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MarNemaFunDiv: a first 
comprehensive dataset of 
functional traits for marine 
nematodes
Edwin Daché   1 ✉, Daniela Zeppilli1, Jozée Sarrazin   1, Ravail Singh2, Elisa Baldrighi3, 
Dmitry Miljutin4 & Aurélien Boyé5

Here, we present the first comprehensive dataset of functional traits for marine nematodes 
(MarNemaFunDiv). In this study, we propose 16 functional traits (life strategy, body shape, trophic 
group, oesophageal bulb, cuticle complexity, adhesive structures and ambulatory setae, head 
shape, amphid (shape and size), sensory structures (head and rest of the body), light sensing, male 
reproductive system (spicule, pre/postcloacal supplements and gubernaculum) and tail shape). Some 
of these traits were already used in marine ecology as functional categories (e.g. trophic groups, tail 
shapes, c-p classes) while others have never been considered before. These 16 traits were described 
and attributed to 86 nematode genera, representing the most abundant ones in shallow-water and 
deep-sea ecosystems. The matrix proposed in this study encompasses a comprehensive range of traits, 
enabling it to tackle a variety of ecological questions in the future.

Background & Summary
The term meiofauna refers to a group of small benthic eukaryotic organisms and represents a fundamental and 
diverse component of marine ecosystems1. Meiofaunal metazoans are largely dominated by free-living nema-
todes, which play a crucial role in ecosystem processes and functions2. Nematodes are also used successfully 
as ecological indicators and sentinels for ecosystem health3. Despite their ecological significance, only a small 
fraction of their diversity has been described, and the taxonomic challenges remain particularly significant for 
this important benthic component. Due to their small size, the limited number of taxonomists, and the high 
percentage of undescribed species, taxonomic impediments severely constrain the use of meiofauna in ecosys-
tem management.

Functional trait-based approaches offer a promising foundation for building integrated frameworks that 
bridge ecological theory and empirical evidence across multiple scales4. This approach bypasses the need for 
taxonomic expertise, enabling the understanding of ecological dynamics along environmental gradients based 
on species function rather than their taxonomy5. In recent years, the use of trait-based approaches has increased 
in marine ecology due to their potential in addressing macroecological questions, including ecosystem func-
tioning6. The growth of trait-based approaches has been facilitated by the expanding availability of trait data-
bases covering a wide array of taxa and ecosystems (see Martini et al.4 for a comprehensive review of existing 
databases). However, the absence of such databases for marine nematodes has hindered the application of this 
approach to this essential component of biodiversity.

Several studies have highlighted the relationship between nematode morphology and functions7. 
Taxonomic-based approaches allow to classify nematodes into different trophic and life history categories8–11. 
This functional approach has been proved effective for detecting environmental changes12, with trait-based 
indicators being particularly efficient for understanding the response of terrestrial nematodes5. For example, 
functional trait-based approaches have been shown to be more sensitive and reliable than taxonomy-based 
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approaches in reflecting changes in soil nutrients13. While feeding groups and life history are widely applied 
in ecological studies of marine nematodes14–30, many other morpho-functional traits of free-living nematodes, 
linked to important ecological functions30–42, remain rarely investigated. For marine nematodes, the only 
morpho-functional traits possibly considered were tail and body shape30,35,41. Only a few studies proposed other 
morpho-functional traits such as the amphid shape30–42 or cuticle patterns25,30,33–35,40,41,43–45.

Although marine nematodes are valuable indicators of environmental change and anthropogenic impact, 
their use as ecological indicators remains limited, primarily due to taxonomic challenge. Trait-based approaches 
offer a promising methodology for integrating marine nematodes into macroecological studies, yet open-access 
datasets remain scarce and include only a limited number of functional traits. This study provides a freely acces-
sible data matrix (MarNemaFunDiv) describing trait expressions of 86 marine nematode genera with a selection 
of 16 biological traits46. This paper also provides the description of selected traits and their respective modalities.

