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Abstract :   
 
Marine species and ecosystems are highly threatened by many anthropogenic drivers of biodiversity loss, 
among which the various components of climate change play a key role. Bending the curve of marine 
biodiversity loss requires the development of decision-making tools, such as indicators that provide 
information on community responses to climatic change. Although monitoring marine environments, such 
as benthic habitats, is highly challenging, beach wrack monitoring may provide an alternative and 
complementary approach to inform changes in proximate intertidal and subtidal habitats under 
anthropogenic threats. However, the relationship between macrophyte in beach wrack and benthic 
macrophyte is not fully understood. In particular, the composition of beach wrack macrophyte communities 
in relation with climate has not been explored yet, although such research is a prerequisite for 
investigating the ability of macrophyte communities in beach wrack to monitor composition changes of 
benthic macroalgal and seagrass communities in the face of climate change. Here, we assessed the 
thermal and spatial patterns of thermal affinity of macroalgae and seagrass communities (84 taxa) in 
beach wrack sampled at 172 sites (from Saint-Jean-de-Luz, latitude 43.39°N, to Calais, latitude 50.89°N) 
along the Channel and Atlantic French coast. We also investigated the contribution of taxa to these 
patterns, and evaluated the latitudinal patterns of abundance of the most and least contributing taxa. We 
found that thermal affinity of macrophyte communities in beach wrack increased with sea-surface 
temperature and decreased with latitude. Latitudinal patterns were also identified at smaller spatial scales. 
Our findings, that are consistent with previously documented macroecological patterns of benthic 
macrophytes, suggest that beach wrack might provide insights into proximate benthic macrophyte 
communities, especially their composition in light of climate warming. We recommend further 
investigations to ensure the relevance of developing indicators of benthic habitats based on beach wrack. 
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Highlights 

► Thermal affinity of beach wrack macrophytes increases with sea-surface temperature ► Thermal 
affinity of macrophyte communities in beach wrack decreases with latitude ► The latitudinal pattern is 
identified from a national scale to a local scale ► Patterns are consistent with earlier research on 
benthic macrophytes ► We suggest further exploring beach wrack's ability to inform on benthic 
macrophytes 

 

Keywords : Climate change, Community Temperature Index, Diversity, Ecological Indicator, 
Macroalgae, Seagrass, Thermal affinity 
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INTRODUCTION 54 

Marine ecosystems have experienced increasing threats over the last century, most of which 55 

being attributable to marine and terrestrial anthropogenic activities, such as fishing, pollution, 56 

and climate change (Halpern et al., 2008, 2015). The latter has already been reflected in 57 

warming temperatures, deoxygenation, sea-level rise, ocean acidification, alteration of ocean 58 

currents, and increase in frequency and intensity of extreme weather events (Blowes et al., 59 

2019; Doney et al., 2012; Jaureguiberry et al., 2022). Combined with other pressures, this has 60 

resulted in a global erosion of marine biodiversity, as shown by declining populations, 61 

increased risk of species extinction, and altered composition, structure, and function of 62 

marine and coastal ecosystems (Gascuel & Pauly, 2009; Johnston et al., 2015; McCauley et 63 

al., 2015). Yet, both the monitoring of marine ecosystems and their management in the face 64 

of global change is challenging. 65 

Indicators are essential decision-making tools at the interface of science and policy 66 

(Mccool & Stankey, 2004; Turnhout et al., 2007). International environmental protection 67 

policies, such as the EU Marine Strategy Framework Directive (MSFD, 2008/56/EC), rely on 68 

the development of indicators to assess the state and dynamics of biodiversity (e.g., the 69 

Living Planet Index, developed by WWF), the extent of anthropogenic pressures (e.g., the 70 

average annual temperature), and the effectiveness of conservation measures (e.g., percentage 71 

of land and sea protected, to inform the targets of the post-2020 Global Biodiversity 72 

Framework). Indicators are thus critical to inform policy decisions, and especially for 73 

underpinning conservation measures that may help to bend the curve of marine biodiversity 74 

loss (Palialexis et al., 2021). To develop and compute reliable and sensitive indicators, data is 75 

needed at large spatiotemporal scales and high resolution. However, quantifying ecosystem 76 

shifts, biodiversity decline, habitat loss, or human footprint in the marine environment is 77 

challenging (Borja, 2014; Borja et al., 2020). 78 
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 Benthic habitats are essential for many marine and coastal species. However, they are 79 

generally difficult to access, strongly influenced by tides and currents that, together with 80 

depth, limit our access and monitoring abilities (Noble-James et al., 2023), hence the need to 81 

develop alternative monitoring approaches. These difficulties in monitoring marine benthic 82 

habitats in situ, together with the inherent costs, often limit the temporal and spatial 83 

resolution of monitoring outputs (Patrício et al., 2016). Remote methods, such as those based 84 

on photogrammetry, imagery, or robotics, offer encouraging prospects (McGeady et al., 85 

2023). However, these methods usually do not enable species composition to be monitored, 86 

and their implementation is currently limited by the acquisition and use of advanced 87 

technological equipment. On the other hand, ex situ monitoring of benthic habitats through 88 

the monitoring of proximate beach-cast macrophytes originating from both intertidal and 89 

subtidal zones may provide a cost-effective, fast, and easy-to-implement complementary 90 

approach (Suursaar et al., 2014; Thibault et al., 2022).  91 

Various studies have assessed the effects of climatic conditions on benthic 92 

macrophyte communities over the past decade (e.g., Arriaga et al., 2023, 2024; Bates et al., 93 

2017; Burrows et al., 2020; Chust et al., 2024; Jueterbock et al., 2013), demonstrating for 94 

instance that the thermal affinity of benthic macrophyte communities is driven by sea-surface 95 

temperature (Arriaga et al., 2023, 2024; Bates et al., 2017; Burrows et al., 2020). Researchers 96 

have also investigated the relationships between beach wrack and climate change, mainly 97 

through the lens of clean energy production from macrophytes wracks (e.g., Kaspersen et al., 98 

