International Seminar for Research on Planning and Development aids to the shellfish industry

EVALUATION OF THE CARRYING CAPACITY OF MOLLUSCAN SHELLFISH ECOSYSTEMS

EVALUATION DE LA CAPACITÉ BIOTIQUE DES ECOSYSTEMES CONCHYLICOLES

HERAL Maurice

IFREMER La Tremblade - France

ABSTRACT

Growth of molluscs raised in coastal zones, where the water exchange rate is low, appears to be limited, once a certain biomass level is attained, by the availability of food, making it necessary to determine as accurately as possible the trophic capacity of an ecosystem. This paper analyses the various sources of food for molluscs. It would appear that dissolved organic substances play a major role, providing up to half the energy necessary for their metabolism. Particulate material is filtered by molluscs in proportion to their size, with optimum filtration rates varying with species. The negative effect on meat production of high mineral seston rates is demonstrated, and an analysis provided of the respective role of each component of organic matter. The trophic inflow represented by bacteria and organic detritus is discussed, and phytoplankton rations described. A method integrating current factors is proposed for calculating flows of food, and percentages of phytoplankton retained by molluscs raised in various shellfish-culture ecosystems are presented.

Introduction

As a preliminary, it might be asked why we should study the carrying capacity of waters, i.e. the quantity of food available for molluscs, either in shellfish farms or in some form of intensive culture. From a basin-planning standpoint, it is possible to develop production models for the populations under culture that are derived from models used in halieutics. Such an approach would accordingly not take into consideration the limiting effect of available food quantities, and yet the shellfish industry has developed in estuaries, bays, ponds and relatively closed basins characterized by a high degree of confinement and low water renewal rates. Cline (1982) demonstrated that, in San Francisco Bay, biomasses of filter-feeding bivalves are large enough to filter a daily volume of water equivalent to the volume of the bay, thus controlling the development of phytoplankton. In the Marennes-Oléron basin, biomasses of oyster and cultivated mussel populations, along with other molluscs, can filter over half the water volume of the basin every day, bearing in mind the standing time for water masses. Table 1 shows that this same volume of water is filtered several times by molluscs.

This could explain the relatively low rates (5μg/l of chlorophyll a) of phytoplankton biomass found in these basins, which are nevertheless very rich in nutrients (Conomos et al., 1979; Héral et al., 1984).

IFREMER, B.P. 133, 17390 LA TREMBLADE (FRANCE)
<table>
<thead>
<tr>
<th>Oyster biomass</th>
<th>Mussel biomass</th>
<th>Biomass other molluscs</th>
<th>Total biomass</th>
<th>Biomass dry weight</th>
<th>Filtration rate at neap tide</th>
<th>Water volume per tide cycle</th>
<th>Recycling time</th>
</tr>
</thead>
<tbody>
<tr>
<td>70,000 t</td>
<td>3,600 t</td>
<td>5,000 t</td>
<td>80,000 t</td>
<td>2,400 t</td>
<td>$2.4 \times 10^5 \text{m}^3/\text{h}$</td>
<td>$5.76 \times 10^6 \text{m}^3$</td>
<td>4-9 days</td>
</tr>
</tbody>
</table>

Table 1: Water volume filtered by molluscs in the Marennes-Oléron basin

It is possible that an overall philosophy could be developed to guide planning in these cultivation zones. An empirical approach, i.e. a gradual increase in loads, might show that, past a certain point, production begins to decline, making it necessary to revert to an equilibrium position, although this production-biomass equilibrium can only be determined if the other parameters are constant. The decline in production may, of course, be due to overloading of culture biomass, but also to changes in the cultivation ecosystem involving such things as:

- a rise in bottom levels, causing a slowdown in current and thus of food inflow,
- changes in mineral salt inflows (due to drought, estuary dams, etc.),
- perturbation of phytoplankton growth by pollutants, which also upset mollusc physiology (this is the case, for example, with the organic salt of TBT (Alzieu and Héral, 1985),
- deterioration of shellfish beds through accumulation of organic matter (faeces and pseudofaeces) causing anoxic phases (Kusuki, 1984).

The above elements militate in favour of the overall study of shellfish ecosystems as integrated units. For the purposes of this seminar, we have arbitrarily chosen the following aspect: the food available for molluscs, which is dealt with in this document, i.e. the quantity of food molluscs need to cover their energy, metabolism, growth and reproduction requirements (Deslous-Paoli, 1985), and then the model-building phase, which will enable us to establish relationships between primary and secondary elements (Bacher, 1985).

