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Abstract:  
 
A method for artificially generating operational sea state histories has been developed. This is a 
distribution free method to simulate bivariate non stationary and non Gaussian random processes. 
This method is applied to the simulation of the bivariate process (Hs, Tp) of sea state parameters. The 
time series respects the physical constraints existing between the significant wave height and the peak 
period. Furthermore, we show that the persistence properties of the simulations match to those of the 
observations.  
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1. Introduction 
 
Many offshore operations are sensitive to the frequent changes in sea conditions that occur 
during operations. Offshore storage and tanker loading efficiency will depend on the frequency, 
intensity and duration of storms. The total time necessary to complete underwater pipelines 
installations or other construction operations will also depend on the sea state conditions over the 
operating period of interest. 
Let us consider a practical application as an example. Suppose that a company has to install an 
underwater pipeline. It is known that this operation needs d days of effective work and h hours to 
prepare the material at each arrival on the site. Furthermore, the operation has to stand by if the 
significant wave height Hs is over the level h or if the peak period Tp belongs to the interval [τinf, 
τsup] (e.g. the wave period is too close to the resonant heave period). Now, the company 
responsible for the installation of the pipeline wants to evaluate the risk of not completing the 
mission by the date of the beginning of the operation. There is an analytical model and no 
analytical response for such a problem. Then, a solution consists of calculating statistical 
predictions given a data set of observations and evaluating the time duration of [Hs<h] and [Tp
[τinf,τsup]] events. 
In nature, the time sequence of sea conditions is random and not usually repeatable. Often, the 
required long-term information can be estimated from observations, but, in this case we can only 
repeat already observed scenarios and the durations are not always sufficient to produce 
statistics with enough accuracy. An alternative to observations is the application of hindcasting 
techniques. However, it requires expensive and time-consuming studies to produce theoretical 
models, and the histories may be biased due to the inadequacies of the models. 
So, we need alternative techniques to describe and predict the pattern of sea conditions for use in 
operational simulation studies. We propose in this paper a method of bivariate simulation for sea-
state parameters such as significant wave height and peak period (Hs, Tp). This method enables 
us to compute a large number of many-years-realisations of the process (Hs, Tp) and then to 
deduce accurate estimations of duration statistics. Sea-state parameters are known as non 
stationary and non Gaussian processes. In the case of sea-state parameters, non stationarity is 
induced by season. During autumn and winter, there are more observed storms and with a higher 
level of severity than those observed during summer. The non Gaussian property is due to the 
definition of the parameters (Hs, Tp). If the artificially generated sea-state histories exhibit 
statistical properties substantially the same as those of the observed data, they can be used as a 
substitute for real long-term observations for estimating the feasibility of offshore operations in 
areas where no sufficiently long experience exists. 
Several authors have been worked on the problem of the modelisation and simulation of 
processes Hs and Tp. For instance, Stefanokos [8] proposes a model based on time series. Some 
authors have developed simulation methods based on Markov chains models particularly for the 
study of mean storm durations [1 and 4]. Scheffner and Borgman [7] and Walton and Borgman [7] 
describe a simulation method (cited in this paper as Borgman's method) that uses the empirical 
marginal distribution of probability of the observed parameters. Derval [3] has adapted Borgman's 
method to bivariate simulation and has implemented it by replacing the empirical distributions of 
probability by parametrical estimations. The large number of observations and the good fitting of 
the sea-state parameters to Gamma distribution may justify her choice of Gamma distributions. 
However, Derval shows, by studying the significant steepness of the sea-state, that the method 
she has used induces a bad approximation of the instantaneous joint distribution of (Hs, Tp). 
The aim of the study presented here is to propose an improvement of the empirical simulation 
method of Borgman. The simulation method described hereafter will enable a better 
approximation of the joint instantaneous distribution of (Hs, Tp) and it will respect the physical 
constraints existing between variables Hs and Tp (e.g. due to wave breaking, it is not possible to 
observe any sea-states with high Hs and low Tp). The method we propose gives a good enough 
approximation of the joint distribution of probability of the time process (Hs(t),Tp(t))t to retrieve 
some statistical properties of persistence parameters. 
The data which we will use consist of 8 years of measurements of Hs and Tp on the Frigg field in 
the North Sea. The significant wave height Hs and the peak period Tp are computed from 20 min 
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time series of sea surface elevation. Between each 20 min of time series, we have 3 h gap. The 
time series of Hs and Tp obtained from these measurements contains a large number of missing 
data that we will deal with. Fig. 1 presents the records of the significant wave height and the peak 
period for the fourth year. All the blanks correspond to missing data. 
 
