Development and validation of DNA-based diagnostic techniques with particular reference to bivalve mollusc pathogens

Franck C. J. Berthe

IFREMER, Laboratoire de Génétique et Pathologie, Station de La Tremblade BP 133, 17 390, Ronce les Bains, France

Introduction

The International Aquatic Animal Health Code of the OIE (the World Organisation for Animal Health) includes serious pathogens that have been causing important losses in the mollusc aquaculture industry throughout the world. This list also meets the ones established by the European Union regulation (Apex B of Directive 91/676/EC, Apex B of Directive 92/70/EC). In fact, one of the very few ways to reduce the impact of such pathogens on commercially exploited molluscs is to establish effective programmes to prevent the transfer of infected stocks. Consequently, an area where molluscs are infected with any of these pathogens should not be allowed to export into another area free of this pathogen. Obviously, both country imports and abnormal mortality outbreaks in mollusc stocks should be examined for the presence of listed pathogens. This includes the detection of exotic diseases as well as emerging diseases. As a matter of fact, the effective control of diseases of bivalve molluscs requires an access to diagnostic tests that are rapid, reliable, accurate and sensitive. Techniques applicable to mollusc pathogens are limited and most investigations are based on histological and ultrastructural examinations. Arising from this, the development of molecular diagnostic tools will probably be one of the most important areas for research in the near future.

Potential detrimental consequences of transfers of molluscs and the need of accurate diagnostic tools

There are very few ways to limit the detrimental effect of mollusc pathogens. Molluscs are usually reared in the open sea and this strongly limits the use of chemotherapy, because of the quantity required and the consequent impact on the environment. On the other hand, vaccination is also limited, due to the fact that molluscs do not produce antibodies. Consequently, one of the few methods of controlling mollusc diseases is likely to be the establishment of effective programmes to prevent the transfer of infected stocks. This is of utmost importance if we consider that the introduction of molluscs from other geographic areas for aquaculture has frequently resulted in the introduction of devastating pathogens in native stocks. The risk associated with transfers of molluscs is particularly serious when they occur over long distances or overseas. Unforeseen dramatic consequences, due to pathogens described as being of no concern, may result from exposure of a naïve population. For example, in the early 1970s, the Portuguese oyster, Crassostrea angulata, was dramatically affected by an iridovirus (Martel, 1976). It has been speculated that uncontrolled transfer of Crassostrea gigas introduced this iridovirus to C. angulata, which was highly susceptible. Crassostrea angulata and C. gigas are two taxa of the same species (Boudry et al., 1998).

Another example of particular interest is Bonamia ostreae, which, in 1979, dramatically affected the flat oyster (O. edulis) industry in France (Pichot et al., 1979). This pathogen rapidly spread to almost all oyster farming areas in Europe, including Spain, Netherlands, Ireland and United Kingdom (Van Banning, 1982; Banister and Key 1982; Polanco et al., 1984; McArdle et al., 1991). A microciliate disease similar to bonamiosis was also described in California in the 1960s and was known to occur in several populations of flat oysters from the western coast of North America (Elston et al., 1986). Bonamia ostreae was later identified as the causative agent of this disease on the basis of host susceptibility and ultrastructural characteristics. Moreover, the use of monoclonal antibodies

64
demonstrated no antigenic differences between *B. ostreae* isolates originating from Europe and the USA (Milhau et al., 1983). More recently, bonamiosis was recorded from the east coast of the USA, New Meadows River, Quabog Bay and Damariscotta River (Barber and Davis, 1994; Friedman and Perkins, 1994). These results and historical commercial records lead to the hypothesis that the Californian microccol disease was actually bonamiosis and that bonamiosis spread from California to Europe because of transfers of *B. ostreae* infected *A. orestes* (Elston et al., 1986; Cigars and Elston, 1997).

Decision makers responsible for supervising translocations of molluscs deal with a high risk situation. Risk analysis prior to transfers should help to minimize this risk. However, a serious limiting factor is a lack of scientific information on even basic biology of mollusc pathogens (Hine, 1996).