Methods
Selection of nematode genera.  We selected the most abundant genera from contrasting shallow-water 
and deep-sea ecosystems. For shallow-water environments, we included nematodes from regular sandy beaches 
(Baldrighi et al.47), sites impacted by green algae blooms (Baldrighi et al.47), maerl beds (Rebecchi et al.48), anoxic 
sediments from a harbour and, shallow-water hydrothermal vents (Baldrighi et al.49). From deep-sea ecosystems, 
we selected nematodes from inactive sediments surrounding deep-sea around hydrothermal vents (Spedicato et 
al.50), polymetallic nodules fields (Miljutina et al.51), pockmarks (Sanchez et al.52) and seamounts (Zeppilli et al.53).

All nematode genera reported in these studies were identified at genus level. For the last dataset (nematodes 
from anoxic sediments from the Roscoff harbour; unpublished data), specimens were identified by the authors 
(identification made on a microscope on nematodes mounted on slides following the formalin–ethanol–glycerin 
protocol of De Grisse 196954 and according to Platt & Warwick, 1983, 1988; Warwick, Platt & Somerfield, 1998; 
Schmidt-Rhaesa, 201455–58). For each study, we considered the most abundant genera and selected only those 
representing more than 5% of the total nematode community. Therefore, 86 genera (Supplementary Table S1) 
were considered for this dataset.

Selection of traits.  Nematodes exhibit diverse morphologies, with variations in physiology and life history 
strategies that influence their development, reproduction, and survival in response to environmental changes5. 
Quantitative morphological traits, such as body size, are often considered “master” traits due to their significant 
ecological implications (e.g., Martini et al.4). However, in this study we chose to exclude body size and other 
morphometric traits which usually express high variability within genera, making it challenging to represent a 
single, consistent value for each genus. An example of this variability is seen in Sabatieria nematodes, whose body 
sizes can span a broad range from a few millimetres to much larger forms highlighting the difficulty of assigning 
a single representative value58–61. Including such a variable trait might introduce inconsistency or confusion for 
users of this dataset. The current focus of the dataset is on traits that are relatively stable and comparable across 
genera, allowing for standardized functional categorization. Adding body size, or other variable morphometric 
traits, would require defining ranges or averages, which might not adequately represent the ecological diversity 
within each genus. For this study, we selected traits possibly reflecting their responses to environmental changes 
(response traits) or proxies of their influence on ecosystem functions (effect traits). Some of these traits are already 
widely used in marine ecology as functional categories (e.g. trophic groups, tail shapes, c-p classes), while others 
have never been considered before. A total of 16 biological traits were defined (Fig. 1) including morphological 
traits such as body shape, buccal cavity structure, oesophageal bulb, cuticle complexity, adhesive structures and 
ambulatory setae, head shape, amphid shape and size, light sensing, male reproductive system (spicule, supple-
mentary organs and gubernaculum), tail shape as well as life history traits such as life strategy (Table 1; Table 2). 
These 16 traits were divided into 58 modalities, with 5 traits being binary (presence/absence) and the remaining 
divided into up to 4 modalities. The proposed trait modalities follow the taxonomic descriptions of Platt and 
Warwick of 198355 and Handbook of zoology volume 2 Nematoda Edited by: Andreas Schmidt-Rhaesa of 201458.

Definition of traits and modalities.  Life strategy.  Bongers et al. (1991, 1995)8,10 classified nematode life 
history based on their colonization success rates. They proposed a five-point scale ranging from extreme r–strat-
egists or colonizers (characterized by short generation times, high reproduction rates, high colonization abilities, 
tolerant to disturbances, high metabolic activity and opportunistic behavior) to k–strategists or persisters (i.e., 
with long life spans, low colonization abilities, few offspring, sensitive to disturbances, low metabolic activity, 
and later appearance in successional processes). When a genus was not listed in the Bongers’ classification, we 
assigned the family c-p score, considering that, in absence of other available information, life history is usually 
quite substantial at family level.