2016; Macreadie et al., 2017), their greenhouse gas emissions (e.g., Lastra et al., 2018; Liu et 99 

al., 2019), and their role in sea-level rise adaptation (e.g., Dugan & Hubbard, 2010; Innocenti 100 

et al., 2018). However, to our knowledge, research assessing the potential of beach wrack 101 

monitoring to produce ex situ indicators of benthic macrophyte communities has focused 102 

only on community diversity, cover, and composition (e.g., Liebowitz et al., 2016; Reimer et 103 
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al., 2018; Suursaar et al., 2014; Thibault et al., 2022), whereas the ability of macrophyte 104 

wracks to indicate changes in proximate benthic macroalgal and seagrass communities under 105 

climate change has not yet been investigated. Indeed, even the patterns of beach wrack 106 

composition with regard to climate have been overlooked to date, hindering the exploration 107 

of its potential as an indicator of the effects of climate change on benthic communities. 108 

In this study, we assessed the spatial relationship between the composition of 109 

macrophyte communities in beach wrack and thermal conditions along the Channel and 110 

Atlantic French coast (from Saint-Jean-de-Luz, latitude 43.39°N, to Calais, latitude 50.89°N). 111 

As the thermal affinity of benthic macrophyte communities depends on sea-surface 112 

temperature (Arriaga et al., 2023, 2024; Bates et al., 2017; Burrows et al., 2020) and beach 113 

wrack macrophytes are closely related to proximate benthic communities (Liebowitz et al., 114 

2016; Reimer et al., 2018; Suursaar et al., 2014; Thibault et al., 2022), we expected a linear 115 

increase in thermal affinity of macrophyte communities in beach wrack with sea-surface 116 

temperature. Because sea-surface temperatures linearly decrease with latitude along the 117 

European Atlantic coast (Baumann & Doherty, 2013), we also expected a linear decrease in 118 

thermal affinity of macrophyte communities in beach wrack with latitude. To test these 119 

hypotheses, we assessed the thermal and latitudinal patterns of thermal affinity (based on the 120 

Community Temperature Index, CTI) of macrophyte communities in beach wrack sampled at 121 

172 sites. We also computed taxa contributions to the patterns of thermal affinity, and 122 

assessed the latitudinal patterns of abundance for the most and least contributing taxa in order 123 

to evaluate the ability of each taxon to provide information on changes in beach wrack 124 

macrophyte communities. Finally, we assessed latitudinal patterns of α-diversity of beach 125 

wrack macroalgae and seagrass communities.   126 
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MATERIAL AND METHODS 127 

 128 

Beach wrack sampling 129 

To explore thermal and spatial patterns in the composition of beach wrack macroalgal and 130 

seagrass communities across a large spatial extent, we sampled 172 sites along the Channel 131 

and Atlantic French coast (latitude 43.39°N to 50.89°N, Figure 1) comprising a wide variety 132 

of beach types and coastal marine habitats. Each site was sampled once, in April 2018 (n = 133 

68) or in April 2019 (n = 104). No sites were sampled from 44°N to 46°N due to a lack of 134 

regular beach wrack deposition caused by the absence of benthic habitats suitable for the 135 

growth of algae and seagrass (sandy habitats) (Figure 1). Large muddy estuaries were also 136 

excluded (i.e., river Gironde, Loire, and Seine). 137 

At each site, sampling was conducted on five 1 m2 quadrats placed at 5 m intervals 138 

along a 25 m transect located on a line of fresh wrack. Within each quadrat, macroalgae and 139 

seagrass fragments were visually identified by five trained scientists to species level, when 140 

possible. The five observers all attended numerous training sessions and adopted common 141 

guidelines aimed at limiting the detection bias. When visual identification to species level 142 

was difficult (e.g., fragments too degraded or small), macrophytes were identified to genus, 143 

when possible, or were categorised into groups based on their morphology (n = 22 taxa, 144 

26.2%, see full taxon list Table A.1). Macrophyte fragments belonging to the Ulva genus 145 

were classified into two groups based on their morphology: Ulva spp. – Foliose form, and 146 

Ulva spp. – Tubular form (previously classified as the Enteromorpha genus). The relative 147 

abundance of each taxon per quadrat was estimated using a 5-level ordinal scale (0: none; 1: 148 

very rare, one fragment; 2: rare, a few fragments; 3: common, many fragments; 4: dominant), 149 

as the absolute abundance of each taxon can be extremely difficult and time-consuming to 150 

assess.  151 
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 152 

Sea-surface temperature and taxa thermal niche 153 

To assess the effects of sea-surface temperature (SST) on macrophyte communities in beach 154 

wrack, we extracted SST within a 2 km radius around each site using MARS3D model 155 

simulations of the “Modelling and Analysis for Coastal Research” (MARC) project, which 156 

provide SST for the French seas at a 2.5 km spatial resolution and a temporal resolution of 1 157 

hour (Lazure & Dumas, 2008). To reflect the different life cycles of species (e.g., perennial 158 

vs. seasonal species), we used the SST of the twelve preceding months (SST1year) and of the 159 

three preceding months (SST3months). 160 

The average thermal niche of species (Species Temperature Index, STI) were 161 

retrieved from the EMODnet Biology thermal traits dataset (Webb, 2018), which provides 162 

temperature affinity metrics for European marine species based on their global occurrences 163 

and a global sea temperature spatial database (Table A.1). For taxa identified to genus level, 164 

STI values were calculated as the mean STI of all species within that genus that are known to 165 

occur in the study zone and for which the STI was based on more than 10 observations in the 166 

EMODnet database. Morphological groups (n = 3) were not assigned a STI value. 167 

 168 

Community metrics 169 

For each quadrat we calculated two thermal affinity indices (CTIo and CTIa) based on the 170 

Community Temperature Index, and two α-diversity indices (taxonomic richness and 171 

Shannon index). The CTI is a community weighted mean index (Díaz et al., 2007) that 172 

represents the average temperature niche of a community and was calculated as the average 173 

value of STIs across all taxa in a community (Devictor et al., 2008). Two versions of the CTI 174 

were computed: the CTI based on taxa occurrence (CTIo), calculated as the mean STI from 175 

all macroalgae and seagrass taxa observed per quadrat, and the CTI based on taxa relative 176 
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abundance (CTIa), calculated as the mean STI from all taxa observed weighted by their 177 

relative abundance per quadrat. Taxa with no STI value (3 morphological groups and one 178 

species) were excluded for CTI calculations. Taxonomic richness was calculated as the 179 

number of identified taxa. Shannon index was calculated using the R vegan package 180 