Surveillance for mollusc pathogens is routinely performed by histology. This technique is time consuming and dependant of visual observation. In 1998, the Community Reference Laboratory proposed a ring test for the detection of two parasites (*Bonamia ostreae* and *Marteilia refringens*) by means of histology which is currently the standard method. The goal of this proficiency test was to establish that examination of a given sample lead to the same conclusions in any of the eight participating laboratories. The ring test was based on an itinerant collection of stained histological sections of *Ostrea edulis*. Statistical analysis of the results was based on the test of symmetry and kappa coefficient. Significant discordance among the results obtained by participating laboratories was evident from the study. This clearly illustrated the need for training in histological diagnosis, particularly for exotic diseases, and the need for epidemiological surveillance programmes in order to prevent the transfer of diseases. However, using histological methods many pathogens are difficult to detect when present in low numbers.

Recent efforts to overcome these problems have led to the development of immunoassay techniques and nucleic acid-based diagnostic methods. Serological methods for diagnostic purposes obviously cannot be applied to molluscs as they do not produce antibodies. Molecular probes, such as monoclonal antibodies or nucleic acid probes, may be used for direct detection of pathogenic agents. These techniques are expected to find increasing use in routine disease monitoring programs in aquaculture, in field epidemiology and in efforts to prevent the international spread of pathogens. Therefore, it is extremely important to develop, validate and standardize this type of diagnostic technique for major mollusc diseases and pathogens.

Few prerequisites to the development of molecular diagnostic methods

When mortalities occur, various presumptive diagnostic methods can be used in addition to histology. This led us to consider three different levels of investigation which are: i) diagnostic procedures (standard methods for the assessment of a disease free status in a zone); ii) detection procedures (presumptive methods for the quick detection of a suspected pathogen); and iii) confirmatory procedures (methods for the specific identification of an encountered pathogen).

Obviously, the required quality criteria of the selected method depend on the level of investigation for which it is to be used. For example, detection procedures require techniques that are easy to perform (e.g. smears or tissue imprints) or sensitive techniques that usually are based on an amplification step (e.g. culture of the pathogen or polymerase chain reaction: PCR). Choice of technique may then be based on the time required to obtain a result and this can range from few hours to few days. In the case of diagnostic procedures, specificity of the selected methods is obviously the most important criterion. Confirmatory procedures currently in use are ultrastructural observations by transmission electron microscopy. One should say that in the near future, with the increasing use of molecular technics, diagnostic procedures will increasingly be confirmatory.

65
Increased sensitivity is often used as an argument for the use of new diagnostic methods. However, we should stress here that sampling strategy is of a central importance to ensure detection of a pathogen whatever detection method is used. The timing and frequency of sampling should be determined by the cycle of infection and pre-patent period. Also, the intensity of infection may increase following spawning due to loss of host condition and therefore molluscs should be sampled post-spawning. The recommended sample size for each sampling day is 150 for a sufficient number to ensure detection at a 95% confidence level of pathogens at a prevalence of 2%. However, if molluscs are to be moved from natural beds onto a farm site or between natural beds in different zones, large numbers of molluscs must be sampled because of low parasite prevalence. In Western Australia, Perkinsus sp. occurs in isolated beds sometimes at very low prevalences (Hines, 1995). However, the probability of detecting an infection may be increased by holding the molluscs in quarantine for a long period, subjecting them to stress and examination of cohabitant species of molluscs that are highly susceptible to the infection. The use of PCR could help in such situations. However, widely recognized limitations of PCR methods include the false-positive results (due to inhibiting substances in marine organisms, lack of target organs, pre-patent periods, etc) and false positive results (cross-reaction with closely related organisms, laboratory contamination of samples, etc). This leads us to consider specificity as one of the main input of molecular diagnostic methods currently developed.

The problem of specificity in pathogen diagnosis is clearly illustrated by difficulties in differentiating Marteilia species. In Europe, Marteilia refringens has been observed in Ostrea edulis (Grizez et al., 1974) and also in Mytilus edulis and M. galloprovincialis (Tigch and Raimond, 1976; Claver-Derqui, 1990; Villalta et al., 1993). However, Marteilia maurini has also been described in both Mytilus edulis and M. galloprovincialis from France (Camps et al., 1982; Auffret and Potier, 1985). In spite of numerous papers published on the genus Marteilia, the question of taxonomic relationships of these species remains unsolved. Differential diagnosis of M. refringens and M. maurini was based on ultrastructural characteristics and host specifically (Grizez et al., 1974; Camps et al., 1982) but host specificity was discarded when M. refringens was described in Mytilus galloprovincialis. Indeed, the species parasitizing mussels may not be truly different from M. refringens. Recently, the small subunit of the rRNA gene was sequenced and sequences confirmed that both Ostrea edulis and Mytilus edulis are hosts of M. refringens (Bertle et al., 1999). Current work is directed towards establishing the existing species among the genus Marteilia. Clarification of taxonomy of the targeted pathogens is of a central importance but is often underestimated as a problem in diagnosis.