Many authors have given experimental demonstrations of the role played by various parameters on mollusc nutrition and production. It must nevertheless be admitted (cf. Epifanio et al., 1975, and Dame et al., 1980) that laboratory results are difficult to extrapolate to natural or divergent environments. A study of the carrying capacity of an ecosystem can, however, only take into consideration a certain number of parameters. Initially, therefore, we will attempt to determine relationships observed in the literature in situ between various parameters and filter-feeding mollusc production, in order to propose a list of factors that it appears necessary to study further. We will pay particular attention to the spatio-temporal research procedures which must be developed, in particular for seas characterized by tides.
Relations between biotic and non-biotic water parameters and the production of molluscs observed in situ

A great many authors have demonstrated the influence of temperature. Temperature controls the onset of gametogenesis (Lubet et al., 1981; Héral, 1985) but also its evolution (Mann, 1979). Temperature is also an extremely important parameter which controls all phenomena in mollusc physiology: filtering activity, metabolism and thus respiration and excretion, thus representing a close link with growth in terms of size and weight. This important influence of temperature has made it possible to develop mollusc growth models on the basis of equations by Von Bertalanffy or Gompertz by integrating temperature variations and thus building models of season growth fluctuations: Bachelet (1984) for Scrobicularia plana, Bodoy (1982) for Donax trunculus, Hamon (1983) for Mytilus galloprovincialis (Fig. 1), and Rodhouse et al. (1983) for Mytilus edulis.

![Size-age curves obtained after incorporating temperature and nitrates (Hamon, 1983)](image)

Héral et al. (1984) also demonstrated that, if the egg-laying period is excluded, temperature is the primary explanatory factor for shell growth and the third explanatory factor for meat production. This indicates that other factors play a vital role in meat production. These authors also showed a close link with dissolved carbonated and nitrogenated organic substances as well as with phytoplankton, whether deteriorated (phaeopigments) or in live form (chlorophyll a) in the water or the water-sediment interface (Fig. 2).

Similarly, Lelong and Riva (1976) demonstrated in situ the action of phytoplankton, temperature and salinity on the growth of Ruditapes decussatus. A link between benthic biomass and the quantity of chlorophyll was established by Hargrave and Peer (1973), while a logarithmic relationship between ATP content based on current and filter-feeding mollusc production was demonstrated by Wildish et al. (1981). The connection between phytoplankton biomass and weight increase in the oyster C. gigas has been confirmed (Deslous-Paoli et al., 1981), as well as a strong correlation between primary production
Water

T. Sex Ses.0 ATP Chla Phos Prot Carb Fat C / Fat C A C A / A. N	diaphanella	ovum																				
P	0.81	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34
G	0.34	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19			

Water-sediment Interface

Thin Phase C & C) Prot Bac Prot Carbons Fea	diaphanella																					
P	0.34	0.20	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
G	0.10	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	
P	0.34	0.20	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
G	0.10	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	

Figure 2:

Correlation coefficients between water, water-sediment interface, and cyst production. $P =$ water granules; $C =$ thin-layer granules. $r =$ significant coefficient at the threshold of 0.75. $r > 0.20$

Multiple Correlations:

- shell em. cysts $= 0.16 \times$ water $+$ time $= 11.45$ $r = 0.27$
- shell lg. cysts $= 0.14 \times$ chl $+$ in situ $= 3.31$ (2nd factor 7) $r = 0.73$
- meat em. cysts $= 0.014 \times$ diet $+ 0.017$ phos. water $= 2.94$ (3rd factor 7) $r = 0.98$
- meat lg. cysts $= 9.61 \times$ hum. C $+ 4.54$ amino acids $= 10.71$ (3rd factor chl $cil r = 0.77$)

Notes:

- Water, water-sediment interface, and cyst production are correlated in the threshold of 0.75. $r > 0.20$
- Multiple correlations with significant coefficients:
 - Shell em. cysts:
 - $0.16 \times$ water $+$ time $= 11.45$ $r = 0.27$
 - Shell lg. cysts:
 - $0.14 \times$ chl $+$ in situ $= 3.31$ (2nd factor 7) $r = 0.73$
 - Meat em. cysts:
 - $0.014 \times$ diet $+ 0.017$ phos. water $= 2.94$ (3rd factor 7) $r = 0.98$
 - Meat lg. cysts:
 - $9.61 \times$ hum. C $+ 4.54$ amino acids $= 10.71$ (3rd factor chl $cil r = 0.77$)
and the energy content of *Ruditapes decussatus* (Bodoy and Plante-Cuay, 1983). Kautsky (1982) showed good correlations in *Mytilus edulis* between shell growth and temperature and between shell growth and chlorophyll content, if the gametogenesis period is excluded. Shaffee and Lucas (1982) showed that production yields are negative if chlorophyll and temperature levels are at a minimum.