Modalities within life strategy have been adapted from Bongers et al. (1991, 1995)8,10, and include the follow-
ing categories: extreme colonisers (c-p 1), intermediate with increasing in abundance in stressed or eutrophic 
conditions (c-p 2-3), sensitive to stress (c-p 4), extreme persisters (c-p 5) (Table 1).

Body shape.  Nematodes exhibit a wide range of body shapes, from highly elongated, filiform forms to more 
swollen morphologies. These variations, which reflect adaptations to different sedimentary conditions, may 
influence nematode locomotion, energy demands, and stress tolerance. Body shape and size play crucial roles in 
various functional aspects, including life history, physiology, ecology, and energetic requirements62–66. Several 
studies have shown a link between resource distribution, carbon and nitrogen cycles and nematode body shapes 
and sizes13,67,68. In particular, nematode length can influence metabolic rates, stress tolerance, movement capac-
ity, and defense against predation62,69–71. Shorter, slender nematodes are often associated with oligotrophic 
conditions, as their elongated bodies facilitate greater epidermal oxygen uptake. Studies have shown that this 
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Fig. 1  Schematic illustration of functional traits defined for meiofaunal Nematodes. (1) Trophic group: non 
actif and selective deposit feeders (TGNA), non-selective deposit feeders (TG1B), epigrowth and epistrate 
feeders (TG2A), predator and omnivores and facultative predators (TG2B); (2) Head shape: very small and 
neck elongated (Hxsma), small normal neck (Hsma), normal (Hreg), larger than neck and capsuled and helmet 
(Hlarg); (3) Sensory structures of head: absence (SSH0), papilliform (SSHpap), short setae (SSHsho), long setae 
(SSHlon); (4) Amphid shape: absence (A0), simple (Asimp), complex (Acomp), very complex and external 
amphid (Axcomp); (5) Amphid size: absence (AS0), with a diameter <30% of the head diameter (ASsma), with 
a diameter between 30% and 60% of the head diameter (ASmed), with a diameter >60% of the head diameter 
(ASlarg); (6) Oesophagal bulb: absence (OB0), elongated (OBelon), cuticularized (OBcut), with chambers 
(OBcham); (7) Light sensing: absence (LS0), presence (LS1); (8) Sensory structure rest of the body: absence 
(SSB0), presence (SSB1); (9) Cuticle: smooth (Csmo), striated and dotted (Cstrdot), annulated and strong 
cuticular pattern (Cann), complex structures (Ccomp); (10) Spicule: very small (Sxsma), small and thin (Ssma), 
normal (Sreg), complex and very long (Slon); (11) Gubernaculum: absence (G0), presence (G1); (12) Pre/
Postcloacal supplementary organs: absence (CS0), presence (CS1); (13) Tail shape: absent and truncated and 
swollen (T0), conical (Tconi), clavate (Tclav), filiform and very long (Tfili); (14) Body shape: filiform (BSfili), 
regular (BSreg), epsilon and draco (BSepsdra), fat and large (BSfat); (15) Adhesive structure and/or ambulatory 
setae: absence (ADS0), presence (ADS1). The functional trait ‘Life Strategy’ is not represented in this figure.
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Functional Traits Modality Code