(Oksanen et al., 2022). 181 

 182 

Data analysis 183 

Latitudinal and thermal patterns of CTI 184 

We used generalized linear mixed models (GLMMs) to assess the spatial patterns of CTIo 185 

and CTIa computed at the quadrat scale using a Gaussian distribution and the latitude as 186 

predictor. These models also included: i) the year as a fixed effect, as two levels for a random 187 

effect is insufficient (Bolker et al., 2009; Silk et al., 2020); and ii) the site as a random 188 

intercept effect, to account for the hierarchical structure of our sampling design (i.e., five 189 

quadrats per site) (Equation 1). The longitude was not included because: i) the latitude and 190 

longitude variables were not independent; ii) we only had a strong hypothesis on the link 191 

between thermal affinity and latitude; and iii) the latitude is a better descriptor of the shape of 192 

the coastline of our study zone than the longitude, because it increases (or decreases) almost 193 

monotonically when following the coastline. GLMMs were selected as we expected a linear 194 

decrease of thermal affinity of macrophyte communities in beach wrack with latitude.  195 

We also assessed the effect of sea-surface temperature on CTI by replacing latitude in 196 

Equation 1 by SST1year or SST3months (Equation 2). Furthermore, we assessed the effects of 197 

latitude and SST simultaneously by adding to Equation 1 one of the two SST metrics as a 198 

fixed effect (Equation 3). Although the latitude and SST metrics were strongly to moderately 199 

correlated (Pearson correlation coefficient for SST1year: -0.63; Pearson correlation coefficient 200 
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for SST3months: -0.40), the Variance Inflation Factors (VIFs) of the corresponding models 201 

were low (< 2). 202 

 203 

𝐶𝑇𝐼𝑖 = 𝛼 + 𝛽 × 𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑖 + ∑ (𝛾𝑗 × 𝑌𝑒𝑎𝑟𝑖)𝐽
𝑗 + 𝜇𝑘 + 𝜀𝑖                            (Equation 1) 204 

𝜇𝑘~ 𝑁(0, 𝜎)  205 

𝜀𝑖 ~ 𝑁(0, 𝜎′) 206 

 207 

𝐶𝑇𝐼𝑖 = 𝛼 + 𝛿 × 𝑆𝑆𝑇𝑖 + ∑ (𝛾𝑗 × 𝑌𝑒𝑎𝑟𝑖)𝐽
𝑗 + 𝜇𝑘 + 𝜀𝑖                                        (Equation 2) 208 

𝜇𝑘~ 𝑁(0, 𝜎)  209 

𝜀𝑖 ~ 𝑁(0, 𝜎′) 210 

 211 

𝐶𝑇𝐼𝑖 = 𝛼 + 𝛽 × 𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑖 + 𝛿 × 𝑆𝑆𝑇𝑖 + ∑ (𝛾𝑗 × 𝑌𝑒𝑎𝑟𝑖)
𝐽
𝑗 + 𝜇𝑘 + 𝜀𝑖              (Equation 3) 212 

𝜇𝑘~ 𝑁(0, 𝜎)  213 

𝜀𝑖 ~ 𝑁(0, 𝜎′) 214 

 215 

where CTIi is the CTI (CTIo or CTIa) observed in quadrat i of site k at year j. 216 

 217 

The sensitivity of our findings to rare taxa was assessed by carrying out these analyses 218 

including only taxa observed in more than 10 quadrats (n = 56). To ensure that these results 219 

were not sensitive to the spatial scale considered, these analyses were also run at two smaller 220 

scales to complement the national scale (i.e., including only sites in the Brittany region, and 221 

sites in the “Finistère” department), and after removing sites in the South of the Bay of 222 

Biscay to remove the important latitudinal gap in our beach wrack sampling. Furthermore, we 223 

also ran these analyses including only non-buoyant taxa (n = 73) since they may have limited 224 

dispersal capacity and are more likely to originate from proximate benthic habitats (Thibault 225 
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et al., 2022), whereas buoyant macrophytes can drift over long distances (Harwell & Orth, 226 

2002). 227 

Latitudinal and thermal patterns of CTI were also assessed at the algae type level (i.e., 228 

brown, green, and red algae) and algae source level (i.e., intertidal, subtidal, and both 229 

intertidal and subtidal habitats), by including in a single model the algae type or source as a 230 

fixed effect and its interaction with latitude or SST to test for potential different patterns per 231 

algae type or source (Equation 4). Quadrats with null taxa richness (n = 105) were excluded 232 

from all the above-mentioned analyses. 233 

 234 

𝐶𝑇𝐼𝑖 = 𝛼 + 𝛽 × 𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑖 + ∑ (𝛾𝑗 × 𝑌𝑒𝑎𝑟𝑖)𝐽
𝑗 + ∑ (𝜑𝑙 × 𝑇𝑟𝑎𝑖𝑡𝑖)𝐿

𝑙 +235 

                               ∑ (𝜔𝑙 × 𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑖)𝐿
𝑙 + 𝜇𝑘 + 𝜀𝑖                  (Equation 4)       236 

𝜇𝑘~ 𝑁(0, 𝜎) 237 

𝜀𝑖 ~ 𝑁(0, 𝜎′) 238 

                           239 

where CTIi is the CTI (CTIo or CTIa) observed in quadrat i of site k at year j and for 240 

algae type or source l. 241 

 242 

Taxa contributions to the patterns of the CTI 243 

Furthermore, following Princé & Zuckerberg (2015), we assessed the extent to which each 244 

individual taxon contributed to the modelled latitudinal and thermal patterns of the CTIo and 245 

CTIa. To this end, we performed a jackknife analysis (Crowley, 1992): taxa were removed 246 

one by one (with replacement) from the initial dataset to recalculate the CTI values for each 247 

quadrat and we then reran the model (Equations 1 and 2). Each taxon contribution was 248 

calculated as the difference (in %) between the absolute value of the latitude or SST 249 

coefficient in the model performed on the CTI with all taxa and that of the corresponding 250 

Jo
urn

al 
Pre-

pro
of



12 
 

‘CTI minus one taxon model’. Therefore, a positive contribution of a taxon indicates that its 251 

inclusion in the computation of the CTI strengthens the expected decreasing pattern of the 252 