The harmful effect of excessive seston loads on flesh production was shown by Vahl (1980). This was demonstrated in *Chlamys islandica* by Wildish et al. (1981), for various lamellibranchs by Deslous-Paoli et al. (1981) and by Héral et al. (1983) in adult *Crassostrea gigas*. The importance of bacteria (Prieur, 1981), often associated with particles, was mentioned by Martin (1976) in *Ruditapes decussatus*, by Amouroux (1982) in *Venus verrucosa* and by Mengus (1978).

Dissolved organic substances

Although experimental work by Péquignat (1973) demonstrated the nutritional role of amino acids and sugars, the energy contribution they represent has to date not been taken into account in determining mollusc energy balances.

The branchial epiderm of lamellibranchs is the site of high absorption of dissolved organic molecules such as amino acids, sugars and fatty acids. Numerous experimental studies have described these mechanisms, for instance recent articles by Jorgensen (1982-1983), Wright and Stephen (1982), Gomme (1982) and Neil et al. (1983). This absorption mainly takes place in the gills, but also through the stomach and the middle intestine (Stewart and Bomford, 1976; Bomford and Cingles, 1974). The kinetics of this absorption is described using the Michaelis-Menten equation, the constants of which depend on amino acid concentrations present in the ecosystem. Thus *Mytilus edulis* can absorb half of the amino acids in water flowing through the branchial cavity at concentrations of 1 μmole 1⁻¹ (Jorgensen, 1983). Jorgensen also shows that absorption of amino acids from natural sea water may be sufficient to provide over twice the energy necessary for branchial filtration. Similarly, Wright (1982) estimated that absorption of amino acids contributes 6 to 60%, depending on concentrations available in the water, of the oxygenation requirements of metabolism exhausted by respiration. This mechanism makes it possible to satisfy the requirements of 11 amino acids necessary to *Mytilus californianus*, principally L-methionine and L-lyzine-NCl (Harrison, 1976), along with taurine, which represents 70% of the pool of free intra-cellular amino acids in the gills (Zurburg and de Zwaan, 1981). Conversely, Nell et al. (1983) showed that, although active absorption is observed for glucose, the absorption resembles a sort of passive diffusion that makes no major contribution to the carbohydrate requirements of oysters.

Similarly, a certain number of dissolved organic substances may be absorbed through the same metabolic channel and no longer play a role in energy supply, but rather the role of a growth substance like choline chloride or vitamins (Nell et al. 1983). Collier et al. (1953) also showed the very beneficial effect of carbohydrates present in the marine environment on pumping rates and the intervalval activity of oysters. These observations led to the development of the early artificial diets based on sugars, fats and vitamins (Castell and Tröder, 1974; Tröder and Castell, 1980; Nell and Wisely, 1983).

In coastal waters, dissolved amino acid levels vary between 0.2 and 2 μmole per litre (North, 1975). Jorgensen (1982) found variations in Isefjord.
between 0.4 and 2.5 pmole l\(^{-1}\). In the Marennes-Oléron basin, Héral et al. (unpublished) found fluctuations between 0.2 and 10 pmole l\(^{-1}\), but these showed no significant seasonal peaks, and daily variation during a given tidal cycle was greater than annual variation. The same was true for dissolved glucose or dissolved organic and inorganic carbon (Feuillet et al., 1979; Feuillet, pers. comm.). These wide variations may be due to the fact that measurements within the ecosystem are a synthesis of absorption and excretion by molluscs but also by phytoplankton and bacteria.
Suspended particulate matter

- Size consumed by filter-feeding molluscs

Recent use of particle meters (Coulter Counter, Luzex) has made it possible to determine the sizes trapped by the branchial filters of molluscs. It would appear that different species select different sizes. Fifty percent of the particles retained by Mytilus edulis measured 1.5 μ (Silvester and Sleigh, 1984), and for Cardium gleaum 50% were 1 μ (Jorgensen et al., 1984), while for the anomi Mania squarna 50% were 3.5 μ (Jorgensen et al., 1984) and for Crassostrea gigas 50% were 3 μ (Kusuki, 1977; Deslous-Paoli and Héral, unpublished).

Optimum filtration for the oyster C. gigas takes place at 8-9 microns, while for C. virginica it is 5 microns (Palmer and Williams, 1980), and for mussels it is also 5 microns. These selection differences are not constant, however, and appear to depend on the seston load of the system. Deslous-Paoli and Héral (unpublished) show an increase in retention efficiency for waters with low turbidity for C. gigas, and Palmer and Williams (1980) demonstrate the same fluctuations for C. virginica. All particles larger than this size will then be trapped by the gills. The upper limit of ingestion is difficult to determine, but Paulmier (1972), examining stomach contents, indicates that particles smaller than 50 μ predominate, while those measuring 50 to 100 μ are frequently found, but particles of 100 to 150 μ are very rare.

