European Journal of Phycology Volume 41, Number 3/August 2006 : 259-279 http://dx.doi.org/10.1080/09670260600804868 © 2006, MetaPress

The original publication is available at http://www.tandf.co.uk/journals/

Cyanobacterial populations that build 'kopara' microbial mats in Rangiroa, Tuamotu Archipelago, French Polynesia

Laurent Richert¹, Stjepko Golubic^{2,*}, Roland Le Guédès³, Annie Hervé³ And Claude Payri¹

1 Laboratoire d'Ecologie Marine, Université de la Polynésie Française, Papeete, Polynésie Française 2 Biological Science Center, Boston University, 5 Cummington Str., Boston, MA 00215, USA

3 IFREMER, Centre de Nantes, Laboratoire VP/PBA, BP 21105, 44311, Nantes, France

*: Corresponding author : Correspondence to: Stjepko Golubic, Tel.: (617) 353-2432. Fax.: (617) 353-6340. e-mail: golubic@bu.edu

Abstract:

Cyanobacterial populations, the primary producers and builders of 'kopara' microbial mats were studied in four selected ponds along the rim of the Rangiroa Atoll, French Polynesia using a polyphasic approach. Seven isolates were maintained in uni-cyanobacterial cultures, characterized morphotypically and phylogenetically by evaluating sequences of the 16S rRNA gene of about 620 base pairs in length. Cyanobacteria in natural populations were analyzed microscopically, characterized morphotypically, and compared with cultured strains. Three of the isolates were identified in the field samples: *Lyngbya aestuarii, Johannesbaptistia pellucida* and *Chroococcus submarinus* were present in the mats only as minor components, whereas the species of *Schizothrix* that dominated the mat community could not be cultured. The sequence of *Johannesbaptistia pellucida* is published for the first time. The phylogenetic and taxonomic relations are discussed on the basis of a reconstructed phylogenetic tree in relation to morphotypic characters. Sequences of Kopara isolates plot separately from those cultured from the lagoon of the neighbouring atoll Tikehau, indicating a narrow niche differentiation of benthic cyanobacterial taxa. The results support the application of a polyphasic approach to characterization, ecology and diversity of cyanobacteria.

Keywords: culture, cyanobacteria, diversity, kopara, microbial ecology, microbial mats, phylogeny, polyphasic approach, 16S rRNA

[15.6.2006–10:36pm] (TEJP) [1-21] [First Proof]

Cyanobacterial populations that build 'kopara' microbial mats in Rangiroa, Tuamotu Archipelago, French Polynesia

⁵ LAURENT RICHERT¹, STJEPKO GOLUBIC², ROLAND LE GUÉDÈS³, ANNIE HERVÉ³ AND CLAUDE PAYRI¹

¹Laboratoire d'Ecologie Marine, Université de la Polynésie Française, Papeete, Polynésie Française ²Biological Science Center, Boston University, 5 Cummington Str., Boston, MA 00215, USA ³IFREMER, Centre de Nantes, Laboratoire VP/PBA, BP 21105, 44311, Nantes, France

10 (Received 24 December 2005; accepted 16 May 2006)

Cyanobacterial populations, the primary producers and builders of 'kopara' microbial mats were studied in four selected ponds along the rim of the Rangiroa Atoll, French Polynesia using a polyphasic approach. Seven isolates were maintained in uni-cyanobacterial cultures, characterized morphotypically and phylogenetically by evaluating sequences of the 16S rRNA gene of about 620 base pairs in length. Cyanobacteria in natural populations were analysed microscopically, characterized

15 morphotypically, and compared with cultured strains. Three of the isolates were identified in the field samples: Lyngbya aestuarii, Johannesbaptistia pellucida and Chroococcus submarinus were present in the mats only as minor components, whereas the species of Schizothrix that dominated the mat community could not be cultured. The sequence of Johannesbaptistia pellucida is published for the first time. The phylogenetic and taxonomic relations are discussed on the basis of a reconstructed phylogenetic tree in relation to morphotypic characters. Sequences of Kopara isolates plot separately from those cultured from

²⁰ the lagoon of the neighbouring atoll Tikehau, indicating a narrow niche differentiation of benthic cyanobacterial taxa. The results support the application of a polyphasic approach to characterization, ecology and diversity of cyanobacteria.