CTI with latitude or increasing pattern with SST, whereas a negative contribution of a taxon 253 

indicates that its inclusion in the computation of the CTI mitigates the decreasing pattern with 254 

latitude or increasing pattern with SST (Figure 2).  255 

 256 

Latitudinal patterns of taxa abundance 257 

Then, we assessed the latitudinal patterns of abundance of each of the taxa that strongly 258 

influenced the latitudinal pattern of CTIo or CTIa (i.e., taxa with absolute value of 259 

contribution ≥ 5%) using Poisson GAMMs with a log link function (Equation 5). The effect 260 

of latitude was modelled using a thin plate regression spline smoothing function instead of a 261 

linear predictor as a non-linear relation was expected for most species. These models also 262 

included the year as a fixed effect and the site as a random intercept effect. Jania spp. was 263 

not modelled due to insufficient number of observations (n = 12). 264 

 265 

𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒𝑖 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖)                 (Equation 5) 266 

𝑙𝑜𝑔(𝜆𝑖) = 𝛼 + 𝑓(𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑖) + ∑ (𝛽𝑗 × 𝑌𝑒𝑎𝑟𝑖)𝐽
𝑗 + 𝜇𝑘 + 𝜀𝑖                          267 

𝜇𝑘~ 𝑁(0, 𝜎) 268 

𝜀𝑖 ~ 𝑁(0, 𝜎′) 269 

 270 

where Abundancei is the taxa abundance observed in quadrat i of site k at year j. 271 

 272 

Latitudinal patterns of α-diversity 273 

To model the latitudinal patterns of α-diversity metrics (taxonomic richness and Shannon 274 

index) measured at the quadrat scale, we used generalized additive mixed models (GAMMs) 275 
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using a Gaussian distribution and with the effect of latitude modelled using a thin plate 276 

regression spline smoothing function allowing to model a non-linear latitudinal pattern 277 

(Equation 6), as we expected a peak of α-diversity in the Brittany region. The basis 278 

complexity of the smoothing function (i.e., maximum allowed wiggliness, k) was set to 279 

default value (k = 10). These models also included the year as a fixed effect and the site as a 280 

random intercept effect. Latitudinal patterns of α-diversity metrics per algae type (i.e., brown, 281 

green, and red algae) were also assessed using a single model with group-level smoothers 282 

allowing for separate smoothers with different wiggliness and intercept for each algae type 283 

(Pedersen et al., 2019), the year as a fixed effect, the interaction between algae type and year, 284 

and the site as a random intercept effect (Equation 7). Seagrasses were not included due to 285 

the low number of taxa (n = 2). Quadrats with null taxa richness (n = 105; 12%) were 286 

excluded from Shannon index analyses. 287 

 288 

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦𝑖 = 𝛼 + 𝑓(𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑖) + ∑ (𝛽𝑗 × 𝑌𝑒𝑎𝑟𝑖)𝐽
𝑗 + 𝜇𝑘 + 𝜀𝑖               (Equation 6) 289 

𝜇𝑘~ 𝑁(0, 𝜎)  290 

𝜀𝑖 ~ 𝑁(0, 𝜎′) 291 

 292 

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦𝑖 = 𝛼 + ∑ 𝑓𝑙
𝐿
𝑙 (𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑖) + ∑ (𝛽𝑗 × 𝑌𝑒𝑎𝑟𝑖)𝐽

𝑗 + ∑ (𝛾𝑙 × 𝑇𝑦𝑝𝑒𝑖)𝐿
𝑙 +293 

                 ∑ ∑ (𝜑𝑗,𝑙 × 𝑌𝑒𝑎𝑟𝑖 × 𝑇𝑦𝑝𝑒𝑖)𝐿
𝑙

𝐽
𝑗 + 𝜇𝑘 + 𝜀𝑖                                       (Equation 7) 294 

𝜇𝑘~ 𝑁(0, 𝜎)  295 

𝜀𝑖 ~ 𝑁(0, 𝜎′) 296 

 297 

where Diversityi is the α-diversity (taxa richness or Shannon index) observed in 298 

quadrat i of site k at year j and for algae type l. 299 

 300 
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Statistical modelling 301 

Statistical analyses were performed using R 4.3.2 (R Core Team, 2023). We fitted GAMMs 302 

with the mgcv package (Wood, 2011) and GLMMs with the glmmTMB package (Brooks et 303 

al., 2017) using Restricted Maximum Likelihood (REML) to estimate smoothing parameters 304 

and model coefficients. Statistical significance was assessed using 95% confidence intervals 305 

for GLMMs and was set at P < 0.05 for GAMMs. Nakagawa’s marginal (fixed predictors 306 

only) and conditional (fixed predictors and random factors) R2 values (Nakagawa & 307 

Schielzeth, 2013) were obtained for GLMMs using the performance package (Lüdecke et al., 308 

2021). In GLMMs that included an interaction effect between latitude and the factor ‘algae 309 

type’ or ‘algae source’, the slopes were assessed for each algae type or source with the 310 

package emmeans (Lenth, 2023). To ensure that model assumptions were met, we visually 311 

inspected model fit and residuals structure using the performance package for GLMMs, and 312 

the mgcv package for GAMMs. Spatial autocorrelation issues were assessed using the 313 

DHARMa package (Hartig, 2022). Maps were generated using QGIS 3.4.15 (QGIS 314 

Development Team, 2020).  315 

 Although the inclusion of the site as a random intercept effect addressed spatial 316 

autocorrelation issues—at least partially—in many models, these issues were sometimes 317 

difficult to overcome due to the structure of our data and our research questions. Indeed, i) 318 

latitude had to be included in the fixed part of some models, leading to potential difficulties 319 

when also including it in the spatial correlation structure; and ii) spatial correlation structures 320 

that include both latitude and longitude are not well adapted to coastal monitoring data, as 321 

two sites may have been much closer as the crow flies than by following the coastline (e.g., 322 

between sites in South Brittany and North Brittany).323 
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RESULTS 324 

 325 

We identified a total of 84 taxa in macrophyte wracks, of which 62 species, 17 genera 326 

(including the genus Ulva that was split into Ulva spp. – Foliose form, and Ulva spp. – 327 

Tubular form), 1 order, and 3 morphological groups (Table A.1). Of the identified taxa, 25 328 

were brown algae (Phaeophyceae), 52 red algae (Rhodophyta), 5 green algae (Chlorophyta), 329 

and 2 seagrasses. A third of identified taxa were strictly subtidal (n = 29), 17 were strictly 330 

intertidal, and 33 could be found in both subtidal and intertidal habitats. Only 10 of the 331 

identified taxa were considered as buoyant, and one taxon comprised both buoyant and non-332 

buoyant species. 333 

 334 

Latitudinal and thermal patterns of CTI 335 

The Community Temperature Index based on taxa abundance (CTIa) significantly decreased 336 

with latitude, i.e., its values were lower at northern latitudes (Table 1, Figure 3). When 337 

assessing differences in latitudinal patterns between algae types, red algae displayed the 338 

strongest decline in CTIa with increasing latitudes, followed by brown algae and green algae 339 