It thus appears necessary, when studying particulate matter ingestible to molluscs, to take into account this size criterion and make biochemical analyses of the organic matter using differential filtration. This would yield a more accurate picture of the energy value of the fraction of this matter in estuary environments that can be utilized by molluscs. It has been observed in estuaries that the fraction ranging between 1 and 3 μ, of which only a small proportion is retained by the molluscs, may represent 50% of the total number of particles (Fig. 6). Conversely, nanoplankton smaller than 20 μ is directly related to growth of Mytilus edulis in the Gulf of Maine (Incze et al., 1980), while for the same species Rosenberg and Loo (1983), working in northwestern Sweden, found the same close link between nanoplankton and mussel weight increase.

- Seston

The mineral portion of seston may be significant in estuary environments during the winter period, when foreshore sediment is put back into suspension by strong tidal currents and storms, along with inflow from estuaries under high water conditions, allowing the silt plug to be expelled. This high mineral load causes dilution of particulate organic matter and thus diminishes the energy value of suspended material. This causes molluscs to lose weight, since they must draw on their reserves in order to make up for the deficit. Vahl (1980) offers this explanation for variations in growth rates of Chlamys islandica. As well, Deslous-Paoli et al. (1981) and Héral et al. (1983) show the negative effect of seston contents higher than 100 mg l⁻¹ on meat production in C. gigas and explain this negative production by the high rate of biodeposit mainly composed of pseudofaeces, causing larger amounts of energy to be used for sorting particles, mucus secretion and gill cleaning, at a time when phytoplankton biomass is in short supply.

- Bacteria

Counting aerobic heterotrophic bacteria populations, generally called total microflora, makes it possible to quantify bacteria biomasses, although
Figure 5: Retention efficiency based on particle size for **Platina** odhneri according to Silvester and Sleight (1984) and for **Gonorrhoa grena** according to Desfons-Paoli and [Héral](#) (unpublished).

![Figure 5: Retention efficiency based on particle size for **Platina** odhneri according to Silvester and Sleight (1984) and for **Gonorrhoa grena** according to Desfons-Paoli and [Héral](#) (unpublished).](image)

Figure 6: Number of particles according to size in the Marennes-Oléron basin (0.8 to 24.6 μ) (after [Héral et al.](#), unpublished)

![Figure 6: Number of particles according to size in the Marennes-Oléron basin (0.8 to 24.6 μ) (after [Héral et al.](#), unpublished).](image)
it is necessary to convert these biomasses into their energy equivalent in order to compare their contribution with that of phytoplankton. Ferguson and Rubleg (1976) estimate that, on the average, a bacterium corresponds to 7.8×10^{-7} g of carbon, and this value falls into the range given by Hamilton and Holm Hansen (1967). In the absence of a specific calorimetric coefficient for bacteria, that defined by Salonen et al. (1976) has been applied, i.e., 10.97 cal mg$^{-1}$ of carbon for total aquatic invertebrates. Héral et al. (1983) and Deslous-Paoli and Héral (1984) showed that bacterial biomasses in a shellfish basin represent only a small part of the energy available to filter-feeding molluscs and that there is a high degree of variability between high and low water (Fig. 7).

![Figure 7: Energy values of bacteria compared to potential food (PLG), phytoplankton biomass (chlα + phaeo) and non-chlorophyllian detritus (after Deslous-Paoli and Héral, 1984).](image)

Zobell and Landon (1979), however, presented experimental results showing growth of adult *Mytilus californianus* on bacteria-based diets. Newell (1965) showed that *Macoma balthica* ingests and utilizes bacteria. Similarly Chakroun (1964) demonstrated that mussels concentrate the microflora in their environment. Martin (1978) pointed out that *Venerupis decussata* causes bacterial concentrations in a closed space to decrease by a factor of 7 in five hours, while phytoplankton is simultaneously consumed by a factor of 14. The capacity of bivalves to retain bacteria depends on their state in the natural milieu. Free bacteria are rare, and Sorokin (1981) showed that 30% to 40% of bacterial plankton form colonies of diameters greater than 4 μm and are thus more easily trapped by the branchial filters of filter-feeders, while the remaining bacteria are associated with suspended particles, particularly organic detritus. Lopez (1980), however, demonstrated the active role played by extracts from the crystalline style of *Mytilus edulis* in detaching bacteria from their substratum. Wiebe and Pomeroy (1972) estimate that 2.8×10^6 bacteria per ml would be required to support filter-feeder metabolisms, while Prieur (1981) found that the maintenance ration for a juvenile *Mytilus edulis* should be 1.33×10^6 cells per ml. Such figures may be found in estuaries.
(Goulder, 1976; Héral and Prou, 1980), but they are neither constant nor current in natural environments (Prieur, 1981). For adult molluscs, therefore, bacteria appear to be only a complementary ration. The same is true for yeasts, and Epifania (1979), comparing diets with varying proportions of phytoplankton and yeasts, showed that juvenile Argopecten irradians, Mercenaria mercenaria and Mytilus edulis show good growth with a mixture containing 50% yeast. For Crassostrea virginica, on the contrary, any increase in the percentage of yeast in diets causes a drop in the growth of meat. Urban and Langdon (1984), working with the same species, confirm that growth in oysters fed with algae-yeast mixtures depends mainly on the quantity of phytoplankton.