Key words: culture, cyanobacteria, diversity, kopara, microbial ecology, microbial mats, phylogeny, polyphasic approach, 16S rRNA

25 Introduction

Microbial mats are stratified communities arranged along steep vertical gradients of light, oxygen, sulphide, Eh and pH, with each stratum dominated by specialized guilds of microorganisms

- 30 (see Riding & Awramik, 2000; Krumbein *et al.*, 2003). The illuminated surface layers are dominated by microbial oxygenic and anoxigenic phototrophs, separated by a sharp oxic-anoxic boundary (Potts; 1980; Stal *et al.*, 1985; Nicholson
- 35 et al., 1987; Golubic, 1991), with chemolithotrophs distributed across this boundary (Jørgensen & Gallardo, 1999). Under stress conditions, such as fluctuations in temperature, water supply and salinity, cyanobacteria often remain unchallenged
- 40 as the principal primary producers of microbial mats (Golubic, 1994; Golubic *et al.*, 2000). Microbial mat communities are encountered world wide in a variety of marine, freshwater and terrestrial environments, including marine subtidal
 45 and intertidal ranges (Golubic, 1985; Pearl *et al.*,

Correspondence to: Stjepko Golubic, Tel.: (617) 353-2432. Fax.: (617) 353-6340. e-mail: golubic@bu.edu

2001; Rütters *et al.*, 2002; Abed *et al.*, 2003*a*, *b*), estuaries (Mir *et al.*, 1991), hypersaline ponds (Krumbein *et al.*, 1977), hot springs (Ward *et al.*, 1994; Lopez-Cortes, 1999*a*), and desert soils (Campbell *et al.*, 1989; Garcia-Pichel *et al.*, 2001).

A variety of shallow ponds on land rims of South Pacific atolls offer good conditions for development of thick microbial mats called 'kopara' by cyanobacteria. This system of ponds with variable water supply and a wide range of salinities provides a good model to study environmental preferences and differentiation of microbial communities. The study is relevant to our understanding of similar ancient microbial systems. Possible fossil counterparts of 'kopara'-type mats were recognized in Jurassic strata (Tribovillard *et al.*, 2000) and fossil microbial mats comprise a significant part of the stromatolite fossil record, which dominated early Earth history.

The biogeochemical properties of 'kopara' have been extensively studied with respect to relationships between organic compounds and mineralization processes (Trichet, 1967; Défarge *et al.*, 1985, 1996; Défarge & Trichet, 1990, 1993; 55

- 70 Trichet & Défarge, 1997; Trichet et al., 2001). The role of proteinaceous compounds and amino acid composition in controlling calcification was studied in deeper layers of 'kopara' mats (Gautret & Trichet, 2005) and other microbialites (Gautret
- 75 et al., 2004). The formation of phosphorite deposits in 'kopara' was studied by Jehl & Rougerie (1995) and Rougerie et al. (1997). Exopolysaccharides were studied by Rougeaux et al. (2001) and recently, in conjunction with the
- 80 present investigation, by Richert et al. (2005). The ultrastructure of accumulated exopolymers (mostly polysaccharides) was studied using Cryoscan scanning electron microscopy (Défarge et al., 1996), but only a few studies dealt with the microbial 85
- composition of 'kopara' mats using light microscopy (Défarge et al., 1994a, b; Mao Che et al., 2001).

This study deals with polyphasic characterization of cyanobacterial populations of 'kopara' 90 microbial mats as the principal primary producers in four selected ponds in the north-western part of the Rangiroa Atoll, by combining field observations, microscopic analysis of natural populations and cultured isolates from these populations. 95 It explores the apparent and cryptic cyanobacterial diversity in a series of tropical ponds. The

characterization assesses morphotypic and genotypic properties, the latter based on partial (620 base pair [bp]) sequences of 16S rRNA gene.

100 Materials and methods

Environmental setting

Rangiroa Atoll in the Tuamotu Archipelago, French Polynesia is the second largest atoll in the world covering 1,763 km² (Fig. 1). It consists of a narrow 105 land rim surrounding the central lagoon. The land rim is segmented by shallow channels, locally called 'hoa', into islets called 'motu'. Most 'hoa' are shallow passages, which link the ocean and the lagoon. Along the atoll's rim there are numerous isolated shallow ponds, mostly

- 110 less than 1 m deep, varying in size from tens to several hundreds of square metres. These ponds originated from the combined action of erosion and sedimentation. Parts of the land rim damaged during major storms produced depressions, which were subsequently closed by accu-
- 115 mulating reef sand and gravel sediments. The ponds are fed by rain and, during heavy swells, by seawater from the ocean and from the adjacent lagoon. They support luxurious growth of microbial mats, which contribute to particular organic-rich sediment build-up. The salinity 120
- in these ponds is quite variable, ranging from nearly freshwater to hypersaline conditions. Major storms and swells may re-set the salinity to the values prevailing in the ocean and/or lagoon, i.e. between 34 and 36 ‰.