Life strategy

CP1 LSCP1

CP2-3 LSCP2

CP4 LSCP3

CP5 LSCP4

Body shape

Filiform BSfili

Regular BSreg

Epsilon-Draco BSepsdra

Fat-Large BSfat

Trophic group

Non active (Symbiose/Reserve) +1 A (Selective deposit feeders) TGNA

1B (Non-selective deposit feeders) TG1B

2 A (Epigrowth/Epistrate feeders) TG2A

2B (Predators and omnivores) TG2B

Oesophagal bulb

Absence OB0

Elongated OBelon

Cuticularized OBcut

With chambers OBcham

Cuticle

Smooth Csmo

Striated-dotted Cstrdot

Annulated & Strong cuticular pattern Cann

Complex structures Ccomp

Adeshive structures and/or Ambulatory setae
Abscence ADS0

Presence ADS1

Head

Very small, neck elongated Hxsma

Small normal neck Hsma

Normal Hreg

Larger than neck/Capsuled Hlarg

Amphid

Absence A0

Simple Asimp

Complex Acomp

Very complex/External Axcomp

Amphid size

Absence AS0

<30% ASsma

30-60% ASmed

>60% ASlarg

Sensory structures of the head

Absence SSH0

Papilliform SSHpap

Short setae SSHsho

Long setae SSHlon

Sensory structures rest of the body
Absence SSB0

Presence SSB1

Light sensing
Absence LS0

Presence LS1

Spicule

Very small Sxsma

Small thin Ssma

Normal Sreg

Complex/Very long Slon

Pre/postcloacal suppl
Absence CS0

Presence CS1

Gubernaculum
Absence G0

Presence G1

Tail

Absence/Truncated/Swollen T0

Conical Tconi

Clavate Tclav

Filiform/Very long Tfili

Table 1.  Codes associated with different modalities and functional traits.

https://doi.org/10.1038/s41597-025-05105-6


5Scientific Data |          (2025) 12:752  | https://doi.org/10.1038/s41597-025-05105-6

www.nature.com/scientificdatawww.nature.com/scientificdata/

elongated body shape in nematodes is linked to low oxygen levels, stressful conditions, and oligotrophic envi-
ronments72–74. Slender bodies were also reported to be associated with silt/clay sediments25. Investigating the 
response of nematodes to anthropogenic contamination, Egres and coauthors (2019)22 showed a dominance 
of stout bodies following a disturbance. The families Draconematidae and Epsilonematidae family have unique 
S-shape body form. This specific shape enables a distinctive mode of locomotion on their ventral side, moving 
in a “hirudinean” manner75.

In the present dataset, 4 body shape modalities were retained: filiform, regular, S-shape and swollen (Table 1; 
Fig. 1).

Buccal cavity structure (trophic groups).  Feeding mode describes energy, carbon and nutrient dynamics within 
the soil and the sediment food web. The available classifications of nematodes in different trophic groups are 
proposed according to nematode buccal cavity structures. The first classification was proposed by Wieser’s in 
195376, which assign nematodes in: group 1 A (selective deposit feeders) for nematodes with mouth very min-
ute or almost absent; 1B (non-selective deposit feeders) for nematodes with large mouth but without teeth or 
other structures; 2 A (epigrowth feeders) for nematodes able to scrape food by teeth or plates; and 2B (predators 
and omnivores) for nematodes with powerful armature of teeth76. In 1997, Moens and Vincx77, proposed to 
split the group 1 A into two sub-groups (ciliate feeders and microvorous) and to separate 2B in two differ-
ent sub-groups: predators and facultative predators. Another study proposed totally different trophic groups 
including (i) deposit-feeders swallowers, feeding on bacteria and unicellular organisms; (ii) epistrate-feeders 
tear-and swallow feeders, feeding on bacteria, diatoms, and other algae; (iii) chewers predators on protozoa, 
and metazoans; and (iv) suction feeders, omnivores feeding on algae, fungi, vascular plants, animals, epidermal 
cells, and root hairs78. A recent study suggested that specific trophic guilds rather than trophic groups proposed 
by Wieser (1953)76 would be more appropriate to detect environmental changes12. Furthermore, isotopes anal-
yses revealed that marine free-living nematodes are more opportunistic than expected and that they can adjust 
their diet based on the available resources than solely relying on their trophic guilds79. Despite these alternative 
perspectives, we chose to use the Wieser’s classification for the proposed dataset, as it remains the most widely 
used framework in marine ecology studies and the most comprehensive classification available in the litera-
ture for free-living marine nematodes. Additionally, since the marine nematode families Stilbonematinae and 
Astomonematina are well known to have symbiotic relationships with micro-organisms80, we included them 
within the selective deposit feeder group.