 
2. Borgman's method 
 
The method which we will describe here was first proposed by Walton and Borgman [9] for one 
dimensional non stationary and non Gaussian processes and it has been adapted by Derval [3] 
for bivariate processes in a simple way. The method consists of two parts: the analysis part 
where the statistical properties of the time processes are estimated and the synthesis part where 
one simulates new time series having the same statistical properties as the observed one. The 
main steps of both parts of Derval's version of Borgman's method are described hereafter. 
 

2.1. Analysis part 
The data are first lowpass filtered to determine a time-varying mean and a time-varying variance. 
We then attempt to stationarise the data by removing the mean and variance trends. Let us 
denote Hij as the observations of significant wave height, where j denotes the year of observation 
and i the observation number in year j. We suppose that Hij=σi

(l)Hij
st+mi

(l) where m(l)
i represents the 

time-varied mean, σ(l)
i the time-varied standard deviation and Hst the stationarised significant 

wave height. m(l)
i and >σ(l)i (Fig. 1) are smoothed versions of mi and σi. The mean mi is computed 

as follows for all i: 
(1) 

 
 
where nyears is the number of years of observations and nyears(i) the number of years for which the 
observation i is not missing. Missing values are replaced by zeros. The variance σ2

i is defined by: 
(2) 

 
 
The lowpass filtered mean and variance are defined in the continuous time domain as a 
convolution of the signal (mean or variance) with the standard Gaussian kernel. In practice, it is 
usual to revert to discrete Fourier transform tools. The series of transformed data Hst

ij is a series 
of dependent variables which is supposed to be stationary. A similar transformation is computed 
on the peak periods to obtain the process Tst. In the second step, the stationarised observations 
are transformed by a normal score transformation. 
 
For a stationary process X with marginal distribution function FX, the process Z with standard 
Gaussian marginal distribution function is constructed as follows: 
(3) 
Zi=Φ−1[FX(Xi)] i 
 
where Φ denotes the standard normal distribution function. In practice, an empirical estimation of 
the distribution function FX is used. Let us denote ZH and ZT as the series obtained by the normal 
score transformation respectively for the significant wave height and the peak period. The pair 
(ZH, ZT) is supposed to be Gaussian and the bivariate process (ZH(t),ZT(t))t is supposed to be 
stationary. Then, a smoothed version of bivariate spectrum of (ZH,ZT) is estimated. 
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2.2. Synthesis part 
The smoothed bivariate spectrum of the Gaussian process (ZH, ZT) is used to simulate a new 
version of the Gaussian process. In the following, defines a simulated version of X. 
The inverse normal score transformation is applied to using the following relations to 
obtain  
 

 
 

(4) 
 

 
where FH

st−1 and FT
st−1 denote respectively the empirical estimations of the inverse distribution 

functions of Hst and Tst. 
Finally, the mean and variance trends are restored to simulated and to obtain the 
simulated bivariate process  
 