A typical structure of the 'kopara' mat consists of a 125 succession of gelatinous laminae, each a few mm thick, forming layered organic-rich sediment 20-50 cm thick.

Fig. 1. Rangiroa Atoll, Tuamotu Archipelago, French Polynesia with the locations of the studied 'kopara' ponds. The neighbouring Tikehau Atoll is seen on the left. Modified from the NASA image. Scale bar: 10 km.

The surface layers of 'kopara' are orange, dark blueishgreen or grevish-black depending on the prevailing microorganisms, which, in turn, respond to the degree of wetness. Deeper layers are reddish-orange alternating with white layers encrusted with carbonate (Défarge et al., 1985, Gautret & Trichet, 2005).

Sampling

The current study explored microbial composition in 135 mats in four ponds located in the northwestern part of the Rangiroa Atoll designated as R2, R59, R60 and R63 (Fig. 1). Pond R2, located on the islet Pavete, was studied earlier by Défarge et al. (1994a). Mao Che et al. (2001) studied ponds R2 and R59 and characterized 140 their physical and chemical properties. The other two ponds, R60 and R63 were studied for the first time. This study was initiated by two field trips, in November 2000 and November 2001. Pond R59 was sampled during both trips and the other three ponds only in 2001.

145 In each of the ponds studied, several sampling sites were identified and selected by colour, texture and degree of wetness of the mats. The basic environmental parameters (pH, salinity and temperature) were measured and recorded as a part of the sampling procedure. Square pieces of mats ($\sim 50 \, \text{cm}^2$) were cut, placed in 150 sterile plastic boxes and stored at ambient temperature overnight. They were then stored at 20°C in the dark for 48 h before the isolation procedure. Subsamples were fixed in 5% formaldehyde solution in environmental water and stored in the dark in 5-ml vials for 155 microscopic analysis.

Isolation and maintenance of cultures

A small piece (c. 1g) of mat was excised under sterile conditions and homogenized in autoclaved environmen-160 tal water; 0.1 ml of the suspension was plated on solid Conway medium (agar 1.3%). The Conway medium is a modified version of the Walne medium (Walne, 1966). In 11 of natural sea water: NaNO₃, 100.00 mg; Na₂EDTA, 45.00 mg; H₃BO₃, 33.60 mg; NaH₂PO₄-165 2H₂O, 26.00 mg; FeCl₃-6H₂O, 1.28 mg; MnCl₂-4H₂O, 0.36 mg; trace metal solution, 1 µl; vitamins solution,

130

Cyanobacteria in 'kopara' microbial mats

50 µl; Trace metal solution: ZnCl₂, 1.05 g; CoCl₂-6H₂O, 1.00 g; (NH₄)6Mo₇O₂₄-4H₂O, 0.45 g; CuSO₄-5H₂O, 1.00 g; H₂O, 50 ml; vitamins solution: vit. B1, 400 mg; vit. B12, 20 mg; H₂O, 100 ml. The Petri dishes were incubated at 25°C with permanent artificial lighting (70 μ mol m⁻² s⁻¹) for 1–3 weeks.

During incubation, the cultures were frequently observed under light microscopy for colony picking.

- The apparently monospecific colonies of cyanobacteria and microalgae were picked using micromanipulation techniques (Rippka, 1988). The small colonies were transferred into liquid medium in plates with 96 wells each well contained about 200 µl of Conway medium.
 The plates were incubated under the same conditions as
 - for the Petri dishes.

The emerging colonies were checked for monospecificity using an inverted microscope, subcultured and transferred for maintenance to 30 ml of fresh liquid medium in 50-ml flasks containing 30 ml of double-

¹⁸⁵ medium in 50-ml flasks containing 30 ml of doublespiked (2 × conc.) Conway medium at 22°C under coolwhite fluorescent light (20 μ mol m⁻²s⁻¹) with a 12:12 h light-dark cycle. No attempt was made to make the isolates axenic. Five ml of the stock cultures were

- transferred into 25 ml of fresh Conway medium every month and pictures were taken using a Donpisha-TriCCD (Sony) digital camera mounted on a Leitz Diaplan microscope. Aliquots of the stock cultures were fixed in 3% formaldehyde and stored in darkness at room temperature for later microscopic comparative
- analysis.