The trophic groups trait in this dataset follows Wieser’s (1953)76 classification with slight adaptations and 
includes the following modalities: non active (symbiosis) and selective deposit feeders, non-selective deposit 
feeders, epigrowth/epistrate feeders and predators/omnivores/facultative predators (Table 1; Fig. 1).

Trait Modalities Functional and ecological relevance

Life history traits Life strategy
Extreme colonisers (c-p 1), intermediate with increasing 
in abundance in stressed or eutrophic conditions (c-p 2-3), 
sensitive to stress (c-p 4), extreme persisters (c-p 5).

Evolutionary adaptions to disturbed 
environments

Morphological traits

Body shape filiform, regular, S-shape, swollen Mobility, energy requirements, oxygen 
requirements, capability to cope with stress

Trophic group
non active (symbiosis) and selective deposit feeders, 
non-selective deposit feeders, epigrowth/epistrate feeders, 
predators/omnivores/facultative predators

Feeding habits

Oesophageal bulb absent, elongated, cuticularized, with chambers Feeding efficiency

Cuticle morphology smooth, striated-dotted, with annulated and strong 
cuticular patterns with complex structures

Defence capacity and mobility. Relation to 
hydrodynamic and grain size.

Adhesive structures and 
ambulatory setae Presence or absence Mobility and anchoring

Head shape very small with neck elongated, small with normal neck, 
normal, larger than neck/capsuled/helmet Feeding, mobility, defence capability

Amphid shape and size

Shape: absence, simple, complex, very complex/external. 
Size: absence of amphid, amphid with a diameter <30% of 
the head diameter, amphid with a diameter between 30% 
and 60% of the head diameter, amphid with a diameter 
>60% of the head diameter

Feeding, reproduction, capability to cope 
with stress.

Cephalic and peripheral 
sensory structures

Cephalic sensory structures: absence, papilliform sensory 
structures, short setae and long setae. Peripheral sensory 
structures: presence or absence

Feeding, reproduction, capability to cope 
with stress

Light sensing Presence or absence Feeding, mobility

Male reproductive system
Size of the spicule: very small, small and thin, normal, 
complex/very long. Gubernaculum: presence or absence 
Genital supplementary organs: presence or absence

Reproduction

Tail shape absent/truncated/swollen, conical, clavate, filiform/very 
long

Feeding, mobility, reproduction. Relation 
to sediment chemistry and grain size.

Table 2.  Categorization of nematode traits selected in this study with their ecological and functional relevance.
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Oesophageal bulb.  The nematode pharynx can be particularly complex, with the presence of a terminal bulb, 
also called oesophageal bulb, which helps propel food into the intestine through the action of strong muscula-
ture58. Small bacterivorous nematodes typically lack this bulb and instead possess a shorter, cylindrical phar-
ynx81. The greater the number of cuticular linings and chambers in the bulb, the more efficient is the suction 
process82. To our knowledge, there is no information in literature linking the presence or morphology of the 
oesophageal bulb to specific environmental conditions. However, its presence is hypothesized to be associated 
with feeding efficiency.

In this study, this functional trait is categorized into four modalities: bulb absent, bulb elongated, bulb cutic-
ularized, bulb with chambers (Table 1; Fig. 1).

