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1. Introduction and issues

Common observations indicate that waves propagating on the ocean surface exhibit

a stochastic behavior. This is especially true for wind waves generated under turbulent

air flows. The randomness is exhibited in terms of highly irregular behavior of such

parameters as the amplitude and the frequency of the field. These observation lead to a

description of water waves as a superposition of random waves. A recent study Joelson

and Ramamonjiarisoa [2001] has demonstrated that wind waves cannot be characterized

by a deterministic system dynamically affected by nonlinearities.

Elfouhaily et al. [1999] demonstrated that an inconsistency, commonly encountered

in the literature, occurs when weakly nonlinear theories are used to simulate nonlinear

water waves. Wave-wave interactions tend to increase the energy of short waves [Weber

and Barrick , 1977; Barrick and Weber , 1977]. Thus, the final spectrum obtained by

the nonlinear simulation is different from the input spectrum. The common mistake is

to use an empirically determined spectrum as input to the nonlinear simulation despite

the fact that the output spectrum will deviate considerably from the measurements.

Examples of such misuse have already been identified in Elfouhaily et al. [1999, 2000]

which are concerned with understanding the electromagnetic bias observed by radar

altimeters over the ocean surface. The contribution by Elfouhaily et al. [1999] suggests

the need for an input spectrum, termed the “bare” spectrum, devoid from any nonlinear

interaction. The output spectrum is then obtained from nonlinear interactions of all the

modes present at the input to form the so-called “dressed” spectrum. Unfortunately, the

“bare” spectrum does not yield itself easily to measurement since nonlinear wave-wave

interactions cannot be turned off during the measurement of the surface wave spectrum.

Higher order hydrodynamic interactions Elfouhaily et al. [2001b] will distort the input

spectrum even further hampering the study of its effect on, among other things, several

remote sensing parameters [see Elfouhaily et al., 2001a].

Our present study is concerned with a new formulation of surface wave modulations
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that accounts for the nonlinear random nature of the process. A new technique is

developed in order to quantify the amount of energy present in the spectrum caused

by the nonlinear wave-wave interaction and mode coupling. The starting point will be

a convenient theorem stated by Woodward [1952] which approximates the spectrum of

frequency modulated signals by the probability density function of the instantaneous

frequencies. A recent application of this theorem was successfully implemented

in the study of delay and Doppler effects in bistatically reflected electromagnetic

signals from the ocean surface Elfouhaily et al. [2002]. The Doppler application is

very straightforward application of Woodward’s theorem, while understanding the

characteristics of the delay, some extrapolation was required as discussed in Elfouhaily

et al. [2002]. We therefore believe that new generalizations of Woodward’s theorem

could have a large impact on several fields concerned with random nonlinear processes;

an example of which is the remote sensing application discussed above.

In the following section, we summarize the original Woodward’s theorem [Woodward ,

1952] which we shall generalize to include joint amplitude and frequency modulations. A

development up to second order captures the bispectrum in addition to the usual power

spectrum. We will then compare our development with experimental data obtained from

a wind-wave tank, where a clear difference between the bare and the dressed spectra is

shown. The bare spectrum is obtained under no wave-wave interactions which can also

be understood as the occurrence of a family of random fundamental frequencies. The

dressed spectrum, however, depicts the observable energy when wave-wave interactions

are present, and therefore can be interpreted as the augmentation due to a family of

random harmonics.
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2. Mathematical formulation of randomly modulated signals

In the general context of stochastic stationary functions, the theorem of Bochner

[1960] reads

η(t, α) =

∫

ω

dN(ω, α) exp(−iωt) (1)

where dN(ω, α) is a non-correlated random measure and α is the event variable. The

random process η(t, α) is called narrow-banded or quasi-monochromatic if and only

if the random measure dN(ω, α) occupies a narrow spectral bandwidth. The domain

of integration in (1) is then limited between lower and upper bounds surrounding the

spectral content of the random measure. This narrow-banded process exhibits weakly

random modulations and can be written under near-Gaussian statistics according to

Cramer and Leadbetter [1967] as

η(t, α) = R(α) cos[ωct + ψ(α)] (2)

where R(α) and ψ(α) are time independent random variables with Rayleigh and uniform

distributions, respectively. The pulsation ωc = 2πfc is a constant carrier frequency.