Suspended organic matter

Non-living matter may be estimated on the basis of particulate carbon and nitrogen, from which has been subtracted the quantity of carbon and nitrogen of recent phytoplankton origin, as represented by the total amount of chlorophyll a and phaeopigments. The remainder thus obtained is multiplied by a caloric coefficient different from that of the plankton, which would overestimate the energy content (Héral et al., 1980). Bernard (1974) proposed 4 cal mg⁻¹ of carbon, while Kenchington (1970) found a coefficient of 2.7 cal mg⁻¹ of carbon for detritus, Parsons (1963) 5.8 cal mg⁻¹ of carbon and Héral et al. (1980) a coefficient of 2.6 cal mg⁻¹. An estimate is thus obtained of the organic carbon of the non-chlorophyllian tripton representing detritus.

Accordingly to Widdows et al. (1979), the sum of the biochemical constituents of organic matter represents an estimate of the potential food for a filter-feeding mollusc. The resulting protides, fats and carbohydrates are multiplied by caloric conversion coefficients described by Brody (1945), which are 5.65 cal.mg⁻¹, 9.45 cal.mg⁻¹ and 4.10 cal.mg⁻¹ respectively. As for organic carbon content, Telek and Marshall (1974) showed that inorganic carbonates may produce an interference as great as 30% in CHN measuring when samples are rich in highly-carbonated mineral sestons. Héral et al. (1980) reported on the difference between the results of measuring organic carbon by combustion at 900°C and those for organic seston burned at 400°C. The same authors demonstrated that potential food (the sum of protides, fats and carbohydrates) represented only 2.6% of total seston, 16.6% of organic seston and 24.3% of organic matter as determined by CHN. This agrees with the results of several earlier studies (Menzel and Ryther, 1970; Helm-Hansen, 1972; Strickland, 1972; Widdows et al., 1979), which showed that a large proportion of particulate organic matter resists biochemical analysis, while molluscs apparently proportionately use only these reactive forms (Widdows et al., 1979). Notwithstanding the use of coefficients representing two times less energy than those for live plankton, potential food energy represents only an average of 50% of the calories calculated on the basis of organic carbon. The remaining 50% are linked to structural elements that are difficult to account for with biochemical analyses.

Use of detritus by molluscs may take place in two ways (Berry and Schleyer, 1983), either only the microorganisms attached to the detritus are digested and the non-digestible detritus rejected intact in the faeces and replaced in suspension where they may be recolonized by bacteria (Newell, 1965; Darnell, 1964; Odum, 1971), or part of the detritus is digested along with the associated bacteria (Adams and Angelovic, 1960), since the digestive enzymes of molluscs have the ability to utilize them (Bayne et al., 1976).
which will enable the phytoplankton fraction to be followed in connection with branchial-filter-retention efficiency and mollusc growth. Incze et al. (1980) found a direct relationship between nannoplankton smaller than 20 μm and the growth of *Mytilus edulis*, whereas Lassus et al. (comm. pers.), working in the Leucate pond, proved that a chrysophyceae 2 to 3 μm long at 3.2×10^6 cells per litre caused oysters to lose weight and even starve to death.

<table>
<thead>
<tr>
<th>Location</th>
<th>Chlorophyll a</th>
<th>Phaeopigments $\mu g.l^{-1}$</th>
<th>\sum_{-1}</th>
<th>% chlorophyll a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brest Harbour</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station 5 RNO</td>
<td>m 2.14</td>
<td>m 0.53</td>
<td>2.67</td>
<td>80.1</td>
</tr>
<tr>
<td></td>
<td>max 9.17</td>
<td>max 0.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gulf of Morbihan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station 4 RNO</td>
<td>m 1.10</td>
<td>m 1.47</td>
<td>2.57</td>
<td>42.8</td>
</tr>
<tr>
<td></td>
<td>max 4.20</td>
<td>max 2.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marennes-Oléron</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station 3 RNO</td>
<td>m 2.35</td>
<td>m 4.25</td>
<td>6.60</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>max 10.08</td>
<td>max 12.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arcachon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station 3 RNO</td>
<td>m 1.04</td>
<td>m 2.04</td>
<td>3.08</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>max 1.6</td>
<td>max 6.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thau</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station 3 RNO</td>
<td>m 1.19</td>
<td>m 0.77</td>
<td>1.98</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>max 4.00</td>
<td>max 1.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ria de Arosa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tenore & Gonzales (1976)</td>
<td>m 7.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>max 40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lynher Estuary</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Widdows et al. (1979)</td>
<td>m 1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>max 4.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natal, South Africa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schleyer (1981)</td>
<td>m 2.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>max 3.88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>oyster claires</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robert (1982)</td>
<td>m 5.12</td>
<td>m 4</td>
<td>9.12</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>max 20</td>
<td>max 0.98</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Phytoplankton biomass estimated according to chlorophyll a and phaeopigment contents in selected mollusc-rearing areas