Perkinsus atlanticus is another well documented example of data gap in the field of taxonomy prior to the development of molecular tools. This organism is known to occur in both Europe (Azevedo, 1989) and Asia (Haraguchi et al., 1998). In fact, more than 50 species of molluscs may harbour Perkinsus species from temperate to tropical waters of the Atlantic and Pacific oceans and Mediterranean Sea, apparently without harmful effect. Nucleotide sequence analysis of the internal transcribed spacers (ITS) of the ribosomal gene cluster (rDNA) has indicated that the Australian organism P. olseni is probably conspecific with Perkinsus atlanticus (Coggins, 1994). Taking this into account, the geographical distribution of the mollusc pathogen P. olseni could be wider than currently accepted. This should be urgently investigated because of the obvious consequences of such considerations.

In summary, we would like to pinpoint the need of adequacy of the methods to be developed and validated, as well as the absolute need of a clear taxonomy of pathogens under consideration.

Development of DNA-based methods for the detection of mollusc pathogens: the example of Marteilia refringens

In a preliminary study, the 18S gene of M. refringens was sequenced (Bertle et al., 1999). Apart of clarifying the controversial taxonomy of Marteilia refringens and its relatives, this gene is interesting from a detection point of view because it is present in a high copy number in the genome, and so provides increased sensitivity of detection when targeted. Furthermore, it contains conserved and non-conserved regions interspersed in the sequence which allows the design of universal and specific PCR primers.
After alignment of the *Martelia refringens* rDNA SSU sequence with various eukaryotic organisms, PCR primers were designed (Le Roux et al., 1999). Specific primers were used to amplify DNA extracted from purified *Martelia refringens* and infected hosts. The detection was also possible from paraffin-embedded tissues which is a frequent source of biological material in the field of mollusc pathology. The specificity of amplified fragments was confirmed by Southern blotting with an oligoprobe. Furthermore, the sensitivity of the detection was increased by this method. In brief, the designed primers allow rapid and specific screening of numerous samples from different sources for the presence of *Martelia refringens* with a good sensitivity.

Universal primers provide an internal control for amplification experiments. Working with marine organisms, such an internal control of the PCR reaction is of a central importance as the reaction efficiency depends on various parameters including the presence of inhibitory factors and the quality and quantity of targeted DNA. In the present study, universal primers were designed and successfully used to amplify DNA from both *Martelia refringens* and its hosts. These primers should be included in further use of PCR for *M. refringens* detection.

For *in situ* hybridization, four probes were tested by Northern blotting for the specific detection of 18S RNA isolated from *Martelia refringens* and other eukaryotic cells. The most specific probe was used successfully to detect *Martelia refringens* by *in situ* hybridization. The selected probe produced consistent strong reactions when used for *Martelia refringens*-infected *Ostrea edulis* and *Mytilus edulis*, as well as for *Martelia maurini*-infected *Mytilus galloprovincialis*. A similar result was obtained with *Martelia sydneyi* in *Saccostrea commercialis*. However, no cross-reaction was noted when the probe was tested against *Martellosia chungmuensis* in *Crassostrea gigas*. It was concluded that the sequence of Smart 2 is shared partially, if not completely, by *Martelia spp*.

Similarly, specific primers designed from the 18S sequence of *Martelia refringens* led to the amplification of specific fragment from European *Martelia*-infected bivalves. No amplification was obtained when *M. sydneyi* DNA was targeted. Although the taxonomic relationships among the European species are not clearly established, PCR could be used to specificity discriminate *Martelia refringens* from *M. sydneyi*.