The event parameter α as introduced in (1) will be omitted throughout the paper to

simplify the equations. The weak random modulation is a typical characteristic of

surface water waves [Kinsman, 1965]. According to Longuet-Higgins [1983]; Tayfun

[1986], these oscillations can be well represented to first approximation by (2). However,

this narrow-band formulation is insufficient to explain the complexity of water waves

when higher-order statistics must be included due to the asymmetric behavior caused

by nonlinear wave-wave interactions. In this case, large deviations from a narrow-band

approximation can be observed especially under conditions of wind generated waves,

and the random variables in (1) are no longer time independent [Middleton, 1996].

Under these conditions, the processes become broad band in nature.

In this study, we model random nonlinear surface waves as broad-band processes

with the objective of properly characterizing the spectral content of these signals.
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A distinction will be made between spectral density due to nonlinearity as opposed

to that when no wave-wave interactions are present. To achieve these goals, we will

generalize Woodward’s theorem [Woodward , 1952] to include amplitude modulations

under moderately large indices of modulations.

3. Woodward’s theorem

3.1. Definition

A frequency or phase modulated signal can be written as

η(t) = A cos[ωct + ν φ(
t

ν
)] (3)

where ν, in this notation, represents the index of modulation and A a constant

amplitude. The pulsation ωc is the carrier frequency with ωc = 2πfc. Woodward’s

theorem states that the spectrum of a signal randomly modulated in frequency is

proportional to the probability density function (Pφ̇) of the modulating instantaneous

frequency (dφ
dt

= φ̇ = 2πD(t)). The corresponding spectrum is then

S(f) ≈ A2

2
Pφ̇(f − fc) (4)

where for simplicity negative frequencies have been folded onto positive frequencies since

the signal under study is real.

3.2. Proof

Following Blachman and McAlpine [1969], the proof of Woodward’s theorem may

be sketched as follows: One can write the autocorrelation function of η(t) in (3) as

R(τ) = 〈η(t− τ

2
)η(t +

τ

2
)〉 (5a)

=
A2

2
Re

〈
exp

(
iωcτ + i2π

∫ t+ τ
2

t− τ
2

D(
t

ν
)dt

)〉
(5b)
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where D(t) = φ̇/2π is the modulating instantaneous frequency of the random signal.

If the index of modulation is very high (ν >> 1), then one can demonstrate that

[Blachman and McAlpine, 1969]

〈
exp

(
2iπ

∫ t+ τ
2

t− τ
2

D(
t

ν
)dt

)〉
=

∫ +∞

−∞
Pφ̇(D) exp(2iπD τ)dD. (6a)

The autocorrelation function becomes

R(τ) =
A2

4

{∫ +∞

−∞
Pφ̇(D) {exp[2iπ(D + fc)τ ] + exp[−2iπ(D + fc)τ ]} dD

}
(7)

Woodward’s theorem is then demonstrated by taking the Fourier transform of the

autocorrelation function in (7) to yield (4) after spectral folding of the negative

frequencies onto the positive ones.

4. Generalization to joint amplitude and frequency modulations

We now want to find an equivalence to Woodward’s theorem in the frequency

modulation context as stated by (4) but with an additional random modulation coming

through the amplitude. In this context, the form of the signal to be studied is then

η(t) = a(
t

µ
) cos

(
ωct + 2π

∫ t

0

D(
τ

ν
)dτ

)
, (8)

where a( t
µ
) is a random process with an index of modulation µ and D( τ

ν
) is the

modulating random instantaneous frequency with index ν. The autocorrelation function

of this process is

R(τ) =

〈
a(

t− τ
2

µ
)a(

t + τ
2

µ
) exp

(
iωcτ + 2iπ

∫ t+ τ
2

t− τ
2

D(
t

ν
)dt

)〉
. (9)

If the modulation indices µ and ν are large enough [Crandall , 1963], a power series

expansion of (9) can be performed up to second order to yield

R(τ) ≈
〈

(a− ȧτ

2µ
)(a +

ȧτ

2µ
) exp

(
iωcτ + 2iπτ [D(t/ν) +

2tḊ(t/ν)

ν
]

)〉
. (10)
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The spectrum corresponding to (10) is then

S(f) ≈ 1

2

∫ [
a2 − ȧ2

4µ2

(
∂2

∂ω2

)]
P (a, ȧ, ω − ω̇t

ν
, ω̇)dadȧdω̇, (11)

where ω = 2πf . The generalization of Woodward’s theorem requires knowledge of

the joint distribution of four random processes as opposed to that of one process

in the original theorem. This generalization to a four dimensional distribution in

(11) is generally not useful since it is impractical to estimate such multidimensional

distributions from the time series of the signal itself. We shall now present a more

practical formulation of this generalization where a joint distribution with fewer

dimensions is required.

5. The Stokes-Woodward technique

5.1. Statistical modulation

As mentioned above, a brute force generalization of Woodward’s theorem as in

(11) is inefficient and may even be unstable if the time series under study is not long

or stationary enough. It is easy to notice that (11) reaches a very practical limit if

both indices of amplitude and frequency modulations, µ and ν respectively, are nearly

infinite. In this limit, (11) reduces to what we call the bare spectrum

Sbare(f) ≈ 1

2

∫
a2P (a, f)da. (12)

This approximation is very practical and requires only the estimation of a two-

dimensional histogram. However, this practicality is gained at the expense of neglecting

the temporal modulations of the amplitude and frequency within the scale of the

dominant time period. In other words, the temporal modulations is slow and

interpreted as random from one period to the next. More simply stated, the high index

approximation in (12) is actually an exact formulation for a random process of this form

η(t) = a cos(ωt + θ) (13)
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where a, ω, and θ are three time-independent random variables. The amplitude a and

the pulsation ω = 2πf can be statistically dependent, while θ is a uniformly distributed

phase and independent of these other variables. This requirement on the uniformity of

the phase guarantees that the signal is stationary and therefore that the autocorrelation

and the spectral functions are univariate. The “bare” subscript in (12) refers to the fact

that the process in (13) has lost all nonlinearity or phase coupling of harmonics.

5.2. Temporal and statistical modulation

The high index limit in (12) is very illustrative and permits the reformulation of

our newly generalized theorem into a simpler form. The time modulation present in

(12) can now be replaced by a random modulation as in (13). Let us reformulate the

modulation as

η(t) = [a + ∆a(t)] cos[ωt + ∆φ(t) + θ] (14)

where the time dependence is explicitly shown in addition to the implicit random

dependence of all the parameters except the time variable. The key representation

of our simplified expression is in the time dependence of the modulation that can be

expanded in Fourier series about the random frequency ω as

∆a(t) = αc cos(ωt + θ) + αs sin(ωt + θ) + . . . (15a)

∆φ(t) = βc cos(ωt + θ) + βs sin(ωt + θ) + . . . . (15b)

The signal in (14) can be further expanded keeping only terms of linear order in the

parameters αc, αs, βc, and βs to find a more poignant form given by

η(t) = λ + a cos[ωt + θ] + α cos[2(ωt + θ)] + β sin[2(ωt + θ)] + . . . (16)
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where the coefficients α and β of the second harmonic terms in (16) are related to the

coefficients in (15) by

λ =
aβs + αs

2
(17a)

α =
aβs + αc

2
(17b)

β =
αs − aβc

2
. (17c)

We remind the reader that all parameters in (16) are random variables except the

time variable. Finally, not included in our analysis is the constant term λ. We save

discussions of the significance of this term for a future publication. There is no influence

of the presence or the absence of the constant term in the dataset selected for illustration

in the current paper.

Equation (16) represents a generalization to the Stokes wave in two regards. First,

all parameters are random as opposed to the Stokes wave where all parameters must

stay constant. Second, the sin() term generates asymmetries in the profile that are not

included in a standard Stokes waveform. Its resemblance with the Stokes wave, however,

did influence our choice for naming our analysis method, which uses Woodward’s

theorem and Stokes-like waveforms, the “Stokes-Woodward” technique. The random

variables α and β explain the asymmetries of the waveform with respect to a horizontal

and vertical axes, respectively. These asymmetries appear in a random manner on the

scale of the period of the wave as depicted by the random amplitude a and random

frequency ω.

Similar to equation (13), the random Stokes-like waveforms in (16) yields a

spectrum of the Woodward type but in a more accessible form than in (11). This form

is given by

Sdressed(f) ≈ Sbare(f) +
1

2

∫
α2P (α, f/2)dα +

1

2

∫
β2P (β, f/2)dβ. (18)

In this final form, two single integrals are needed in addition to the single integration
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over the amplitude already present in the “bare” spectrum of (12). We associate

the spectrum in (18) with the “dressed” spectrum discussed in the introduction, and

interpret the terms added to the bare spectrum as contributing to the energy increase at

higher frequencies due to the nonlinearities or mode coupling. This energy augmentation

therefore provides the difference between the bare and the dressed spectra as discussed

in [Elfouhaily et al., 1999]. The difference can also be assimilated with the bicoherence

function of phase coupling as introduced by Kim and Powers [1979] and utilized by

Ochi and Ahn [1994]. Indeed, energy of phase coupling to second order is another

manifestation of the bispectrum defined as the Fourier transform of the skewness

function using a third order cumulant. The bispectrum is defined as the 2D Fourier

transform of the bivariate skewness function

R(τ1, τ2) = 〈η(t)η(t + τ1)η(t + τ2)〉 (19)

The description of the vertical and horizontal asymmetries of the waveform opens

the way for the definition of a very robust bispectral estimate derived from our

Stokes-Woodward technique. The bispectrum takes the form

B(f) = B(f, f/2) ≈ 1

4

∫∫
αa2P (α, a, f/2)dαda + i

1

4

∫∫
βa2P (β, a, f/2)dβda (20)

where now two three-dimensional histograms are needed in order to evaluate the double

integration over the amplitude and the asymmetries. It is no surprise that the height

(or vertical) asymmetry α yield the real part of the bispectrum while the period (or

horizontal) asymmetry β yield the imaginary part. We shall show in the next section

that the estimation of the “bare” and “dressed” spectra as well as the bispectrum is

very robust and can lead to interesting interpretations of the surface wave physics.
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6. Comparison with data

6.1. Experimental data

The Stokes-Woodward technique is now tested using a time series generated by

measuring the height of the water surface at a fixed point in a wind-wave tank. The

signals were obtained from the Ocean-Atmosphere Interaction facility in Marseille with

a capacitance wave gauge. The pool dimensions in the tank are 40x3x1 meters for

the length, width, and depth, respectively. The air tunnel’s ceiling is 1.5 m above the

water surface. For a detailed description of the flume-tank, the reader is referred to

Coantic and Favre [1974]. In order to generate highly nonlinear waves where mode

coupling should be significant, we chose to sample wind-generated waves under high

wind conditions with wind speeds higher than 10 m/s with a fetch of 25 m but without

paddle waves. Long time series were acquired at high frequency sampling. Duration

and sampling rate were on the order of 30 minutes and 100 Hz, respectively. Figure 1

shows a short sample of the time series of surface elevations. High modulations and Figure 1.

group occurrences are easily visible in this short segment. In order to estimate the

instantaneous amplitude a, frequency f , height asymmetry α and period asymmetry β in

(16), we implemented the zero-crossing algorithm as explained in Molinaro and Sergeyev

[2001]. Ambiguities related to the definition of the instantaneous frequency [see Oliveira

and Barroso, 2000] are not dealt with here, but will be left for later contributions when

more exact algorithms will be used. We mention that the zero-crossing algorithm is

well defined as long as the broad-band signal has a unimodal spectrum with no low

frequency components or high noise contaminations. Practical estimators for the four
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random variables, a, ω = 2π/T , α, and β are taken as follows:

a =
M −m

2
(21a)

T = T1 + T2 (21b)

α =
M + m

2
(21c)

β = a
π

2

T1 − T2

T1 + T2

, (21d)

where M and m are the maximum and the minimum of the signal over a period T

defined as the sum of two consecutive semi-periods T1 and T2. The semi-periods are the

durations between two consecutive zero-crossings. Figure 2 shows an illustration, on the

scale of a period, the definition of the instantaneous parameters used in (21). Figure 2.

