 ± 1.229	0.325 ± 0.009	19.325 ± 2.099	4.883 ± 1.314	
ota	n-3 PUFA ⁽²⁾	1.880 ± 0.743	0.176 ± 0.008	9.345 ± 1.287	2.271 ± 0.704	
Ľ	20:5n-3 (EPA)	1.463 ± 0.592	0.139 ± 0.005	7.811 ± 1.039	1.859 ± 0.618	
	22:6n-3 (DHA)	0.268 ± 0.103	0.024 ± 0.003	0.747 ± 0.120	0.163 ± 0.028	
	n-6 PUFA ⁽³⁾	0.184 ± 0.035	0.013 ± 0.002	3.030 ± 0.956	0.119 ± 0.047	
	Total FA	3.707 ± 0.311	0.618 ± 0.013	24.983 ± 3.161	8.042 ± 1.919	
	BRFA	0.034 ± 0.009	0.011 ± 0.000	0.051 ± 0.010	0.015 ± 0.009	
ds	SAFA	1.037 ± 0.105	0.160 ± 0.004	5.766 ± 0.449	1.614 ± 0.348	
idi	MUFA	0.887 ± 0.138	0.196 ± 0.012	5.311 ± 0.626	1.718 ± 0.351	
Ţ	PUFA	1.749 ± 0.059	0.252 ± 0.004	13.855 ± 2.102	4.694 ± 1.244	
la	n-3 PUFA ⁽²⁾	0.870 ± 0.014	0.141 ± 0.006	6.619 ± 1.391	2.174 ± 0.658	
Pc	20:5n-3 (EPA)	0.586 ± 0.101	0.116 ± 0.001	5.575 ± 1.250	1.806 ± 0.590	
	22:6n-3 (DHA)	0.218 ± 0.079	0.020 ± 0.003	0.630 ± 0.117	0.153 ± 0.026	
	n-6 PUFA ⁽³⁾	0.115 ± 0.005	0.010 ± 0.001	2.045 ± 0.415	0.112 ± 0.040	
	Total FA	6.053 ± 3.187	0.387 ± 0.029	36.359 ± 15.375	1.163 ± 0.295	
s	BRFA	0.127 ± 0.043	0.006 ± 0.001	0.378 ± 0.095	0.142 ± 0.047	
ıtral Lipids	SAFA	2.100 ± 0.918	0.219 ± 0.015	15.288 ± 7.035	0.473 ± 0.093	
	MUFA	2.128 ± 1.056	0.088 ± 0.013	15.223 ± 6.226	0.359 ± 0.085	
	PUFA	1.699 ± 1.169	0.073 ± 0.010	5.470 ± 2.208	0.189 ± 0.070	
	n-3 PUFA ⁽²⁾	1.010 ± 0.757	0.035 ± 0.008	2.726 ± 1.241	0.096 ± 0.046	
Nei	20:5n-3 (EPA)	0.877 ± 0.693	0.023 ± 0.004	2.237 ± 1.017	0.053 ± 0.028	
Ē	22:6n-3 (DHA)	0.050 ± 0.024	0.004 ± 0.005	0.117 ± 0.042	0.010 ± 0.004	
	n-6 PUFA ⁽³⁾	0.069 ± 0.029	0.003 ± 0.001	0.985 ± 0.616	0.007 ± 0.007	

⁽¹⁾ Sum of pigments fucoxanthin, diadinoxanthin, diatoxanthin and zeaxanthin ⁽²⁾ Sum of lipids 16:3n-3; 16:4n-3; 18:4n-3; 18:5n-3; 20:4n-3; 20:5n-3 (EPA); 22:5n-3; 22:6n-3 (DHA) ⁽³⁾ Sum of lipids C18:2n-6; C18:3n-6; C20:3n-6; C20:4n-6; C22:4n-6; C22:5n-6

⁽⁴⁾Below detection limit