Microscopy and morphometry

Light-microscopic analysis of fixed field samples and cultures was carried out by using an AxioStar microscope (Zeiss, Germany) equipped with transmitted light, phase contrast and Differential Interference Contrast (DIC, Nomarski) illumination. Additional information was obtained by autofluorescence using blue and green light excitation. The findings were photodocumented using an AxioCam digital camera attached to the microscope. The measurements were performed with a Zeiss Universal microscope equipped with an in-scale camera lucida. The projections of cell dimensions were scanned and subjected to morphometric analysis using
 Sigma-Scan measuring software (Jandel Scientific

- 210 Sigma-Scan measuring software (Jandel Scientific, Sausalito CA). The dimensions are given as mean ± standard deviation (number of measurements). The species dominance is expressed numerically based on percentage coverage in compressed microscopic pre-
- 215 parations, assuming the same proportionality in volume. This estimate follows botanical practice as modified for microorganisms (Golubic, 1967).

PCR amplifications

PCR was carried out without DNA extraction to amplify a 16S rRNA gene fragment of about 650 bp in length using two of the cyanobacteria-specific primers designed by Nübel *et al.* (1997), CYA106F and CYA781R corresponding to equivalent positions of the *E, coli* genome. One ml of exponentially growing

culture was centrifuged for 3 min at 9,000 g, the pellet 225 rinsed twice with 500 µl of H₂O and re-suspended in 500 µl of $1 \times PCR$ buffer (Eurogentec). The samples were stored at 4°C overnight prior to PCR.

The PCR amplifications were performed with a PTC 230 100 Programmable Thermal Controller (MJ Research Inc., Waltham, USA). Fifty picomoles of each primer, 25 nmol of each deoxynucleoside triphosphate, 5 µl of $10 \times PCR$ buffer (Eurogentec), 0.5 µl of Taq polymerase (Eurogentec), and 2 µl of prepared culture were combined with H_2O to a volume of 50 µl in a 100-µl test tube 235 and overlaid with two drops of mineral oil (Sigma Chemical Inc., Saint Louis, USA). After 10 min at 94°C, 35 cycles were carried out as follows: 94°C for 1 min, 60°C for 1 min and 72°C for 1 min. The amplification 240 was finished with the tubes kept at 72°C for 6 min before storage at 4°C. The PCR products were purified using the StrataPrep PCR Purification Kit (Stratagene, CA, USA) and sequenced commercially in both directions. The forward and reverse-complementary of the reverse sequences obtained were aligned against each other in 245 order to check the quality of the sequences. The seven consensus sequences were then deposited at EMBL under the accession numbers: AJ621832 to AJ621838.

Phylogenetic affiliations

The sequences were first used for a BLAST search 250 (Altschul et al., 1997) to check whether they were cyanobacterial in origin. They were then added to a text file (graciously provided by Annick Wilmotte) containing 143 complete and 163 partial (>600 bp) cyanobacterial sequences of the 16S rRNA gene. The 16S rRNA 255 sequences of E, coli (J01859), Bacillus subtilis (AJ276351), and Agrobacterium tumefaciens (D14500) were used as the outgroup. The file was edited with BioEdit v5.0.9 software (Hall, 1999). All these sequences 260 were multiple-aligned using ClustalX v1.81 program (Thompson et al., 1997) prior to construction of the phylogenetic trees with MEGA v2.1 (Kumar et al., 2001). Phylogenetic trees were constructed using neighbour-joining and maximum parsimony methods. 265 The distance matrix was computed using Kimura 2parameter model for dissimilarity values, followed by the construction of a tree with the neighbour-joining method (Saitou & Nei, 1987); these calculations were subjected to bootstrap analysis with 1,500 replicates. 270 The maximum parsimony calculation was also subjected to bootstrap analysis (500 replicates).

Morphotype identification

The collected and cultured cyanobacteria were characterized morphotypically and identified to the species level, using traditional phycological determination ²⁷⁵ manuals of Gomont (1892), Bornet & Flahault (1886–88), Tilden (1910), Geitler (1932), Kossinskaya (1948), Desikachary (1959) and Umezaki (1961). Generic assignments were made in consultation with newer phycological (Anagnostidis & Komárek, 1985; ²⁸⁰ Komárek & Anagnostidis, 1989, 1999, 2005; Komárek, 1994) and bacteriological systems (Rippka *et al.*, 1979;

3

[15.6.2006-10:36pm] (TEJP)

L. Richert et al.

Fig. 2. 'Kopara' microbial mat in pond R59 on the NW rim of Rangiroa Atoll. Note the colour changes from the wet centre to the dryer margins of the pond.