Cuticle morphology.  In free-living nematodes, the cuticle serves as a protective barrier between the organism 
and its surrounding environment83. Additionally, it functions as an exoskeleton, helping them to maintain their 
body shape and playing a critical role in locomotion84. In marine environments, the cuticle morphology and 
thickness can be influenced by sediment type and hydrodynamic conditions85,86. The cuticle provides protec-
tion against predators and helps nematodes cope with pollution41,85,87,88. Annulation in cuticles may facilitate 
locomotion and attachment, while ridges may enable the widening of the body58. Cuticular ornamentations 
help nematodes maintain a stable position in the surface sediment layers, and spines can also function as a 
scraping mechanism58. To our knowledge, only a few studies have proposed functional categories for the cuticle 
for marine nematodes22,25,30,35,41,44. Semprucci and co-authors (2018)41 categorized nematode cuticles into six 
types: (i) smooth; (ii) with desmens; (iii) with a bacteria covering; (iv) punctuated or annulated with or without 
lateral differentiation; (v) punctuated or annulated with longitudinal structures for the whole-body length; and 
(vi) with wide body annules and longitudinal ridges. Nematodes with ornamented cuticles have been found 
in impacted areas near an oil refinery by Egres et al.22. Additionally, ornamented cuticles were associated with 
sandy sediments in physically harsh estuarine environments25. Kalogeropoulou et al.35 observed that nematodes 
with smooth cuticles were completely absent in sites with extreme conditions. Justino et al.30 reported a signifi-
cant relationship between cuticle characteristics and pollutant exposure.

For this study, the cuticle trait modalities have been adapted from Semprucci et al.41, and include: smooth 
cuticle, striated-dotted cuticle, cuticle with annulated and strong cuticular patterns and cuticle with complex 
structures (Table 1; Fig. 1).

Adhesive structures and ambulatory setae.  Some nematodes possess adhesive structures and ambulatory 
setae58. In some nematodes ambulatory setae can be positioned on the ventral side of the posterior body, while 
in Draconematidae, adhesion tubes are positioned both on the head and on the ventral part of the body89,90. 
These tube-like structures allow nematodes to ambulate on surfaces, adhere to a substrate, or crawl over it in a 
manner similar to that of a geometrid caterpillar.

Modalities within this trait have been categorized into presence or absence of adhesive structures and/or 
ambulatory setae (Table 1; Fig. 1).

Head shape.  Free-living marine nematodes are characterized by different head shapes, ranging from minute to 
larger and sclerotized head regions (helmet or capsule58). To our knowledge, there is no information in literature 
about functional relevance of the head shape in relation to the surrounding environments. We can hypothesize 
that the sensory systems present on the head may vary significantly between shape, affecting nematode chemical 
detection. Furthermore, locomotion and feeding can be impacted by the head size and shape.

Modalities within this trait have been categorized as very small head with an elongated neck, small head with 
normal neck, normal head and head larger than neck/capsuled/helmet (Table 1; Fig. 1).

Amphid (shape and size).  Amphids are the main and complex multifunctional sensory organs of nematodes, 
located in the cephalic region58. The distal part of the amphid, the fovea, is an excavation or invagination in the 
cephalic cuticle that forms a pocket. This special sensilla has olfactory, chemoreceptive, and thermoreceptive 
functions91 used for reproduction and feeding41. There is also evidence that amphids can have photoreceptive 
and secretory functions and can be sensitive to pH and ions82. Small amphids are typical of terrestrial nema-
todes living in environments rich in food resources, while large amphids are characteristic of nematodes from 
freshwater oligotrophic environments92. In marine ecosystems, only a few studies have explored the relationship 
between amphids and environmental conditions35,41,44. While Kalogeropoulou did not find any significant rela-
tionship between amphids and environmental conditions, rounded and elongate loops were found in nematodes 
from highly hydrodynamic environments41. Justino et al.30 reported a significant relationship between amphid 
fovea and pollutants.

In this study, amphid shapes have been categorized into the following modalities: absence of amphid, sim-
ple amphid, complex amphid, very complex/external amphid. Regarding the amphid size trait, the proposed 
modalities are absence of amphid, amphid with a diameter <30% of the head diameter, amphid with a diameter 
between 30% and 60% of the head diameter, and amphid with a diameter >60% of the head diameter (Table 1; 
Fig. 1).