A number of experimental studies of mollusc nutrition have been undertaken to get a better idea of the action of phytoplankton and the quantities of phytoplankton molluscs need for growth, reproduction and metabolism. Walne (1970) showed that a great many algae (19) may form the basis for feeding juveniles of *Ostreus, Mercenaria* and *Mytilus*. This author later demonstrated (Walne, 1974) that mollusc growth is obtained more rapidly using a mixture of 3 algae rather than one or two algae alone. During a number of experiments being carried out in hatcheries, it became apparent that some algae, when found alone, did not cause any growth. Epifanio (1979), working on 15 diets based on 4 algae, found that size and weight increase were not correlated with total chemical composition nor with amino acid composition, but rather depended on the rate and speed of digestibility of an alga based on its anatomy (theca) as well as concentrations of it in stomach contents (Romberger and Epifanio, 1981). Epifanio et al. (1976) nevertheless also showed that *Thalassomia pseudonana* alone can support growth of...
If we compare the various energy values found by different authors (Table 2), we may observe a certain consistency in the caloric content found in different ecosystems.

<table>
<thead>
<tr>
<th>Location</th>
<th>Author</th>
<th>Energy Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>False Bay S.A.</td>
<td>Griffith (1980)</td>
<td>6.1 KJ g⁻¹ ash-free seston</td>
</tr>
<tr>
<td>Linher Estuary G.B.</td>
<td>Widdows et al. (1978)</td>
<td>23.6 KJ g⁻¹ protides, lipids, glucides</td>
</tr>
<tr>
<td>Ori Reef S.A.</td>
<td>Berry and Schleyer (1983)</td>
<td>19 KJ g⁻¹ ash-free seston</td>
</tr>
<tr>
<td>Marennes-Oléron</td>
<td>Héral et al. (1980)</td>
<td>0.5 KJ g⁻¹ seston</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.6 KJ g⁻¹ ash-free seston</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21 KJ g⁻¹ protides, lipids, glucides</td>
</tr>
</tbody>
</table>

Table 2: Energy values of 1 g of seston in selected shellfish ecosystems

- Phytoplankton

Phytoplankton contents follow a seasonal cycle that depends on temperature and on factors that control phytoplankton growth, in particular nitrates and phosphates. Phytoplankton biomasses may be followed by measuring chlorophyll or ATP, as well as by counting the number of phytoplankton cells. The most commonly used data are chlorophyll counts. Biomasses vary from year to year at a given site, depending on inflow from estuaries, and may also vary from bay to bay (Table 3). It may be noted that areas of intensive mollusc culture show high phaeopigment contents, only 30% of the chlorophyll being active. From a methodological standpoint, this grazing action by molluscs means that phaeopigments must be carefully separated from chlorophylls. It may also be seen that, in areas where mollusc-rearing is the most intensive (Marennes-Oléron, Ria de Arosa), the highest phytoplankton biomasses are found.

It should be borne in mind that, in these coastal environments, the microphytobenthic biomass is from 2 to 25 times greater than the phytoplankton biomass (Zanette, 1980; Robert, 1982), and that any strong tidal currents or severe weather conditions will replace this surface film in suspension, thus making it available to filter-feeding molluscs.

To translate phytoplankton biomass into the energy equivalent, most authors use the factor Organic C = 60 chlorophyll a (Strickland, 1960), and then apply the average K-factor of 11.4 cal mg⁻¹ of organic carbon (Platt and Irvin, 1973). The same type of conversion may be applied to phaeopigments, since, although they represent cells that are in the process of breaking down (Héral et al., 1983), they may have the same nutritive value. It is desirable to study these phytoplankton biomasses according to their size and separate nannoplankton, at 3 µ to 20 µ, from phytoplankton at 20-100 µ and 100-250 µ,
Mercenaria mercenaria, and Flaak and Epifanio (1978) again used this alga, produced in different cultural conditions, with varying sizes and biochemical composition. These authors showed that Crassostrea virginica grows more rapidly with a culture medium that is richer in carbohydrates than in proteins. In parallel with these nutrition studies, work was done on an approach to use by molluscs of natural phytoplankton populations, and Héral et al. (1982) showed evidence for consumption of natural populations by Ruditapes philippinarum, while Nedhif (1984) described the exhaustion of phytoplankton in basins where this clam was being reared. Zanette and Garnier (1981) gradually eliminated the phytoplankton in claires by increasing the density of cultivated Crassostrea gigas, with oyster growth depending on the quantity of phytoplankton consumed.