(Figure 3, Table A.2). The CTIa of macrophytes originating strictly from intertidal habitats 340 

did not decrease significantly with latitude, contrary to that of macrophytes from subtidal 341 

habitats strictly and both intertidal and subtidal habitats (Figure A2). Latitudinal patterns 342 

were also identified when only taxa observed in more than 10 quadrats and non-buoyant taxa 343 

were considered, as well as at smaller spatial scales (i.e., Brittany region and “Finistère” 344 

department) or when removing sampling sites with latitude < 46°N (Table 1).  345 

The CTIa significantly increased with both metrics of sea-surface temperature 346 

(SST1year or SST3months) (Figure 3, Table 1), although the increase and the R2
m were lower 347 

with SST3months (Table A.3). Red algae displayed the strongest increase in CTIa with 348 
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increasing SST (Figure 3, Table A.2). The CTIa of macrophytes originating strictly from 349 

subtidal habitats did not increase significantly with SST1year, contrary to that of macrophytes 350 

from intertidal habitats strictly and both intertidal and subtidal habitats (Figure A2). Thermal 351 

patterns were also identified when considering only taxa observed in more than 10 quadrats 352 

and non-buoyant taxa (Table 1). However, the effect of SST was not significant at smaller 353 

spatial scales or when removing sampling sites in the South of the Bay of Biscay (Table 1). 354 

Models including the SST had lower R2
m than models including the latitude (Table 1, Table 355 

A.3). The effect of SST was no longer significant when associated with latitude (Table 1, 356 

Table A3). 357 

Very similar results were found with the Community Temperature Index based on 358 

taxa occurrence (CTIo), although the latitudinal and thermal patterns were slightly less 359 

marked than with the CTIa (Table A.2, Table A.3, Figure A.1). 360 

 361 

Table 1: Assessment of latitudinal and thermal patterns of CTIa using GLMMs and various 362 

subsets. SE: standard error; 2.5% and 97.5%: 95% confidence interval; R2
m: marginal R2 363 

(fixed predictors); R2
c: conditional R2 (fixed predictors and random factors). Estimates 364 

significantly different from zero are in bold. 365 

Response Subset Predictor Estimate SE 2.5% 97.5% R2
m R2

c 

CTIa Full dataset Latitude -0.327 0.034 -0.394  -0.261  0.307 0.753 

  Year: 2019 -0.226 0.090 -0.402 -0.050   

  SST1year 0.252 0.048 0.157 0.346 0.126 0.756 

  Year: 2019 0.016 0.102 -0.184 0.215   

  SST1year 0.002 0.054 -0.102 0.106 0.308 0.756 

  latitude -0.327 0.044 -0.414 -0.241   

  Year: 2019 -0.230 0.094 -0.413 -0.048   

 Non-buoyant taxa only Latitude -0.314 0.037 -0.387 -0.242 0.283 0.807 

  Year: 2019 -0.195 0.097 -0.385 -0.006   

  SST1year 0.305 0.048 0.212 0.398 0.186 0.808 

  Year: 2019 0.036 0.101 -0.161 0.233   

 Without rare taxa Latitude -0.340 0.034 -0.406 -0.274 0.327 0.759 

  Year: 2019 -0.223 0.090 -0.403 -0.054   

  SST1year 0.266 0.049 0.171 0.361 0.139 0.762 

  Year: 2019 0.023 0.103 -0.178 0.223   

 Brittany only Latitude -0.482 0.119 -0.714 -0.251 0.133 0.474 

  Year: 2019 0.022 0.102 -0.177 0.221   

  SST1year -0.051 0.053 -0.153 0.052 0.057 0.479 
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  Year: 2019 -0.270 0.089 -0.444 -0.097   

 Finistère only Latitude -0.992 0.328 -1.629 -0.355 0.105 0.616 

  Year: 2019 -0.042 0.102 -0.240 0.156   

  SST1year -0.237 0.138 -0.504 0.030 0.046 0.635 

  Year: 2019 -0.017 0.116 -0.243 0.208   

 Without the south of Latitude -0.225 0.044 -0.311 -0.140 0.115 0.670 

   the Bay of Biscay Year: 2019 -0.192 0.087 -0.362 -0.022   

  SST1year 0.026 0.057 -0.085 0.137 0.002 0.674 

  Year: 2019 -0.046 0.092 -0.226 0.134   

 366 

 367 

Taxa contributions to the latitudinal and thermal patterns of the CTI 368 

More taxa contributed positively to the latitudinal patterns of the CTIa (n = 50) than 369 

negatively (n = 30) (Table A.1). Taxa contributions were very similar between CTIo and 370 

CTIa, with only 4 taxa that had a positive contribution to the latitudinal patterns of the CTIo 371 

and a negative contribution to that of the CTIa, or vice versa (Table A.1). 372 

Only 10 taxa had an absolute contribution higher than 5% (CTIo: 10; CTIa: 6), of 373 

which three green algae taxa, one seagrass taxon, and one red algae taxon had a negative 374 

contribution (i.e., their inclusion in the computation of the CTI mitigates its decreasing 375 

pattern with latitude), and three red algae taxa and two brown algae taxa had a positive 376 

contribution (Table 2). Among these 10 taxa, 3 were considered as buoyant: Zostera marina, 377 

Fucus vesiculosus, and Ascophyllum nodosum. 378 

 Among the 11 taxa that had an absolute contribution higher than 5% to the thermal 379 

patterns of the CTI (CTIo: 11; CTIa: 7), 8 also had an absolute contribution higher than 5% to 380 

the latitudinal patterns of the CTI and of the same sign (i.e., positive or negative for both 381 

latitude and SST1year) (Table A.4). 382 

 383 

Table 2: Assessment of taxa contributions to the latitudinal patterns of CTIo and CTIa using a 384 

jackknife analysis. Only taxa with absolute contribution > 5% for CTIo or CTIa latitudinal 385 

patterns are shown. Full results are provided in Table A.1. 386 
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Taxon Type Buoyancy STI 
 Contribution (%) to 