Sensory structures (head and rest of the body).  Nematodes possess a complex diversity of sensory receptors that 
allow them to respond to a wide range of physical and chemical stimuli93. Their head carries several sensory 
structures, including mechano- and chemoreceptors. In particular, cephalic and labial sense organs can take the 
form of papilliform receptors with short or long setae. Additional sensory structures (primarily sensilla) may 
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also be found on other parts of the nematode’s body. These sensilla can be numerous and arranged in dorsal, 
ventral and sublateral rows along the body. Dorsally, they are often restricted to the anterior neck region82. The 
function of these sensory structures is mainly tactile, but some setae may possess a tip opening suggesting a 
potential chemosensitivity role93. To our knowledge, the functional relevance of nematode sensory structures 
in relation with environmental conditions has only been explored by Kalogeropoulou et al.35 with no significant 
patterns observed. We hypothesize that the presence of these mechano- and chemoceptors may influence their 
feeding, reproductive success and their ability to cope with stress.

In this study, cephalic sensory structures have been categorized into the following modalities absence of 
cephalic sensory structure, papilliform sensory structures, short setae, and long setae. The modalities for the 
peripheral sensory structures are presence or absence (Table 1; Fig. 1).

Light sensing.  Free-living aquatic nematodes can possess pigment spots or ocelli58. These photoreceptors are 
responsible for negative phototaxis guiding movements into deeper layers/strata94. They can also play a role in 
the searching for food.

The proposed modalities for light sensing are presence or absence (Table 1; Fig. 1).

Male reproductive system (spicule, pre/postcloacal supplements and gubernaculum).  The copulatory apparatus of 
nematode male reproductive system consists of two cuticularized spicules and associated gubernaculum, which 
are controlled by protractor and retractor muscles. The shape of the spiculum facilitates the opening of the vulva, 
allowing sperm to flow into the female. Each spiculum contains sensilla with receptors58,82. Some males may also 
possess genital supplementary organs (such as supplements, papillae and genital setae) with mechanoreceptive 
and secretory functions58, which can influence the reproduction success.

Modalities for spicule size have been categorized into very small spicules, small and thin spicules, normal 
spicules, complex/very long spicules. For gubernaculum and genital supplementary organs, the trait modalities 
selected are presence/absence (Table 1; Fig. 1).

Tail shape.  Tail shape has been shown to play a role in locomotion, feeding and reproduction41. Thistle and 
Sherman (1985)95 proposed to dividing tails into 11 functional categories. This initial division was reduced to 
four categories by Thistle and co-authors (1995)96 and adopted by subsequent studies. In the marine domain, 
limited studies linking tail shapes to the environment revealed a relationship between clavate, conical and cylin-
drical tails and intermediate energy level conditions41, primarily influenced by salinity, oxygen and chlorophyll 
a18. In deep sea chemosynthetic environments, a higher diversity of tail shapes is observed compared to other 
types of deep-sea habitats, where elongated or filiform tails usually dominate35. Clavate tail shapes may be asso-
ciated with a higher fraction of silt and clay in the sediment25, while elongate/filiform tails have been reported 
in fine sand and muddy sediments22. Filiform tail shapes can be also associated with a hemisessile lifestyle96.

Modalities for the trait tail shape have been adapted from Semprucci et al.41, and include four categories: tail 
absent, truncated, or swollen; conical tail; clavate tail; and filiform, very long (Table 1; Fig. 1).