2.3. Results and discussion 
Now, we will compare several statistical properties of simulations and observations. In Fig. 2 we 
present the marginal distribution of observed and simulated Hs and Tp. We note that the 
simulated marginal distributions closely fit to the observed ones. 
here are essentially three problems in the method described above for bivariate simulation. 
1. The pair obtained after normal score transformation of the stationarised data is clearly not 
Gaussian. We have used a test of normality to verify that the couple (ZH, ZT) obtained after 
elimination of the mean and variance trends and after normal score transformation is not a 
Gaussian pair. The normality test of Lin and Mudholkar [5] has been adapted to two random 
variables. We may observe by simulations that the more the parameter observations Hs and Tp 
are smoothed, the further the couple (ZH, ZT) is from normality. Furthermore, Fig. 5 which 
presents the joint distribution of (ZH, ZT) confirms the non normality: the distribution is not 
symmetric. This is due to the physical relationship between Hs and Tp, which prevents the 
definition domain of (Hs, Tp) being whole R+×R+. 
2. The inverse normal score transformation does not use the information which may be given by 
the joint distribution of (Hs, Tp). In Borgman's method, the inverse normal score transformation is 
done marginally and instantaneously, although the random variables Hst(t) and Tst(t) are 
dependent. Hence, the information on the joint distribution of the process (Hs, Tp) is only brought 
by the simulated bivariate Gaussian process. In Appendix A, we show that the joint distribution of 
significant wave height and peak period is better restored if the Gaussian random variables are 
instantaneous independent. 
3. The hypothesis of stationarity done after the removal of mean and variance trends is not valid 
here. The processes obtained by removing the mean and variance trends are supposed to be 
stationary, although the operation of removing the trends changes the definition domain of the 
variables. For instance, after removing the trend, Hs [0,+∞[ and after Hst

i [mi/σi,+∞[ and this 
interval depends on time. 
In what follows, we propose to adapt Borgman's method to improve the statistical properties of 
the simulated processes. 
 
 
3. Conditional simulation method 
 
We have shown in Borgman's method that the instantaneous marginal distributions of Hs and Tp 
do not give enough information to simulate the pair (Hs, Tp) by failing to respect the physical 
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relationship between both processes. Secondly, in Borgman's method the assumption of 
stationarity of the unseasonal processes generates non physical situations in the simulation. In 
the conditional simulation method proposed below, we will provide solutions to these two points. 
The analysis part of the conditional simulation method (stationarisation, normal score 
transformation, spectral estimation) is the same as in Borgman's method. Then, we simulate a 
bivariate Gaussian process which has the same spectrum as the series of Gaussian variables 
obtained in the analysis part. This process is simulated by applying the method proposed in Ref. 
[9]. 
Our idea to improve the dependence properties of the simulated bivariate process (Hs, Tp) is to 
use the bivariate distribution function of (Hs, Tp) in the inverse normal score transformation 
instead of the product of the marginal distribution function as done by Derval [3]. The simulation 
scheme is given by the Bayes formula as follows: 
(6) 

 
 

 
 
As mentioned earlier, we suppose in Borgman's method that the processes obtained after 
removing the mean and variance trends are stationary, although this assumption is not valid. The 
seasonal parameters being smoothed, they may be approximated by constants on a small 
interval. Furthermore, the definition domain is only depending on the mean and variance trends 
and it can be seen in Fig. 1 that these trends are slow-varying and may be supposed to be 
constant on a small time interval. So that we can assume that the probability law of (Hs(t), Tp(t)) 
is stationary on a small time interval around t. Following this hypothesis, we will use a small set of 
observation points to estimate the conditional distribution functions of Eqs. (6). For instance, 
FH

st(i)−1(.) will be estimated using the points {Hs
st(k,j),k=i−1,…,i+l,h=1,…,nyears}. Numerical tests 

show that we can choose a time interval of 120 h, which corresponds to l=20 observations before 
and after i, for each year. 
Recently, Rychlik et al. [6] have developed a procedure to transform stationary non Gaussian 
data to Gaussian data for univariate processes. We can verify that the inverse normal score 
transformation proposed here for Hs is approximately equal to the transformation g of Rychlik et 
al., before smoothing, based on the level up-crossings of Hs. On the contrary, the transformation 
for the peak period Tp is really irregular, and only the trend of the transformation corresponds to 
the transformation of Rychlik et al. 
 