 CTIo CTIa 

Zostera marina seagrass yes 18.1  -24.49 -16.99 

Ulva spp. – Foliose form green algae no 15.5  -9.03 -5.44 

Corallina spp. red algae no 13.3  -7.48 -3.11 

Ulva spp. – Tubular form green algae no 13.2  -6.51 -4.85 

Cladophora spp. green algae no 14.9  -6.24 -8.18 

Gelidium spp. red algae no 16.1  5.98 4.70 

Jania spp. red algae no 18.6  8.58 3.64 

Fucus vesiculosus brown algae yes 12.8  10.88 8.76 

Halopithys incurva red algae no 16.3  14.57 16.36 

Ascophyllum nodosum brown algae yes 12.1  15.47 13.59 

 387 

 388 

Latitudinal patterns of taxa abundance 389 

Among the five taxa that contributed most negatively to the CTI latitudinal patterns, i) two 390 

had no significant latitudinal pattern of abundance (Zostera marina and Cladophora spp.), ii) 391 

two were more abundant at lower latitudes despite their medium and low STI respectively 392 

(Ulva spp. – Foliose form and Corallina spp.), and iii) one exhibited a non-monotonic 393 

latitudinal pattern of abundance but with lower abundance at the highest latitudes 394 

notwithstanding its low STI value (Ulva spp. – Tubular form) (Table 2, Figure 4). 395 

 Conversely, among the five taxa that contributed most positively to the CTI latitudinal 396 

patterns, i) two are warm-dwelling taxa that were more abundant at lower latitudes (Gelidium 397 

spp. and Halopithys incurva) and ii) two are cold-dwelling taxa with less abundance at lower 398 

latitudes (Fucus vesiculosus and Ascophyllum nodosum) (Table 2, Figure 4). The latitudinal 399 

pattern of Jania spp. abundance was not modelled due to the low number of observations (n = 400 

12).  401 

 402 

Latitudinal patterns of α-diversity 403 

The latitudinal patterns of taxa richness and Shannon index were very similar: a more or less 404 

bell-shaped pattern with a peak between latitudes 47°N and 48°N, and the lowest values 405 

found for the highest latitudes (Figure 5, Figure A.4). Patterns of brown and red algae α-406 
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diversity exhibited more wiggliness, the former with a plateau of maximum values between 407 

46°N and 49°N, and the latter with an overall decrease with increasing latitude (Figure 5, 408 

Figure A.4, Table A.5). Latitudinal patterns of green algae taxa richness and Shannon index 409 

were not significant (Table A.5).  410 

  411 
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DISCUSSION 412 

 413 

By investigating the composition of macrophyte communities in beach wracks along the 414 

Channel and Atlantic French coast, we demonstrated that their thermal affinity increased with 415 

sea-surface temperature and decreased with latitude. Both thermal and latitudinal patterns of 416 

thermal affinity were mainly driven by red and brown algae. We were also able to detect 417 

latitudinal variations in their α-diversity and identified its expected regional hotspot (peak 418 

between 47°N and 48°N). These results are a preliminary step towards further exploring the 419 

ability of beach wrack to develop ex situ indicators of changes in proximate benthic 420 

macrophyte communities under climate warming, in line with Thibault et al. (2022) that 421 

recently demonstrated the relationship between the composition of macrophyte communities 422 

in beach wracks and the composition of proximate benthic macrophyte communities. 423 

 424 

Latitudinal and thermal patterns of CTI 425 

The thermal affinity of macrophyte communities in beach wrack linearly decreased with 426 

latitude, and linearly increased with sea-surface temperature. These results are in line with 427 

latitudinal patterns of thermal affinity observed in intertidal macroalgal communities 428 

(Burrows et al., 2020), but also coastal sea-surface temperatures linearly decreasing with 429 

latitude along the European Atlantic coast (Baumann & Doherty, 2013), and thermal patterns 430 

of thermal affinity observed in benthic macrophyte communities (Arriaga et al., 2023; Bates 431 

et al., 2017; Burrows et al., 2020). Although a negative relationship between the thermal 432 

affinity of macrophyte communities in beach wrack and latitude and a positive relationship 433 

with SST may appear somewhat trivial at the scale of macrophyte species distributions, these 434 

results are much more interesting considering the national to local scales of our study, 435 

especially with the prospect of developing a local-scale indicator.  436 
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We also found that patterns of thermal affinity could be more strongly attributed to 437 

latitude than SST. This rather unexpected outcome may result from various non-mutually 438 

exclusive factors. First, we used SST averaged over three months or one year and within a 2 439 

km radius around each site, which might not perfectly illustrate the climatic conditions 440 

experienced by the benthic communities of macroalgae and seagrass from which the 441 

macrophyte wracks originate. In addition, the magnitude of SST variations in our study zone 442 

may have been too weak. Furthermore, the thermal affinity indices calculated might not 443 

perfectly reflect the optimal thermal niche of the community. Indeed, STIs were computed 444 

using very large scale data, and without considering intra-annual variations of SST. 445 

Moreover, a quarter of taxa (n = 22) were not identified to species level, resulting in their 446 

thermal affinity being computed by averaging different STIs, which may not perfectly 447 

represent the thermal affinity of the different species comprising these taxa. Finally, although 448 

latitude was correlated with SST, the latitudinal gradient also captures other variables, such 449 

as the longitude and differences between biogeographical areas, that, according to our 450 

findings, may also play a key role at the spatial scale of this study. 451 

The α-diversity of buoyant macrophytes in beach wrack does not reflect the 452 

heterogeneity of proximate benthic habitats (Thibault et al., 2022) as they can drift over long 453 

distances (Harwell & Orth, 2002). However, two of the most positively contributing taxa to 454 

the thermal and latitudinal patterns featured buoyancy structures (Fucus vesiculosus and 455 