- Energy balance

If we wish to establish the relation between quantity of food, whether dissolved or particulate, and the energy requirements of molluscs, it must be borne in mind that water masses are in constant movement due to currents flowing over culture areas, and thus bring in a flow of food that will depend on the speed with which the water mass moves. Héral et al. (1983) used the following formula to express this:

\[X = \sum_{i=1}^{n} x_i \cdot c_i \cdot T \cdot h \]

where:
- \(X \) is the quantity of energy per m\(^2\) and per day of the water column
- \(x_i \) is the quantity of energy in Kcal or Kjoules per m\(^3\) of a sampling from a tidal cycle
- \(c_i \) is the instantaneous current at sampling
- \(n \) is the number of the sample
- \(T \) is the immersion time of the oyster population
- \(h \) is the height of water

This formula considers that the mollusc population feeds in a permanent manner during immersion, but many physiological studies have shown that molluscs adapt to discontinuous feeding, either due to immersion or imposed by feeding and digestion cycles (Langton and Gabbott, 1974; Owen, 1974). Langton and McKay (1976) obtained growth in Crassostrea gigas by adding food discontinuously, with 6 hours with food and 6 hours without. Higgins (1980) showed that Crassostrea virginica seems to be able to detect food levels, and that the quantity of food filtered depends directly upon the time the oysters are exposed to the food. Similarly, Epifanio and Ewart (1977) demonstrated periods of active filtration and periods of quiescence in Crassostrea virginica. Copello (1982) observed Crassostrea gigas to have a filtration rhythm that was synchronized with the tidal cycle. According to Morton (1970, 1977, 1983) and Langton and Gabbott (1974), tidal rhythm controls the crystalline style of Ostrea edulis and Crassostrea gigas, causing the crystalline style to dissolve after arrival of food with the rising tide, the substances ingested being digested extra- and intra-cellularly in a cyclical manner depending on the various enzymatic activities related to digestion (Boucaud-Camou et al., 1985). The rhythmic character of digestion thus appears to be a fact, but filtration could remain constant during the period of immersion for intertidal populations. It must, however, be determine what happens during neap tide periods or in tide-less waters, and whether filtration activity is cyclical. If this is the case, the equation above must be modified using a factor based on the duration of feeding.
Figure 8: Annual energy flow between a 0.1 m water column transiting at a current of 0.3 m/s and a population of grown oysters at a density of 200 individuals/m² (after Héral et al., 1983, and Deslous-Paoli and Héral, 1984).
The relationship between this quantity of available energy and the energy balance of a population of *Crassostrea gigas* was established by Héral et al., 1983, and Deslous-Paoli and Héral, 1984). The energy flow between a water column and the energy balance of 1 m² of *Crassostrea gigas* under culture represents only 0.1% to 0.5% of the energy of the water column used by the oysters at an average current of 1 m s⁻¹. If we compare the percentage of phytoplankton use by bivalves at constant current for a constant biomass, it will be seen that, according to various authors, 13% to 90% of the chlorophyll a is filtered by the molluscs, depending mainly on the type of culture (on-ground or suspended).

The production capacity of a sector thus depends on the quantity of food available and mainly on current velocity (instantaneous velocity), but also on the general circulation of water masses in a basin, permitting the water volume used by the molluscs to be changed. This work, which includes a physical model of water mass circulation in a basin combined with a biological model of food consumption, has not yet been published.

