National Shellfishery Association, New-Orleans, April 13-17 2003

EFFECT OF ENVIRONMENTAL AND NUTRITIVE CONDITIONINGS ON DEFENSE MECHANISMS OF OYSTER Crassostrea gigas DURING AN ANNUAL CYCLE

Maryse Delaporte*, Jeanne Moal, Philippe Soudant, Christophe Lambert, Stéphane Pouvreau, Martha Enriquez, L. Degrémont, P. Soletchnick, B. Gagnaire, and M. Ropert.

How can we respond to this problem ?

> Two types of experiments :

In situ : two different environmental conditions

• *Ex situ* : in controlled conditions at the experimental shellfish hatchery of Argenton (Ifremer, Finistere)

> Experimental animals :

freme

- Oysters Crassostrea gigas
- pool of 15 families provided by MOREST program
- a large genetic variability
- F1, one year-old oysters

In situ : two different sites

- High food availability
- No or partial spawning

> Marennes (Charente) :

re mi

- Low food availability
- Spawning

Ex situ : Dietary Conditioning Experiment

Oysters were conditioned 1 year with :

re m

- Three different algae levels : 4%, 8% and 12% of algal dry weight / oyster dry weight (4% = Marennes ; 12% = BDV)
- Mixture of 4 algae : C. calcitrans, S. costatum, T-Isochrysis, T. chui

Sampling protocol

reme

Laboratory :

Day 0 : Oysters are notched and stored in sea water for 24h

Day 1 : Oyster bleedings and flow cytometry analysis

Immune parameters analyzed by flow cytometry

Hemocyte concentration

- Percentage of dead cells (propidium iodide)
- Phagocytic activity (fluorescent beads)
- "Oxidative burst" activity : synthesis of reactive oxygen intermediates (2'7'dichorofluorescein diacetate)
- Adhesive capacity (SYBR Green)

Hemocyte concentration

eme

Hatchery : no difference in granulocyte counts between dietary treatments

Rearing conditions effect :

Field > Hatchery

Higher total hemocyte concentration in field oysters : more granulocytes and hyalinocytes than for oysters reared in hatchery

Percentage of dead hemocytes

reme

- Hatchery : no difference in percentage of dead hemocytes between dietary treatments.
- Rearing condition effect :
 - Field < Hatchery</p>

Differences between field and hatchery suggest rearing conditions are better in the field.

Phagocytic activity : % of cells that engulfed beads

reme

- Hatchery : no difference in phagocytic activity between treatments
- Rearing conditions effect :
 - Field > Hatchery
 - Marennes > BDV

In field, higher phagocytic activity associated with higher number of granulocytes

Oxidative burst activity :

Activity of hemocytes in presence of the pathogenic Vibrio sp. 322 / activity of hemocytes in presence of FSW

- Ratio < 1 = inhibition of hemocyte oxidative burst activity by Vibrio sp. 322
- No nutritive conditioning neither rearing conditioning effect
- Hemocytes more sensitive to the pathogenic Vibrio sp. 322 in June

Adhesive capacity :

% of cells in presence of the pathogenic *Vibrio* sp. 322 / % of cells in presence of FSW

leme

Ratio > 1 = inhibition of adhesive capacity by Vibrio sp. 322

- In September, highest sensitivity of hemocytes to the pathogenic Vibrio sp. 322
- Correlated with mortality events observed in the field.
- Same results for oysters reared in Marennes

Adhesive capacity :

% of cells in presence of the pathogenic *Vibrio* sp. 322 / % of cells in presence of FSW

reme

- Ratio >1 = inhibition of adhesive capacity by Vibrio sp. 322
- In August, highest sensitivity of hemocytes to the pathogenic Vibrio sp. 322

But, no relationship with mortality events.

Only oysters fed 8% algae level were experienced high mortalities from May until September.

Summary of immune responses

	Dietary effect	Site effect
Hemocyte counts	NS	Marennes = BDV > Hatchery
Cell mortality	NS	Marennes = BDV > Hatchery
Phagocytosis	NS	Marennes > BDV > Hatchery
Adhesive capacity :		
Susceptibility to vibrio sp 322	No correlation with mortality events	Correlated with mortalities

Do nutritive and rearing conditionings affect defense mechanisms of *Crassostrea gigas* during an annual cycle ?

- Nutritive conditionings in hatchery do not affect immune responses of oysters
- But, oysters fed 12% algae were more sensitive to an experimental infection with Vibrio lentus (Melanie Gay)

0

Immune system depressed

Do nutritive and rearing conditionings affect defense mechanisms of *Crassostrea gigas* during an annual cycle ?

- Nutritive conditionings in hatchery do not affect immune responses of oysters
- In contrast, rearing conditions (site effect: hatchery vs field) affect immune responses

ireme

Oysters reared in field showed a "better" immune system than those reared in hatchery : more hemocytes, more granulocytes, higher phagocytosis activity, best cell viability. This correspond to the characteristics of "TOP form" oysters (Lambert *et al.,* NSA 2003).

Do relationship between physiological and immune parameters exist in hatchery ?

→ The more oysters spend energy in reproductive process, the more their immune system is depressed and the more oysters are sensitive to infection

Do relationship between physiological and immune parameters exist in Field ?

➔ The more oysters spend energy in reproductive process, the more their immune system is sensitive

Conclusion

- In hatchery, nutritive conditionings induce different reproductive status but do not affect the immune system.
- Our experiment suggests rearing conditions are better in field than in hatchery. Oysters reared in field have a "better" immune system.

freme

Future approaches

- Precise the relationship or competition between immune system and reproductive cost in hatchery as well as in field ? Would it be better for oysters to spend energy in reproductive process or in immune system ?
 - Use triploids as control ?
- Improve the rearing conditioning in hatchery in order to be closer to field conditioning