Ascophyllum nodosum), and the observed patterns of thermal affinity were extremely similar 456 

when considering only non-buoyant taxa. This might be due to: i) the minor role played by 457 

drifting macrophytes events in shaping the community composition of distant beach wrack 458 

sampling sites at the spatial scale of this study compared with that of Thibault et al. (2022); 459 

and ii) the fact that sampling sites close to each other, that are thus most likely to receive 460 

drifting macrophytes from each other’s donor site, also have very similar latitude and sea-461 
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surface temperature, with latitude being highly autocorrelated in space per se. As expected, 462 

the patterns of thermal affinity without rare taxa (i.e., observed in 10 quadrats or less) were 463 

also extremely similar to that with all taxa. Furthermore, there was a negative effect of 464 

latitude on thermal affinity of macrophyte communities in beach wrack even at smaller 465 

spatial scales (i.e., Brittany region and “Finistère” department). At these spatial scales, the 466 

latitudinal pattern of thermal affinity was stronger than when considering the whole 467 

geographical range, certainly due to the particular geography of these zones (sites at very 468 

similar latitudes can be located far apart along the coastline), but it also explained less of the 469 

variation in thermal affinity (lower R2), which was also expected at these spatial scales where 470 

local factors are more likely to drive the composition of macroalgal and seagrass 471 

communities. Thermal patterns of thermal affinity were not identified at smaller scales nor 472 

after removing sampling sites with latitude < 46°N, which reinforces the hypothesis that other 473 

local factors play a key role at these scales. Finally, we also observed the negative latitudinal 474 

pattern of thermal affinity after removing sampling sites of the south of the Bay of Biscay, 475 

thereby confirming that this trend is not only driven by those sites or biogeographic areas, nor 476 

influenced by the important latitudinal gap in our beach wrack sampling. All these alternative 477 

analyses emphasise the robustness of our findings, as well as their potential transferability to 478 

other study zones. 479 

 480 

Taxa contributions to the patterns of the CTI and latitudinal patterns of taxa abundance 481 

Thermal affinity of strictly subtidal macrophytes was not affected by spatial changes in SST, 482 

which may be due to the lower statistical power of these analyses, but also to the use of the 483 

sea-surface temperature that might be less appropriate than the sea-bottom temperature for 484 

subtidal organisms, especially in stratified areas such as the north of the Brittany (Gaudin et 485 

al., 2018). 486 
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The decrease in thermal affinity with latitude and increase with SST were mainly 487 

driven by red algae, in accordance with Gallon et al. (2014), and, to a lesser extent, by brown 488 

algae. These findings are consistent with the analysis of taxa contributions to the latitudinal 489 

patterns of thermal affinity, from which we identified three green algae taxa among the five 490 

most negatively contributing taxa, and three red and two brown algae taxa among the five 491 

most positively contributing taxa. The sign of contributions (i.e., positive or negative) of 492 

these taxa were overall consistent with their latitudinal pattern of abundance and thermal 493 

affinity. For instance, Gelidium spp. and Halopithys incurva were more abundant in southern 494 

France, as expected given their high thermal affinity, hence their strongly positive 495 

contribution to latitudinal patterns of thermal affinity. Finally, interpreting the southern part 496 

of latitudinal patterns of taxonomic abundance must be done with great caution due to the 497 

large gap in our sampling of the Bay of Biscay. 498 

 499 

Latitudinal patterns of α-diversity 500 

We found that taxa richness and Shannon index of macrophyte communities in beach wrack 501 

were highest between latitudes 47°N and 48°N, corresponding roughly to the stratified waters 502 

of the south of the Brittany region (Derrien-Courtel et al., 2013), with a peak in brown algae 503 

α-diversity, then strongly decreased towards higher latitudes, driven by a low diversity in red 504 

and brown algae in northern France. This regional peak of macrophyte diversity is difficult to 505 

compare with the latitudinal patterns of marine and algae species richness at global 506 

(Chaudhary et al., 2016; Kerswell, 2006) and European scales (Santelices & Marquet, 1998) 507 

due to their coarse spatial resolution. Nevertheless, this pattern has been reported from 508 

underwater samplings along the Brittany coastline and is supported by the mosaic of benthic 509 

habitats in this region, its location in a biogeographic transition area (Gallon et al., 2017), and 510 

its heterogeneity in abiotic conditions (e.g., exposure, turbidity, temperature) (Derrien-511 
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Courtel et al., 2013; Gallon et al., 2014). Green algae diversity did not vary with latitude, as 512 

this group comprises only five taxa, none of which was identified to species level, but also 513 

because their abundance is mainly driven by processes at local scale, such as eutrophication 514 

caused by nutrient inputs to coastal waters from human activities (e.g., agriculture, 515 

aquaculture) (Streicher et al., 2021; Teichberg et al., 2010). The wiggliness of α-diversity 516 

latitudinal patterns for brown and red algae in Brittany might be due to the high concentration 517 

of sampling sites in this area, some of which might differ in their characteristics, but also to 518 

this region’s coastline that is less accurately described by the latitude (i.e., latitude does not 519 

increase monotonically from the south of Brittany to the north). Finally, similarly to the 520 

latitudinal patterns of taxonomic abundance, caution must be applied when interpreting the 521 

latitudinal patterns of α-diversity over the southern part of the study zone due to the 522 

important gap in our sampling below 46°N. 523 

 524 

Beach wrack monitoring to produce indicators of benthic macrophyte communities 525 

Our results, which are consistent with macroecological and physico-chemical patterns 526 

described in the literature (Arriaga et al., 2023; Bates et al., 2017; Baumann & Doherty, 527 

2013; Burrows et al., 2020; Derrien-Courtel et al., 2013; Gallon et al., 2014, 2017), 528 

contribute to assessing whether the thermal affinity of macrophyte communities in beach 529 

wrack could potentially be used as an ex situ indicator of the thermal affinity of benthic 530 

macrophyte communities, even at a local scale. They also indicate that beach wrack could be 531 

used to detect changes in abiotic conditions, such as changes in SST. Finally, our results 532 

reinforce the claim formulated by Thibault et al. (2022) that beach wrack monitoring could be 533 

used to provide information on the diversity of benthic habitats. We believe that these 534 

conclusions can be transposed to other geographic areas. However, only a spatial application 535 

of this indicator has been suggested so far. Therefore, it is crucial to continue to sample 536 
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macrophyte wracks every year, as well as monthly at a restricted number of sites, in order to 537 

explore the ability of beach wrack to provide information on inter- and intra-annual changes 538 

in the composition of benthic macroalgal and seagrass communities under climate change, 539 

changes in these communities that have already been documented in recent publications (e.g., 540 

Arriaga et al., 2023, 2024; Bates et al., 2017; Burrows et al., 2020; De Azevedo et al., 2023; 541 