3.1. Results and discussion 

Let us compare the simulated processes and with the observed ones. We have simulated 
4 years of data, with one point every 3 h. The data files contain a large number of missing data. In 
the cases where only one successive observation is missing, it is replaced by a linear 
interpolation of the neighbour points. In other cases, we have to take care of the missing data in 
the different steps of the method. 
We first compare the marginal properties of Hs and Tp. The histograms obtained from 
observations and simulations (Fig. 6) are sufficiently close that we can say that the simulations 
have the same instantaneous and marginal probability distributions as the observations. The 
mean of up-crossings per unit of time of Hs gives some information about the time dependence of 
the Hs process. Indeed, the frequency of up-crossings depends on Hs and its time derivative. We 
note (Fig. 7) that the mean of up-crossings of levels higher than 4 m are quite well fitted, but we 
observe that the Hs simulated process crosses the low levels between 1 and 3 m too often. The 
same phenomenon is observed in winter and summer. It is due to high frequency oscillations in 
the simulated process. Cutting the very high frequency of the spectra of the Gaussian process 
used for the simulation may reduce these oscillations. 
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One of our main objectives is to predict the duration of sea-states of given levels of significant 
wave height. Fig. 8 gives the probability that a sea-state with Hs higher than 2, 3, 4 and 5 m lasts 
more than time t (in hours). The curves show that the duration properties of the observations are 
well restored in the simulations. For the observations, the results are computed only for the 
completely observed storms (without missing data). 
The simulations must also restore the joint distribution of the pair (Hs, Tp). We compare the 
probability density functions of observed and simulated significant steepness. Fig. 9 presents the 
kernel density estimate of the significant steepness. It is clear that the conditional method that we 
propose improves the results of Borgman's method. Although the observed probability of the high 
levels of steepness is overestimated by the simulations, the definition domains of simulations and 
observations are the same. It means that the physical constraints between the significant wave 
height and the peak period are respected. Finally, Fig. 10 shows that the instantaneous joint 
probability density function of simulated (Hs, Tp) is a good approximation of the observed one. 
Furthermore, we see that the simulations respect the physical constraint between Hs and Tp. The 
whole joint probability is over the breaking-waves limit. 3.2. Example of application 
Let us now consider again the practical application mentioned in the Introduction. Suppose that a 
company has to install an underwater pipeline and that this operation needs 10 days of effective 
work and 2 h for the installation at each arrival on the site. Furthermore, the operation has to be 
stopped if Hs>2 m or 9.5 s<Ts<13 s because this period matches with the heave resonance 
frequency of the boat. After each stop, the installation has to be restarted. Now, the company 
responsible for the operation has to evaluate how much time it will spend to perform it with 
respect to the date of the beginning of the operation. Fig. 11 shows the prediction of the mean 
number of days necessary to complete the mission computed from observations and from 
simulation with respect to the month the operation begins. It is supposed that the operation 
always starts the first day of the month. Observed data contain 9 years of measures recorded on 
the area of Statfjord (Norway) and simulations represent 35 sets of 9 years of the same data. Fig. 
11 shows that it is more convenient to begin the operation during end of winter or spring. The 
results obtained from simulations permit us to associate a confidence interval to the prediction 
computed from the observed data. For instance, we note that the prediction is less precise in 
August than in March. 

