The taxonomic status and origin of the Portuguese oyster Crassostrea angulata (Lamark, 1819)

Frederico M. Batista 1,2, Alexandra Leitão 1,3, Arnaud Huvet 4, Sylvie Lapègue 4, Serge Heurtebise 4 and Pierre Boudry 4

1 Instituto Nacional de Investigação Agrária e das Pescas (INIA/PIPMAR), CRIPesul, Av. S de Outubro, 8700-305 Oeiras, Portugal; 2 Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Largo Prof. Abel Salazar, 2, 4099-003 Porto, Portugal; 3 Departamento de Genética e Biotecnologia, Centro de Genética e Biotecnologia da Universidade de Trás-os-Montes e Alto Douro, CGB/UTAD, P-5000-911, Vila Real, Portugal; 4 Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Unité Mixte de Recherche Physiologie et Ecophysiologie des Mollusques Marins, Centre de Brest, B.P. 70, 29280 Plouzané, France; 5 Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Laboratoire de Génétique et Pathologie (LGP), 17390 La Tremblade, France.

1. TAXONOMIC STATUS
The taxonomic status of the Portuguese oyster, Crassostrea angulata, and the Pacific oyster, Crassostrea gigas, has been a matter of controversy. Based on larval shell morphology, experimental hybridisation and electrophoretic studies of enzyme polymorphism several authors have considered these two species as being synonymous (1, 2).

2. PHYLOGENETICS ANALYSIS AND GEOGRAPHIC ORIGIN
During the last years, several genetic studies based on mitochondrial DNA (3, 4) and microsatellites (5) data have provided accumulating evidences that the two taxa are genetically distinct although close related. Phylogenetic analyses firmly place both Portuguese and Pacific oysters within an Asian Crassostrea clade supporting the hypothesis of the introduction of C. angulata from Asia to Europe. Pure populations of C. angulata were observed in Taiwan as well as presumed mixed populations of C. angulata and C. gigas in Northern China.

3. GENETIC VARIABILITY
The level of genetic variability of C. gigas, from samples collected in different parts of the world, appears to be lower than that of C. angulata, samples collected in Portugal, based on RFLP mitochondrial cytochrome oxidase C subunit I haplotypes (6). This difference could be related to the dissemination of C. gigas from Miyagi Prefecture to different regions in Japan and other places in the world where the Pacific oyster was introduced.

4. CYTOGENETICS ANALYSIS
Comparative analysis of restriction enzymes banding pattern revealed differences between all chromosomes of C. angulata and C. gigas with the exception of chromosome 10 (7).

3. GENETIC VARIABILITY
The level of genetic variability of C. gigas, from samples collected in different parts of the world, appears to be lower than that of C. angulata, samples collected in Portugal, based on RFLP mitochondrial cytochrome oxidase C subunit I haplotypes (6). This difference could be related to the dissemination of C. gigas from Miyagi Prefecture to different regions in Japan and other places in the world where the Pacific oyster was introduced.

6. CONCLUSIONS AND PERSPECTIVES
This study suggests that (1) Crassostrea angulata and C. gigas are genetically distinct although close related and (2) C. angulata has an Asian origin. The high genetic variability observed in C. angulata opens interesting perspectives for the development of conservation and breeding programs that can be useful for the expansion and diversification of the oyster culture industry.

REFERENCES