Soler et al., 2022). Yet, our results represent a first step towards exploring the relevance of 542 

beach wrack monitoring to detect changes in proximate benthic macrophyte communities and 543 

in all marine and coastal species that are likely to be affected by SST. 544 

Establishing beach wrack macrophyte communities as an ex situ indicator of the 545 

thermal affinity of benthic macrophyte communities would enable the development of 546 

vulnerability indicators of benthic habitats to climate change. Such indicators can be based on 547 

thermal affinity metrics of macrophyte communities in beach wrack, such as the Community 548 

Thermal Bias, computed from CTI of benthic macroalgal communities and current SST in 549 

Burrows et al. (2020). Indicators of vulnerability to climate change can also combine future 550 

projections of climate warming and thermal affinity metrics using a trait-based Climate 551 

Change Vulnerability Assessment (CCVA) framework (Foden et al., 2019; Pacifici et al., 552 

2015) (e.g., Verniest et al. 2023). 553 

While here we focused on spatial changes derived from thermal conditions, this 554 

approach might also be extended to other drivers of change affecting benthic communities 555 

such as biological invasions or chemical pollution. Considering the cost-effectiveness and 556 

logistical ease of beach wrack sampling in various conditions, beach-cast macrophytes may 557 

thus represent valuable opportunities for ex situ monitoring of coastal and marine ecosystems. 558 

Finally, beach wrack monitoring appeared an excellent candidate for citizen science 559 

initiatives (e.g., Vázquez-Delfín et al., 2024). Therefore, we have co-developed with 560 

environmental education and teaching partners a citizen science program named “ALAMER” 561 
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targeting school children (https://www.plages-vivantes.fr/alamer/edito/le-protocole-alamer). 562 

This program will ultimately greatly enhance the sampling effort, thereby expand the range 563 

of current coastal ecosystem monitoring and improve our ability to inform on the dynamics 564 

of benthic macrophyte communities under global change at multiple spatial and temporal 565 

scales. It is also used as a sensitisation tool to raise awareness on the functioning of the beach 566 

ecosystem and its vulnerability to multiple anthropogenic pressures, such as beach wrack 567 

collection and sea-level rise, thereby increasing the acceptance of beach wrack by users. 568 

Finally, expanding this protocol to other audiences, such as conservation practitioners, could 569 

help to address more local questions (e.g., comparison of local benthic macrophyte 570 

communities with those of the network of sites). Nevertheless, the development of such 571 

initiative requires overcoming many challenges, such as defining the number and identity of 572 

taxa to be monitored, developing adapted monitoring tools and training courses, identifying 573 

the target audience, and ensuring their long-term commitment (Thibault et al., 2022; 574 

Vázquez-Delfín et al., 2024).  575 
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FIGURE CAPTIONS 1 

 2 

Figure 1: Map of the 172 sampling sites. The colour gradient corresponds to the sea surface 3 

temperature averaged over the twelve months preceding sampling in April 2019, derived 4 

from MARS3D model simulations of the “Modelling and Analysis for Coastal Research” 5 

(MARC) project (Lazure & Dumas, 2008). Country boundaries were extracted from the 6 

Natural Earth database (naturalearthdata.com). 7 

 8 

Figure 2: Contribution (red: positive; blue: negative) of a taxon to the latitudinal pattern (left) 9 

and thermal pattern (right) of the Community Temperature Index (CTI). 10 

 11 

Figure 3: Latitudinal patterns (upper panel) and thermal patterns (lower panel) of Community 12 

Temperature Index based on taxa abundance (CTIa) with all taxa (left panel) and by algae 13 

type (right panel). For thermal patterns, we considered the sea-surface temperature averaged 14 

over the twelve months preceding sampling (SST1year). Shaded areas represent 95% 15 

confidence intervals. Predicted patterns were computed with year held constant at 2019 and 16 

the site with the median coefficient value. Observed values are depicted by small rings and 17 

were corrected by the estimate of the year effect. The difference between observed and 18 

predicted values thus represents marginal residuals. Black vertical bars at the bottom 19 

represent sampling sites. The latitudinal range of the Brittany region is depicted in light grey. 20 

Latitudinal and thermal patterns of the Community Temperature Index based on taxa 21 

occurrence (CTIo) are provided in Figure A.1. 22 

 23 

Figure 4: Latitudinal patterns of abundance for taxa that strongly contributed to the 24 

Community Temperature Index (CTI) latitudinal pattern (i.e., absolute contribution ≥ 5%). 25 
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Shaded areas represent 95% confidence intervals. Non-significant patterns are depicted by 26 

dashed lines. Predicted patterns were computed with year held constant at 2019 and the site 27 

with the median coefficient value for each model. For taxa identified at species level, tiles 28 

represent 0.5 degree latitude zones in France, with coloured ones corresponding to zones with 29 

occurrence of the species in the Global Biodiversity Information Facility database (GBIF, 30 

2025), and grey ones without occurrence of the species. Black vertical bars at the bottom 31 

represent sampling sites and coloured vertical bars directly above tiles represent sampling 32 

sites with occurrence of the species. The latitudinal range of the Brittany region is depicted in 33 

light grey. Distribution ranges of taxa were not provided because of their much larger scale 34 

than that of our study zone. Latitudinal patterns of abundance for the same taxa when 35 

removing sampling sites with latitude < 46°N are provided in Figure A.3. 36 

 37 

Figure 5: Latitudinal patterns of taxonomic richness: a) with all taxa; b) by algae type. 38 

Shaded areas represent 95% confidence intervals. Non-significant patterns are depicted by 39 

dashed lines. Predicted patterns were computed with year held constant at 2019 and the site 40 

with the median coefficient value. Observed values are depicted by small rings and were 41 

corrected by the estimate of the year effect. The difference between observed and predicted 42 

values thus represents marginal residuals. Black vertical bars at the bottom represent 43 

sampling sites. The latitudinal range of the Brittany region is depicted in light grey. 44 

Latitudinal patterns of the Shannon index are provided in Figure A.4. Latitudinal patterns of 45 

taxonomic richness when removing sampling sites with latitude < 46°N are provided in 46 

Figure A.5. 47 
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HIGHLIGHTS 

• Thermal affinity of beach wrack macrophytes increases with sea-surface temperature 

• Thermal affinity of macrophyte communities in beach wrack decreases with latitude 

• The latitudinal pattern is identified from a national scale to a local scale 

• Patterns are consistent with earlier research on benthic macrophytes 

• We suggest further exploring beach wrack's ability to inform on benthic macrophytes 
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