Castenholz *et al.*, 2001). Distinct populations of species that could not be related to published and named taxa were identified to the genus level with a species designation marked provisionally by a number.

Results

The 'kopara' ponds as microbial habitats

The 'kopara' ponds studied could be divided into 290 two groups on the basis of their prevailing salinity. Ponds R59 (Fig. 2) and R60 are characterized by fluctuating salinity with periodic returns to sea water values, following recharging during storm events. Prolonged calm and dry periods introduce 295 hypersaline conditions in these ponds, whereas they turn brackish in rainy periods. Pond R60 is located in a protected tortuous branch of a 'hoa', connected with the lagoon at high tide. The 'kopara' mat of this pond is submerged by 300 lagoonal water only when the tide is relatively high. During extended periods of exposure, the mat surface dries out, hardens, turns dark grey to black in colour and cracks into polygons. A gradient becomes established with relative

- moisture increasing from the edge towards the centre of the pond. The wet part of the mat is soft and orange-brown in colour. Pond R59 is larger than pond R60 and is well delimited as it is in an enclosed depression on the land rim of the atoll. It
 is separated from the ocean by several hundred
- metres of land with terrestrial vegetation and from the lagoon in places only by a beach ridge comprised of coral rubble. The 'kopara' mat covers a larger surface in this pond and the wet-
- ³¹⁵ to-dry gradient is better expressed. The cracks are deeper and the polygons thicker than in pond R60 and the wet parts in the protected areas are bright orange.

In contrast, ponds R2 (Fig. 3) and R63 exhibited consistently low salinity correlated with their 320 isolated position within the land rim of the atoll (Table 1). Défarge et al. (1994b) noticed a raindependent decrease of salinity in pond R2 from 8.9 ‰ in 1983 to 1.0 ‰ in 1992. We measured a salinity of 7.8 ‰ in November 2001. Pond R63 was 325 a well protected depression separated from both ocean and the lagoon and surrounded by land vegetation. It was in part deeper than 1 m and fish were observed to live in this pond. The 'kopara' 330 mat was well expressed at the edges of this pond. Polygon formation and colour distribution was similar to those observed in ponds R59 and R60. Pond R2 was larger than pond R63 and the mat was very well developed. The colour of large areas of the mat surface, however, was different from 335 other ponds: it was green to pale orange in the wet parts. The familiar coloration gradient was here compressed against the shore, showing a narrow orange zone followed by an equally narrow dark zone with polygons along the shoreline (Fig. 3). 340

Natural populations of cyanobacteria were analysed by light microscopy for species composition and abundance in ponds R2 and R59, which were selected as representative local end members with respect to the observed salinity gradient. Pond R2, located within the atoll's rim maintained very low salinity levels, whereas pond R59 fluctuated from hypo- to hypersaline conditions relative to the surrounding ocean and the nearby lagoon. The samples from all four ponds were used as a source of inocula for culturing.

Field populations of cyanobacteria

The microscopic analysis of field populations focused on actively growing surfaces of the mat,

2006-10:36pm] (TEJP)

Cyanobacteria in 'kopara' microbial mats

Fig. 3. Microbial mat zonation at the margin of pond R2. Dried, polygonally cracked mats in the front of the picture are dark (black when wet) due to high concentration of UV-protective scytonemin pigment. The zone with bumpy surface in the centre of the picture is regularly wetted and bright orange in colour due to high concentration of carotenoid pigments. A germinating coconut serves as a scale.

5

Table 1. Water temperature, salinity and pH in four ponds studied on Rangiroa Atoll.

Pond	R59	R60	R2	R63
Temperature (°C)	33.7–40.0*	31.1	32.0	36.6
Salinity (‰)	12.0–49.0*	27.3	7.8	6.1
pH	9.5–8.3*	8.4	7.7	8.2

*Measured November 2000.

375

380

- 355 less than 1 cm in depth. Samples in each pond were collected along a gradient of varying water supply from dry toward wet, as identified by surface colour, wetness, consistency and internal texture and by species composition of the mat.
- 360 The species composition of the actively growing surface layer of microbial mats was analysed in five sets of samples, two from Pond R2 and three from Pond R59. The results are presented in Table 2. Cell dimensions characterizing particular 365 populations are listed as cell width × length (shorter × longer cell dimension for coccoid species). