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Abstract: Screening of a flounder ovary cDNA library with a rainbow trout p53 probe led to the 
isolation of a p53-unrelated cDNA encoding an unknown 161 amino acid protein. In view of its 
apparent molecular weight and yet unknown function, the deduced protein was named Xp18. 
Corresponding orthologous cDNAs or expressed sequence tags have been identified in several 
species including human, rodents, bovine, chicken and zebrafish and a related cDNA has also been 
isolated in the fruit fly. Deduced amino acid sequences appeared to be extremely well conserved 
throughout vertebrate evolution. Structure predictions suggested that Xp18 may correspond to an 
integral protein comprising four transmembrane domains. The charged C-termini of all known 
vertebrate Xp18-like proteins displayed a characteristic KXKXX motif which is considered as an 
endoplasmic reticulum targeting sequence. Gene expression, as shown by Northern blot and 
quantitative reverse transcription-polymerase chain reaction analysis, was significantly higher in the 
ovary and to a lesser extent in the brain. Xp18 transcripts were also detected by in situ hybridization in 
most of the circumventricular regions of the brain of adult flounders. The gene encoding the human 
protein is located on chromosome Xq22.1, a genome region involved in numerous genetic diseases 
including premature ovarian failure.   
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Introduction 
 

It is now well established that a variety of chemical compounds of anthropogenic origin, 
can induced long term effects on living organisms including cancers and reproductive defects. 
When acting on reproduction, pollutants can provoke chromosome abnormalities, reduce 
success of fertilization, decrease hatching or survival of larvae and can also interfere with 
hormonal regulations (reviewed in Janssen et al., 1995). In marine environment, these 
disorders mainly affect benthic fish living in coastal and estuarine areas near industrial and 
urban centers.  

As an evidence, an histological survey of gonads of European flounder specimens 
conducted in the Seine river estuary (France) has shown that up to 8% of males were intersex 
e.g. had testes characterized by the presence of entire ovarian structures (Minier et al., 2000). 

The European flounder, Platichthys flesus (L.), is a model species for pollution 
monitoring in the north eastern Atlantic. This euryhaline flatfish lives on and in the sediment 
of coastal waters and estuaries resulting in a strong exposure to river-carried pollutants. In 
addition, this species seems particularly sensitive to several chemical-induced and infectious 
diseases (Vethaak and Jol, 1996). 

In the Seine estuary, sexual differentiation of European flounders is initiated during 
their second year of life. At this age, gametogenesis begins since early perinucleolus oocytes 
are continuously produced and gradually accumulate during a year. Development of oocytes 
takes place the next year when they enter vitellogenesis and start the maturation process 
(Janssen et al., 1995). Sexually mature flounders then migrate in January and February to 
shallow coastal areas for spawning. The annual ovarian cycle ends with the degeneration of 
post-ovulatory follicles in post-spawning female.  

Our purpose was initially to identify p53-related genes in this fish species in order to 
study the molecular basis of carcinogenesis in fish and also to develop new markers for 
mutation and cancer risk assessment in marine ecosystems. A flounder ovary cDNA library 
was constructed and screened under low stringency conditions using a rainbow trout p53 
cDNA probe. Two positive cDNA clones were isolated, one of which did correspond to the 
flounder p53 cDNA (Cachot et al., 1998). Sequencing of the second clone revealed that the 
cDNA sequence displayed only 35% homology with trout p53. However, in silico screening 
of genome data bases indicated that this novel cDNA had striking homologies with an 
unknown cDNA which has recently been identified in human embryos (Isogai et al. 2000). In 
the present paper we describe the molecular cloning and the expression profile of this novel 
cDNA which was named Xp18. 
2. Materials and Methods 
 
2.1 Cloning of flounder Xp18  
  
 A flounder ovary cDNA library previously constructed in Lambda ZAP® II vector 
(Cachot et al., 1998) was screened at low stringency with the complete rainbow trout p53 
cDNA. The probe was radiolabeled with (α 32P)-dCTP (Amersham) using a random priming 
kit (Ready-to-Go, Pharmacia). Hybridization was performed overnight at 55°C in 6x SSC (0.9 
M NaCl, 0.09 M sodium citrate), 4x Denhardt’s reagent, 0.5% SDS, 2mM EDTA and 
1ng.mL-1 of radiolabeled probe. The membrane were washed in 4x SSC, 0.5% SDS for 1 hour 
at 55°C before a 24 hr-exposition to X-ray film (Kodak X-Omat). After five rounds of 
screening, positive plaques were isolated and inserts subcloned into pBluescript SK(-) vector 
according to the protocol of the manufacturer (Clontech). Both DNA strands were sequenced 
on a 373A DNA sequencer according to the Big Dye Terminator procedure (Perkin Elmer). 
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2.2. Northern blot analysis 
 
 Flounders were collected in the Seine bay and anaesthetized in MS222 before tissue 
collection. Total RNAs were extracted from brain, liver, spleen, intestine, muscle, ovary and 
testis of adult flounder by using the TRI ReagentTM protocol (Sigma). The total RNAs (20 μg) 
were separated on a 0.8% formaldehyde-agarose denaturing gel and then blotted onto a nylon 
membrane (Amersham Hybond-N+). A 1300 bp fragment generated by EcoRI digestion of 
the flounder Xp18 cDNA was used as a probe. This DNA was labeled with (α32P)-dCTP 
(Amersham) using a random priming DNA labeling kit (Prime-a-gene, Promega). 
Hybridization was performed for 16 hours at 42°C in 5x SSPE (0.75 M NaCl, 0.05 M 
NaH2PO4, 5 mM EDTA) 50% deionized formamide, 1% SDS, 5x Denhardt’s reagent, 5% 
dextran sulfate, 100 μg.mL-1 of denatured salmon sperm DNA and 1 ng.mL-1 of radiolabeled 
probe. The membrane was then washed for 1 hour at 65°C in 2x SSPE-0.1% SDS and 
exposed at -80°C to X-ray films (Kodak X-Omat) for 1 week.  
 
2.3. Real-time quantitative RT-PCR 
  
 Total RNAs were extracted with TRI ReagentTM (Sigma) from ten tissues of adult 
flounders. RNA quality was checked on denaturating agarose gel before used. First strand 
cDNA synthesis was performed using Rnase free Superscript II (Invitrogen) from 5 µg total 
RNAs in a 20 µL reaction mixture containing 500 ng oligo(dT)15 (Genset), 10 nmol dNTP, 
1X first strand buffer, 200 nmol DTT for 50 min at 42°C. The obtained cDNAs were purified 
on QIAquick PCR purification kit (Qiagen) and eluted with 30 µL of Tris-HCl 10 mM, pH 
8.5. 
PCR amplifications were performed using FirstStart DNA Master SYBR Green I and the 
LightCycler system (Roche Molecular Biochemicals) with 0.5 µM of each primers, 4 mM 
MgCl2 and 2 µL of purified cDNA template. Forward (5’-
ACCGACAGACGCTCATCCAGT-3’) and reverse (5’-
TGACCAGCAGCAGCAAAAAGTT-3’) primers for Xp18 were carefully selected in two 
neighbouring exons using PrimerPremier3 software (Premier Biosoft International) in order to 
obtain a unique amplicon of 359 bp. The cycling conditions were as follows : initial 
denaturation at 95°C for 5 min followed by 40 cycles at 95°C for 15 s, 58°C for 5 s and 72°C 
for 14 s. The level of the housekeeping gene β-actin was used to normalize for the variability 
of RNA quality and quantity as well as for differences in the efficiencies of the RT-reactions. 
Forward (5’-TCCTGACCCTGAAGTACCCC-3’) and reverse (5’-
GGTGCCCATCTCCTGCTCGA-3’) primers for β-actin were carefully selected in two 
neighbouring exons (Lee et al., 2000) using PrimerPremier3 software in order to obtain a 
unique amplicon of 496 bp. The cycling conditions were identical as for Xp18 except for the 
hybridization temperature (53°C) and the extension time (20 s). The levels of Xp18 and β-
actin cDNAs were obtained from the same RT reaction. All samples were analysed in 
duplicate. For each experiment a standard curve was performed using a ten-fold serial dilution 
of cloned Xp18 or β-actin cDNA (Fig. 4). The amplification efficiencies were calculated from 
the slope of the standard curves using the equation E= 10-1/slope and was always greater than 
1.92 (96%). Specificity of PCR amplification was checked using both melting curve analysis 
and agarose gel electrophoresis of PCR products. 

Results are reported as the ratio of Xp18 to β-actin number of copies of mRNA. Copy 
numbers were calculated from the standard curve obtained for each experiment. 
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2.4. In situ hybridization 
 

Briefly, a 510-bp fragment of Xp18 cDNA was amplified by PCR (sense, 5’-
GCAAGCCCCGGTCCAGAAAC-3’ and antisense primer, 5’-GATCTTAGGACTGCTT-3’) 
and was subcloned into pGEM-T vector (Promega). Single stranded sense and antisense Xp18 
RNA probes were generated following digestion with either PstI or SacII by using a Promega 
riboprobe kit and (α33P)-UTP as a label. RNA probes were purified by Sephadex G-50 gel 
chromatography (elution buffer; 10 mM Tris-HCl, pH 7.5, 0.1% SDS). Fish were 
anaesthetized in MS222 and perfused transcardially with 4% paraformaldehyde in phosphate 
buffer (0.1 M, pH 7.4). The tissues were postfixed for 3 hr at 4°C in the same solution, 
transferred into 0.1 M phosphate buffer containing 15% saccharose for 12 hr and frozen in 
isopentane at –30°C. Sections (15 μm thick) were cut in a cryomicrotome (2800 Frigocut, 
Leica, Heidelberg, Germany) and collected on 0.5% gelatin/0.05% chrome alum/0.01% 
polylysine coated slides. Tissue sections were incubated in phosphate buffer saline (PBS; 140 
mM NaCl, 2.7 mM KCl, 10 mM, Na2HPO4, 1.8 mM KH2PO4), treated in PBS containing 
0.3% Triton X-100 for 15 min and permeabilized for 30 min in TE buffer (100 mM Tris-HCl, 
50 mM EDTA, pH 8.0) containing 1 μg.mL-1 proteinase K. Sections were then postfixed for 5 
min at 4°C in PBS containing 4% paraformaldehyde. Acetylation was carried out for 10 min 
in 0.1 M triethanolamine buffer pH 8.0, 0.25% acetic anhydride. The slides were rinsed in 2x 
SSC, and covered with prehybridization buffer (4x SSC containing 50% deionized 
formamide). Hybridization was performed under a coverslip overnight at 37°C in 40% 
deionized formamide, 10% dextran sulfate, 1x Denhardt’s solution, 4x SSC, 10 mM 
dithiothreitol, 1mg/ml denatured Salmon sperm DNA containing the purified antisense or 
sense Xp18 RNA probe. Slides were then washed twice in 2x SSC at 37°C. A series of 4 
washes was performed at 37°C in 0.1x SSC. The slides were finally dried in ethanol and 
exposed either onto films (BioMax MR, Kodak) for 2 weeks or overnight in a phosphoimager 
(Molecular Dynamics). 
 

2.5. Computer and statistical analyses 
 

Sequence analyses were performed by using the GCG package hosted by the server 
Infobiogen of INSERM-CNRS. Multiple alignments were carried out using ClustalW 
(Thompson et al., 1994). Homology searches were performed on the sequences listed in 
EMBL/GenBank/DDBJ databases with FASTA (Pearson and Lipman, 1988) and BLAST 
(Altschul et al., 1990). 

Statistical analysis of Xp18 to β-actin mRNA ratio in the ovary, brain and testis were 
determined by the unpaired two-tailed Student’s t test. Differences were considered 
statistically significant for p < 0.05. Mean values are given with their standard deviation (SD). 
 
2.6. Nucleotide sequence accession number 
 
 The EMBL accession number of flounder Xp18 cDNA is AJ302671. 
 
 
3. Results and Discussion 

 
3.1. Cloning of flounder Xp18 
 

After five rounds of screening of the flounder cDNA library, two distinct positive clones 
were isolated. The longest clone contained an insert of 2279 bp in length which corresponded 
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to the cDNA encoding the p53 protein (Cachot et al., 1998). However, the 1682 bp insert of 
the second clone had only 35% overall homology with trout p53 cDNA. This insert included a 
5’-untranslated region of 90 nucleotides, followed by an open reading frame comprising 486 
nucleotides (Fig. 1A). The 3’-untranslated sequence was 1.1 kb in length and contained two 
putative polyadenylation signals (nucleotides 677 and 1639) and a polyadenylated tail starting 
at nucleotide 1665. The open reading frame encoded for a 161 amino acid protein with a 
molecular weight of 17,927 Da and a theoretical pI of 9.86. In view of its predicted molecular 
weight, and owing to its unknown function, the protein was coded Xp18. Composition 
analysis of Xp18 protein revealed a high number of leucine (15.5%) and other hydrophobic 
residues (37%) in comparison with charged amino acids (25%). Charged residues were mostly 
clustered in two blocks, the first one encompassing residues 30 to 45 and the second one the 
last 30 or 35 residues of the C-terminus. Search in several motif databases revealed the 
presence of 2 putative protein kinase C and 2 casein kinase II phosphorylation sites as well as 
2 putative N-myristoilation sites (Fig. 1A). The hydrophobicity plot (Kyte and Doolittle, 
1982) revealed the existence of 4 hydrophobic domains spanning the amino-terminus and the 
major part of the core protein (Fig. 1B). In contrast, the 30 amino acids at the carboxy-
terminus appeared to be very hydrophilic. Structural prediction of membrane-bound proteins 
(Argos et al., 1982) suggested that the Xp18 protein was integrated in biological membranes 
and contained four transmembrane sections corresponding to the four hydrophobic domains. 
In addition, prediction of signal peptides and anchor signal by a hidden Markov model 
(Nielsen et al., 1997) indicated that the first transmembrane domain was likely to correspond 
to an anchorage region to the endoplasmic reticulum (ER) membrane. Calculation of 
secondary structures by the PHD network system (Rost and Sander, 1994) indicated the 
presence of three to four alpha helixes encompassing the four hydrophobic domains of the 
protein and separated by 2-3 loops. An additional alpha helix spanned the acidic carboxy-
terminus. The Xp18 protein contained a characteristic KXKXX motif. This motif is a KKXX 
related-signal which has been shown to function as an ER localization signal of integral 
membrane proteins with C-termini oriented on the cytoplasmic side of the membrane (Nilsson 
et al., 1987). The consensus sequence is recognized by the COPI complex which participates 
in the formation of coated budding vesicles. Coatomer binding to the C-terminal KKXX 
signal mediates retrieval of ER membrane proteins (Hong, 1996). These data indicate that 
Xp18 might correspond to an integral membrane protein of the ER which may be sorted to 
budding vesicles. 
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Fig. 1. (A) Nucleotide and deduced amino acid sequences of flounder Xp18. The open reading frame is indicated 
in capital letters. The two polyadenylation/cleavage sites are underlined. The deduced peptide sequence is 
represented with the one letter code for amino acids. The anchor domain to the ER is indicated in gray and the 
three other putative transmembrane domains are boxed in black. The TAA stop codon is marked by a star. 
Circles and diamonds respectively indicate putative phosphorylation and N-myristoylation sites. (B) 
Hydrophobicity profile of flounder Xp18 protein (Kyte and Doolittle, 1982). Amino acids are numbered from the 
translation start site. The four putative transmembrane domains are shaded. 
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3.2. Comparison of  Xp18 orthologuous sequences 
 

Searches in nucleotide databases revealed that the Xp18 cDNA clone had a high degree 
of homology with a human cDNA sequenced from whole embryos (Isogai et al., 2000) and 
with Expressed Sequence Tags obtained from the brain of Rattus norvegicus (Bonaldo et al., 
1996), Mus musculus (Bonaldo et al., 1996, Sasaki et al., 1998) and Brachydanio rerio (Clark 
et al., 2001), as well as from lymphoid organs of Bos taurus (Smith et al., 2000) and Gallus 
gallus (Tirunagaru et al., 2000). Comparison of the deduced amino acid sequences from 
flounder and human cDNAs, zebrafish, mouse, rat, bovine and chicken ESTs revealed a high 
level of conservation during evolution (Fig. 2A and 2B). Amino acid identity of Flounder 
Xp18 reached 96%, 83%, 81% and 82% with, respectively, zebrafish, bovine, mouse and 
human polypeptides. The amino-terminus and the core of the proteins were almost perfectly 
conserved whereas the last 30 amino acids of the carboxy-terminus were much more 
divergent. Putative transmembrane segments appeared to be conserved including the anchor 
signal. Such a high degree of conservation suggests that Xp18 protein plays an important 
functional role. A substantial identity (38 %) was also observed with a 160 amino acid 
product of a recently identified gene in the fruit fly, Drosophila melanogaster (Adams et al., 
2000). However, the fruit fly protein lacked the characteristic KVKXS motif present at the C-
terminus end of all vertebrate Xp18 proteins. Extensive Blast and Fasta searches in genome 
databases did not allow the identification of Xp18 related polypeptides in prokaryotes, in 
yeast, or in the nematode Caenorhabditis elegans.  
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Fig. 2. (A) Sequence alignment of flounder Xp18 deduced protein with zebrafish (Clark et al., 2002), fruit fly ( 
Adams et al., 2000), chicken ( Tirunagaru et al., 2000), bovine ( Smith et al., 2000 modified), mouse ( Bonaldo 
et al., 1996 and Sasaki et al., 1998), rat ( Bonaldo et al., 1996), and human ( Isogai et al., 2000) homologues. 
Multiple alignment was calculated by using ClustalW software ( Thompson et al., 1994) and corrected manually. 
Residues conserved in all species in which the sequence is known are boxed in black. Residues common to 
flounder and to any other species are shaded in gray. Amino acids common to at least half of the known 
sequences are shown in light gray background. (B) Cladogramme of Xp18 proteins as calculated from the 
multiple alignment. Bar corresponds to 0.1 residue substitutions per site. 

 
 
In silico screening of genome databases with flounder Xp18 cDNA sequence revealed 

that the human and mouse Xp18 genes were located on the X chromosome (Sanger Centre, 
2002). The human homologue was mapped to Xq22.1, a region implicated in several genetic 
diseases (OMIM, 2002), including premature ovarian failure (Bione et al., 1998). The human 
and the mouse Xp18 genes as were organized as two exons separated by a large intron. The 
exon-intron boundaries were perfectly conserved between the two species. Exon 1 encoded 
the first 40 amino acids of the protein while the second exon encoded the last 127 residues. 
Analysis of the 2,500 bp sequence located upstream from the initiation codon revealed the 
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presence of multiple potential recognition sites for transcription factors including several 
putative binding sites for the ubiquitous transcription factor Sp1. The presumed promotor 
region also contained putative binding sites for the estrogen receptor, Hepatocyte Nuclear 
Factor-1, MyoD and Nuclear Factor Kappa B. The presence of a potentially functional 
estrogen responsive element within the promoter region is of particular interest with respect to 
the high expression of Xp18 in the fish ovary. 

 

3.3 Xp18 expression profile in flounder 
 
Northern blot analysis revealed a strong expression of a single transcript in the ovary. A 

medium Xp18 expression was also found in the brain of flounder. No hybridization signal was 
detected in the other tissues tested (Fig. 3). The transcript was about 1650 bp in length and 
thus may represent a mature form of the mRNA. Quantitative RT-PCR analysis allowed 
detection of a basal Xp18 expression in all tissues tested. However important differences 
among tissues were measured. A statistically significant higher level of Xp18 expression was 
shown in the ovary in comparison with the brain (P = 0.005) or in the latter in comparison 
with the testis (P = 0.056). No significant differences were observed between ovary of 
different developmental stages. In most tissues; e.g. testis, spleen, kidney, gill, heart, intestine 
and liver, Xp18 was 10 to 100 fold less expressed than in the ovary (Table 1).  

 
 
Table 1. LightCycler RT-PCR quantification of Xp18 to β-actin mRNA ratio in different flounder tissues 
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Fig. 3. Northern blot analysis of Xp18 mRNAs isolated from several tissues of adult flounders. A (α32P)-dCTP-
labeled fragment of flounder Xp18 cDNA was hybridized with 20 μg of total RNA from flounder brain, liver, 
spleen, intestine, ovary, testis and muscle. Films were exposed for 14 days at −80°C to X-ray films. To illustrate 
the uniformity of RNA loading, a picture of the ethidium bromide stained gel showing 18S and 28S ribosomal 
RNAs is shown below the Northern blot. 