<table>
<thead>
<tr>
<th>authors + site</th>
<th>species</th>
<th>% of chlorophyll a retained</th>
<th>% retention per m² for current of 1 m/s with dry biomass of 1 kg</th>
<th>% retention per m³ for current of 1 m/s with dry biomass of 1 kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Héral et al. (1983) Marennes-Oléron (France)</td>
<td>C. gigas adult 261 g</td>
<td>0.1 m</td>
<td>2.4%</td>
<td>0.7 m/s</td>
</tr>
<tr>
<td>Deslous-Paoli and Héral (1984) Marennes-Oléron (France)</td>
<td>C. gigas juvenile 65 g</td>
<td>0.1 m</td>
<td>1.5%</td>
<td>0.7 m/s</td>
</tr>
<tr>
<td>recalculated after Cabanas et al. (1979) Ria de Arosa (Spain)</td>
<td>M. edulis 2 yr 13 250 g</td>
<td>8 m</td>
<td>60%</td>
<td>0.05 m/s</td>
</tr>
<tr>
<td>Recalculated after Rodhouse et al. (1985) Ireland</td>
<td>M. edulis 2 yr 20 000 g</td>
<td>10 m</td>
<td>47%</td>
<td>0.1 m/s</td>
</tr>
</tbody>
</table>

Table 4: Percentage of phytoplankton retained by oysters and mussels in selected ecosystems for 1 m s⁻¹ current and dry biomass of 1 kg

Apart from the specific model-building problems involved, construction of this model brought with it a number of problems with respect to estimating the carrying capacity of ecosystems.

a) taking into account the food regeneration rate: primary phytoplankton and bacteria production during residual movement of water masses,
b) recycling and reutilization of organic matter from faeces and pseudo-faeces,

c) measurement of biomasses and production over the entire sector under study, which underlies an appropriate sampling strategy, with in particular constant measurements to the limits of the model of the phytoplankton biomass with variations according to day, tides and inflow from estuaries.

Data published to date on the carrying capacity of rearing basins are often more precise as concerns the energy requirements of molluscs, but are still somewhat sketchy with respect to the quantity of food available, with only a few stations normally being studied on a monthly basis. There is considerable trophic variability in these coastal environments, and daily variations in tidal seas is often greater than seasonal variation for a number of parameters. Sampling spread out over a large number of stations makes it possible to assigned to each bay sector a different nutritive value, which is of course well known to operators. Thus any general observations on trophic relations must be obtained through sampling of the characteristics of each bay over a period of time and at various locations.

To conclude this rapid overview of the state of research on determining the trophic value of ecosystems for mollusc production, we may propose the following recommendations:

- improve strategies for sampling nutrients,
- include in energy balance calculations the contribution of nitrogenated and carbonated dissolved organic substances,
- greatly increase the number of current measurements and the number of physical models of residual circulation of water masses,
- examine the recycling of bio-deposited organic matter by molluscs being cultivated,
- seek to develop continuous measurement of phytoplankton biomasses (fluorimeter) and primary production (DC:MU)
- develop studies of phytoplankton biomasses according to particle size, with emphasis on nannoplankton,
- increase measurements of in situ consumption rates in ecosystems with weak current regimes.

REFERENCES

BERNARD F.R., 1974. Annual biodeposition and gross energy budget of mature Pacific oysters,

BODDY A., PLANTE-CUNNY M.R., 1984. Relations entre l'évolution saisonnière des populations de palourdes (Ruditapes decussatus) et celles des microphytes benthiques et planctoniques (Golfe de Fos, France) 	extit{Hallotrig}. 14 : 71 - 78.

HAMITON R.D., HOLM-HANSEN O., 1967. Adenosine triphosphate content of marine bacteria. Limno-
Oceanogr. 12 (12) : 319 - 324.

HAMON P.Y., 1983. Croissance de la moule Mytilus galloprovincialis (Lmk) dans l'étang de Thau :
estimation des stocks de mollusques en élevage. Thèse d'Etat Université des Sciences
Et Technique du Languedoc. 331 p.

HARGAINE J.T., PEER D.L., 1973. Comparison of benthic biomass with depth and primary production
in some Canadian east coast inshore waters. Note ICES K : 8, 14 p.

HERAL M., PROU J., 1980. Étude de la biomasse bactérienne dans le bassin de Marennes-Oléron. Note
au CIEM L : 44, 14 p.

dans les eaux du bassin de Marennes-Oléron : apport énergétique pour la nutrition de

ta croissance de Ruditapes philippinarum dans 4 nurseries de production en Charente-Maritime
(France). Note au CIEM, F : 27, 15 p.

gigas et la nourriture potentielle disponible dans un bassin ostréicole : premières

biotiques et abiotiques de l'eau et de l'interface eau-sédiment intervenant dans la

pression).

HIGGINS P.J., 1980. Effects of food availability on the valve movements and feeding behavior of
juvenile Crassostrella virginica (Gmelin). II : Feeding rates and behavior. J. exp. mar.

HOLM-HANSEN O., 1972. The distribution and chemical composition of particulate material in marine

and seston on growth and mortality of Mytilus edulis in a temperature northern

JØRGENSEN C.B., 1982. Uptake of dissolved amino acids from natural sea water in the mussel

JØRGENSEN C.B., 1983. Patterns of uptake of dissolved amino acids in mussels (Mytilus edulis),

series 15 : 283 - 292.