Repeatability and reproducibility were successfully tested. A study was commenced to validate the *in situ* hybridization as a confirmatory method. Oysters originating from three different European zones (gullied infected originating from Marennes-Oléron, France (n = 200); medium infection front Brittany, France (n = 200); and free of *martelliosis* (n = 200) originating from Lake Grevelingen, Netherlands) were processed by this method and compared with classical histology which is considered to be the standard method. Statistical analysis indicated a strong validation of the *in situ* hybridization method for the detection of *Martelia refringens*. However, most of these results were obtained on laboratory material stored in good condition, small size samples and were conducted by trained staff. Further work is underway in our laboratory to further validate these tools.

Potential use of these new diagnostic tools

The results presented here clearly demonstrate the growing interest in molecular methods. However, in the case of molluscs, histology provides a large amount of information and should be used initially, before and beside any other type of examination. It is particularly important because macroscopic examination usually gives no pathognomonic signs. Also, mortality may be due to several pathogens, or loss of condition following spawning, and this can only be determined by histology.

In the case of *Martelia refringens*, it is possible to recommend selected methods for the three different levels of investigation described above. The detection of *Martelia refringens* by *in situ* hybridization could be used in addition to classical histological examination as a confirmatory method at the genus level. Histology and *in situ* hybridization can thus be used as a two step diagnostic procedure, and
could become a standard method for the assessment of a disease-free status in a zone. Detection procedures that require presumptive methods for rapid detection of a suspected pathogen could be conducted by using digestive gland imprints. It is very important to keep in mind the multiple advantages of such a method (which can be applied in the course of sample preparation for histology) as it is cheap and provides an immediate answer. PCR tests, because of their specificity, could be proposed for the specific identification of encountered pathogens at a confirmatory procedure. However, standardization of protocols, including negative and positive controls, is required. Compared to transmission electron microscopy (the currently used confirmatory procedure), PCR provides a quick and specific answer.

In the near future, the number and diversity of available methods should increase. In the case of Marteilia spp., oligonucleotides targeting the ITS region have been developed and should be used for diagnostic purposes at a species level. Similarly, the sequencing of this region of the ribosomal gene cluster is currently demonstrating the possible existence of different toxins within the species. Further development in the knowledge of these parasites could lead to an increasing number of molecular methods at different levels of specificity (i.e., genus, species and strain). These could include techniques such as restriction fragment length polymorphism (RFLP) and reverse-biotin PCR.

At a national and regional level, reference laboratories will provide sequences of primers and oligonucleotides to be used. The role of these laboratories in the validation of molecular reagents as diagnostic tools is obvious. Furthermore, these laboratories will have a growing responsibility in providing standardized protocols including positive and negative controls. Proficiency evaluations such as ring tests should also be organized for these diagnostic procedures in order to avoid misinterpretation of results.

It should be said here that some of the DNA-based methods presented in this paper were aiming the study of life-cycle of Marteilia refringens which may include intermediate hosts or free-living stages (Berthe et al., 1998). With similar goals, a number of research laboratories are already engaged in developing DNA-based diagnostic techniques for mollusc pathogens. Therefore, several new diagnostic tools for mollusc diseases should be available in the future.

Another potential use of molecular diagnostic tools is for detection of Haplosporidium nelsoni, one of the causative agents of Haplosporidiosis - a disease of eastern oyster (Crassostrea virginica). A parasite morphologically similar to H. nelsoni was described from the Pacific oyster (Crassostrea gigas) on the west coast of the USA (Friedman et al., 1991). This parasite was identified as H. nelsoni by the use a specific DNA probe (Stokes and Burrellson, 1995). Furthermore, some of the C. gigas stocks were traced back to Japan where the examination of native C. gigas, demonstrated infection by a Haplosporidium sp. indistinguishable from H. nelsoni described in C. gigas from the USA (Friedman, 1996). A M. thraustochytrae nelsoni has also been known to occur in C. gigas in Korea since the mid-1970s (Kern, 1976). In France, several authors have reported the occurrence Haplosporidium spp. in several species of mussels (Bonami et al., 1985; Chagot et al., 1987; Coste and Pichot, 1991). There is some confusion in the taxonomic relationship of the two pathogens H. nelsoni and H. costae. This should be investigated in the near future. This example illustrates an unforeseen consequence of the use of DNA probes and reveals how taxonomy is an underestimated key point in mollusc pathology.

Acknowledgements

Work reported in this paper was partly conducted as a cooperative project - MARS - funded by the FAIR programme, and by the Community Reference Laboratory for mollusc diseases (Ifneret La Tremblade) with the financial assistance of the EU DG VI.

70