 

 

Fig. 4. Real time RT-PCR quantification of Xp18 and β-actin mRNA levels. Quantitative RT-PCR was 
performed with appropriate primers using LightCycler – FastStart DNA Master SYBR Green I dye (Roche 
Molecular Biochemicals). (A) Representative amplification plot of standards and samples; and (B) deduced 
standard curve for Xp18. Ct represents the threshold cycle at which fluorescence is first detected above 
background. A primer dimer signal was detected in the PCR negative control. 
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Fig. 5. Expression of Xp18 gene in the fish brain and ovary. (A) Parasagittal section of the fish brain illustrating 
the localization of Xp18 gene expression (Tel, telencephalon; Di: diencephalon; Me, mesencephalon; Ce, 
cerebellum; Rh, rhombencephalon; III, third ventricle). (B) Autoradiogram of a sagittal section through the ovary 
of a sexually mature fish labelled by in situ hybridization. The signal was restricted to the oocytes and the nuclei 
did not appear to be labelled. (C) Section of a fish ovary showing the histological organization of the organ. (D) 
Autoradiogram of a sagittal control section through the fish ovary hybridized with a sense probe to Xp18. Bars 
represent 1 mm. 

 
 
In situ hybridization (Fig. 5) revealed that the Xp18 gene was expressed in discrete 

regions of the flounder brain. A high hybridization signal was visualized in the 
circumventricular areas of the fish brain especially in the diencephalon around the third 
ventricle and in the mesencephalon around the tectal ventricle. In addition, a medium labeling 
was observed in the palial areas of the telencephalon. In the metencephalon, Xp18 mRNAs 
were also detected in the most internal layers of the cerebellum. In gonads, a strong 
hybridization signal was evenly distributed throughout the ovary whereas only a very weak 
staining was detected in the testis. Since in sexually mature flounders, the ovary is almost 
exclusively composed of oocytes, the Xp18 mRNA probe probably labeled germinal cells. 

Data from ESTs suggested that Xp18 was expressed in oocytes of Xenopus laevis 
(Clifton et al., 2001) and in whole embryo of Oryzias latipes (Kohara et al., 2001) or fetal 
pancreas of human (Melton et al., 2002) as well as in several tissues of adults, such as the 
pancreatic islet in human (Melton et al., 2002), the brain of rodents (Bonaldo et al., 1996, 
Sasaki et al., 1998) and Brachydanio rerio (Clark et al., 2002), and the lymphoid organs of 
Bos taurus (Smith et al., 2000) and Gallus gallus (Tirunagaru et al., 2000). All these tissues 
are characterized by an important protein synthesis and transport associated to endocrine 
activity and/or cell proliferation. 

 
3.5. Conclusion 
 

Our data indicate that the Xp18 protein identified in flounder has a particularly high 
level of expression in the ovary. Structural prediction analysis suggests that it may correspond 
to an integral protein with four transmembrane domains possibly located in the ER 
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membrane. The biological role of this protein remains to be established. However, the marked 
expression observed in the ovary supports the view that Xp18 may be involved in specific 
biological pathways associated with reproduction in females. In fact, cytogenetic studies have 
defined the X human chromosome long arm region Xq13.3-q26, where the Xp18 gene is 
located, as a critical region for normal ovarian function (Therman et al., 1990). Among the 
syndromes which have been mapped to this region of the X chromosome, premature ovarian 
failure (POF) is a defect of ovarian development characterized by primary or secondary 
amenorrhea with elevated levels of serum gonadotropins or by early menopause. POF 
candidate genes seem to be involved in normal ovary development and/or oogenesis (Bione et 
al., 1998). It would thus be of interest to investigate the existence of mutations and/or 
chromosomal abnormalities within the Xp18 gene in patients suffering from syndromes 
associated to ovarian malfunction. In the flounder, in situ hybridization studies conducted in 
intersexed male specimens may provide valuable information concerning the molecular 
mechanisms underlying the de-differentiation phenomenon that leads to the formation of 
ovarian structures in the testis. 
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