Trait expression.  To describe trait expression, modality affinities were selected based on taxonomical exper-
tise. For all traits, the taxa affinity to the trait modalities was one-hot encoded, i.e. since the modalities are mutu-
ally exclusive, a taxon that shows an affinity for a given modality of a trait (coded 1) will not exhibit an affinity for 
the other modalities (all coded 0). Indeed, most of the proposed traits include variation among species and can be 
considered specific genus, or they may vary only rarely within the same genus. These traits include: body shape, 
buccal cavity structure, oesophageal bulb, cuticle morphology, adhesive structures and ambulatory setae, head 
shape, amphid shape and size, cephalic and peripheral sensory structures, light sensing, male reproductive system 
and life strategy. For other traits, such as tail shape, some variations may be present within the same genus. In 
these cases, we carefully examined all species of the genus and selected the most prevalent modality. For example, 
the genus Oncholaimus comprises more than 150 species. Most of species within this genus have a clavate tail, 
while only a few have a conical tail. Given the very low percentage of representation for this modality, we suggest 
the clavate tail modality for the genus Oncholaimus.

Data Records
A matrix of biological traits information for 86 marine nematode genera, resulting from methods described 
above, has been publicly deposited in Zenodo46. The taxonomic nomenclature in this dataset was obtained from 
the World Register of Marine Species60 (WoRMS; http://www.marinespecies.org) on the 01/06/2024.

Technical Validation
We developed a comprehensive and detailed database of nematode functional traits. We obtained infor-
mation about traits from original research literature, followed by secondary literature such as text-
books8,10,12,13,18,22,25,30,35,41,44,55,58,62–96. We gave precedence to literature from marine nematodes; when such sources 
were unavailable, we included literature on freshwater, terrestrial, and parasitic nematodes. To describe trait 
expression, modality affinities were selected based on literature, which includes key identification guides55–57 
and authoritative online resources (Nemys61 https://www.nemys.ugent.be/ and WORMS60 https://www.marine-
species.org/). During the data collection process, we used the most up-to-date species names and accurate taxo-
nomic keys. Users should be aware that some taxa exhibit multiple modes of expression (categories) for a single 
trait. In this study, we selected the mode most commonly expressed for each genus. For example, the majority 
of species in the genus Oncholaimus have a clavate tail. However, a few of them (3 on 155 species) show very 
short tail97–99. This does not imply that all modes occur with equal probability across different environments, 
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as trait expression can be influenced by abiotic and biotic factors. For instance, a genus may modify its feeding 
mode in response to anthropogenic disturbance, hydrodynamic conditions, water temperature and chemistry, or 
interspecific interactions (e.g.). Because reliable data on the specific conditions driving trait expression are often 
lacking, this information was not incorporated into the trait matrix to avoid introducing spurious variability. 
While this is a common limitation of biological trait analysis (BTA), even for well-studied organisms4, users 
should carefully evaluate the reliability of BTA outputs in relation to their ecological questions. Nevertheless, 
this database provides a foundational reference, identifying the most commonly expressed trait modalities for 
each taxon. Aware of the variability of some traits, in the future is recommended to add quantitative ranges to 
remove bias and reveal the real functional variability of different species within a genus. As ecological knowledge 
advances, it can serve as a basis for developing more refined and nuanced BTA approaches in the future.

Usage Notes
The matrix proposed in this study covers an inclusive set of traits. Users of this dataset should ponder that, 
due to the plasticity of trait expression within a genus, a single trait may exhibit multiple modes of expression 
(categories). For example, within the genus Sabatieria, body shape, can vary drastically from BSreg (Sabatieria 
pulchra) to BSfili (Sabatieria longispinosa). In this study, we assigned the most commonly expressed trait within 
each genus. While this approach does not capture the full variability of morphometric traits, it may be more 
suitable for representing the ecological diversity within each genus. Trait expression may be influenced by abi-
otic or biotic pressures. For example, a species may alter its feeding mode in response to environmental stress79, 
which may affect the consistency of BTA outputs depending on the research questions posed100. Finally, we state 
that the associated trait dataset represents the best information available to the authors at the time of manuscript 
submission. New traits or species can be added to the dataset by providing this information, along with refer-
ences, to the corresponding author. We also encourage users to review, validate and, if necessary, modify the trait 
information provided here before to use.

Code availability
No custom code was used to generate or process the data described in the manuscript.
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