6.2. Analysis results

Figure 3 illustrates the stability of the estimators for the asymmetry parameters as

shown in terms of their normalized histograms. The height asymmetry α is normalized Figure 3.

by the amplitude a where the period asymmetry β is normalized by aπ
2
. A striking

difference is easily noticeable between these histograms and the Gaussian distributions

shown for reference by the solid lines in the figure. Indeed, the histograms seem to be

highly peaked with some skewness. The kurtosis is very high and on the order of 4 and 6

for the height (α) and period (β) asymmetries, respectively. The ragged line in Figure 4

shows the Fourier spectrum of the time series. Using a standard spectrum such as this,

one is not able to differentiate between energies coming from linear or nonlinear waves. Figure 4.

The Woodward spectrum as defined in (4), is the highest solid curve in Figure 4. One

can see that this curve over-estimates the measured spectrum because of the underlying

Woodward assumption that, on the contrary to the real signal, the amplitude is not

modulated, and that only frequency modulation is present. The over-estimation of

the spectral tail is therefore due to the fact that the amplitude is modulated and also

correlated with the frequency in such a manner that high frequency waves have less



14

energy. The lowest solid line in Figure 4 is the “bare” spectrum as defined by (12) where

both amplitude and frequency modulations are accounted for with no asymmetries or

phase coupling. It is instructive to notice that the “bare” spectrum underestimates

the energy in the tail of the measured spectrum. This under estimation is due to the

implicit assumption in (12) that the indices of modulations are very high and therefore

any nonlinearity caused by time-dependent modulations is neglected. The “dressed”

spectrum (18) is shown in figure 4 by the dashed-dotted curve. This curve accounts

for most of the energy present in the measured Fourier spectrum. Both vertical and

horizontal asymmetries contribute to the energy at high frequencies. This can be seen

by the fact that the dashed curve shown in figure 4, which includes modulation of only

the height (α) asymmetry, under estimates the high-energy content of the measured

spectrum. It therefore seems apparent that our Stokes-Woodward technique explains

the energy due to mode coupling. A direct measure of the coupling can also be achieved

by calculating the bispectrum as defined in (20). The result of this computation is

shown in Figure 5 in terms of its modulus square. The high stability of the bispectral

estimate up to a quite high frequency demonstrates the wide domain of applicability

of our technique. The peak present in the bispectrum indicates that many frequencies

or harmonics are coupled with their fundamental counterparts at lower frequencies. It

is therefore important to treat the ensemble of frequencies as two correlated random

sets. Based on the results of the comparisons presented in this section, we believe

our technique can accurately interpret the occurrences of instantaneous amplitudes,

frequencies, vertical and horizontal asymmetries. This demonstrates the capability

to detecting mode coupling in spectral domain of second statistical order without

performing bispectral analysis. Figure 5.
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7. Conclusion

A generalization of Woodward’s theorem is successfully obtained by including

random amplitude modulations in addition to frequency modulations. The original

theorem stated that a good approximation of the energy spectrum of a frequency

modulated signal is the probability density function of the instantaneous frequencies

when the index of modulation is high. Our generalization starts by including the random

amplitude modulation which yield a simple spectrum expressed as a single integral over

the instantaneous amplitudes and the joint distribution of amplitude and frequency as

shown in (12). It is noted that this spectrum is devoid of any nonlinearity or mode

coupling because over the scale of a characteristic period, the wave is considered as

simply harmonic (a sine wave). Asymmetries in the wave profile must be introduced in

order to capture residual energy not explained by the “bare” spectrum. To account for

this residual energy, we have proposed a second generalization of Woodward’s theorem

that utilizes a Stokes-like waveform in which all the parameters are random except

the time variable. Our procedure is termed the Stokes-Woodward technique since it

combines a generalization of Woodward’s theorem with a Stokes-like random wave

profile.