 

4. Conclusion 
 
In this paper, we propose a non parametric method to simulate bivariate non stationary and non 
Gaussian processes. This method is applied to generate new time series of the pair (Hs, Tp) for a 
given area where observations have been recorded during several years. The generated series 
do not present the same successions of storm and calm conditions, but they have globally the 
same statistical properties as the observed time series. Then, this method enables us to test the 
influence of different scenarios of the time evolution of the sea-state for many applications. An 
example is proposed. 
The described method has been tested on only one record of (Hs, Tp), but it has been verified that 
the results are similar on other series of observations. 
Several statistical properties of simulated and observed processes are compared and it is shown 
that the conditional method of simulation clearly improves its precedent version called here 
Borgman's method. In particular, it is important to note that the conditional method of simulation 
enables us to well restore the instantaneous joint distribution of the significant wave height and 
the peak period by respecting the physical relationship existing between these parameters. 
Furthermore, we show that the simulated processes give a good approximation of statistics of 
duration such as the persistence of storm of given severity. 
The conditional method is a non parametrical method of simulation. It means that the number of 
the observations, used as ‘model’ of simulation, should be large enough. One of the deficiencies 
of this method is that it is difficult to include long-term trends such as the elevation of the mean 
sea level in the simulations. To take into account such trends, we should write a semi-parametric 
model. 
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Appendix A. Inverse normal score transformation 
 
Let (U, V) denote a pair of standard Gaussian random variables and (X, Y) a couple obtained by 
inverse normal score transformation of (U, V). Let pX,Y denote a given probability density function 
and FX,Y the associated distribution function. The Bayes formula gives: 
pX,Y(x,y)=pX(x)pY|X(y,x) 
 
FX,Y(x,y)=FX(x)FY|X(y,x) 
where pY|X and FY|X, respectively, denote the conditional probability density and distribution 
functions. We use standard notation Φ for the normal distribution function. 
The inverse normal score transformation is equivalent to the following transformation: 

 
 
For this (X, Y), we have for all integrable functions h: 
 
E[h(X,Y)]=∫h(FX

−1(Φ(u)),FY|X
−1(Φ(v),(FX

−1(Φ(u))))pU,V(u,v)dudv=∫h(x,y)pU,V(Φ−1(FX(x)),Φ−1(FY|X(y,x)))
(Φ−1)′(FX(x))(Φ−1)′FY|X(y,x)pX(x)pY|X(y,x)dxdy 
 
If U and V are independent random variables, we can verify that 

 
We deduce that 
 
E[h(X,Y)]=∫h(x,y)pX,Y(x,y)dxdy 
 
such that the probability law of (X, Y) has pX,Y for probability density function. 
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Figures 
 

 
 

Fig. 1. Observations of Hs and Tp for the fourth year of measure with the smoothed mean trend 
and the smoothed mean trend plus and minus the R.M.S. trend. 
 
 
 

 
 

Fig. 2. Probability density functions of Hs and Tp for Borgman's method. Observations (continuous 
line) and simulations (dashed line). 
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Fig. 3. Probability density functions of significant steepness for Borgman's method. Observations 
(continuous line) and simulations (dashed line). 
 
 

 
 

Fig. 4. Joint distribution functions of Tp with respect to Hs for Borgman's method: (a) observations; 
(b) simulations. The dashed line represents the limit of breaking-waves. 
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Fig. 5. Joint distribution of pair observed by normal score transformation in Borgman's method. 
 
 
 
 
 

 
 

Fig. 6. Probability density functions of Hs and Tp for conditional method observations (continuous 
line) and simulations (dashed line). 
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Fig. 7. Frequency of up-crossings for Hs in winter and in summer. Observations (continuous line) 
and simulations (dashed line). 
 
 
 

 
 

Fig. 8. Probability that a the duration of a storm of given severity level is more than time t. 
Observations (continuous line) and simulations (dashed line). 
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Fig. 9. Distribution of significant steepness for conditional method. Observations (continuous line) 
and simulations (dashed line). 
 
 
 

 
 

Fig. 10. Joint distribution functions of Tp with respect to Hs for conditional method: (a) 
observations; (b) simulations. The dashed line represents the limit of breaking-waves. 
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Fig. 11. Mean number of days necessary to perform an offshore operation of 10 days, supposing 
that Hs has to be lower than 2 m and Tp greater than 13 s or lower than 9.5 s. Prediction 
computed from observed data (circles), prediction computed from simulation (points). 
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