The second generalization provides a practical formulation for the “dressed”

spectrum where nonlinearities up to the second order are included (18). This second

order coupling between modes initiates the existence of the bispectrum which can be

formulated as in (20). It is demonstrated that when the Stokes-Woodward technique is

applied to a time series of water-wave surface elevations, it discriminates between the

“bare” and “dressed” spectrum, and also provides a robust estimate of the bispectrum.

We recommend that the bare spectrum be used at the input of nonlinear system

simulators as originally cautioned in Elfouhaily et al. [1999].

Applications of the Stokes-Woodward technique will have great benefit in the

analysis of nonlinear random processes present in several science fields. For example, it
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can readily be applied to remote sensing signals as already demonstrated by [Elfouhaily

et al., 2002] even with the original formulation of Woodward’s theorem.
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Figure Captions

Figure 1. Time series of the surface elevation sampled at 100 Hz. High modulations are

clearly present.

Figure 2. Sketch plot to show the definitions of the paratemeters (M , m, T1, T2) used

to estimate the instantaneous amplitude a = (M −m)/2, period T = T1 + T2, vertical

α = (M + m)/2 and horizontal β = aπ(T1 − T2)/(T1 + T2)/2 asymmmetries.

Figure 3. Normalized histograms of the normalized horizontal or height (dashed) and

vertical or period (dashed-dotted) asymmetries. The normalization of the asymmetry

parameters refers to rendering α and β dimensionless by dividing by the amplitude. The

solid curves are Gaussian distributions plotted for comparison.

Figure 4. The ragged line shows the Fourier spectrum of the experimental wave profile.

The upper solid curve represents the Woodward spectrum as defined in (4). The lower

solid line is the “bare” spectrum where wave-wave nonlinear interaction are neglected.

The dashed curve is the augmentation of the “bare” spectrum by the height asymmetries

alone. The dashed dotted curve is the total “dressed” spectrum where both horizontal

and vertical asymmetries are included.

Figure 5. Modulus square of the Bispectrum which shows a significant peak indicating

the mode coupling of the frequencies. These plots are normalized by their corresponding

total integral. The dashed ragged curve is the bispectral estimated based on simple

Fourier analysis. The solid curve is the bispectral estimate as obtained by our Stokes-

woodward techinque.



21

Figures

0 10 20 30 40 50 60 70
−4

−3

−2

−1

0

1

2

3

4

5

time (s)

S
ur

fa
ce

 e
le

va
tio

n 
(c

m
)

Figure 1. Time series of the surface elevation sampled at 100 Hz. High modula-

tions are clearly present.
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Figure 2. Sketch plot to show the definitions of the paratemeters (M , m, T1, T2)

used to estimate the instantaneous amplitude a = (M −m)/2, period T = T1 +T2,

vertical α = (M +m)/2 and horizontal β = aπ(T1−T2)/(T1+T2)/2 asymmmetries.
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Figure 3. Normalized histograms of the normalized horizontal or height (dashed)

and vertical or period (dashed-dotted) asymmetries. The normalization of the

asymmetry parameters refers to rendering α and β dimensionless by dividing by

the amplitude. The solid curves are Gaussian distributions plotted for comparison.
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Figure 4. The ragged line shows the Fourier spectrum of the experimental wave

profile. The upper solid curve represents the Woodward spectrum as defined in (4).

The lower solid line is the “bare” spectrum where wave-wave nonlinear interaction

are neglected. The dashed curve is the augmentation of the “bare” spectrum by

the height asymmetries alone. The dashed dotted curve is the total “dressed”

spectrum where both horizontal and vertical asymmetries are included.
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Figure 5. Modulus square of the Bispectrum which shows a significant peak indi-

cating the mode coupling of the frequencies. These plots are normalized by their

corresponding total integral. The dashed ragged curve is the bispectral estimated

based on simple Fourier analysis. The solid curve is the bispectral estimate as

obtained by our Stokes-woodward techinque.
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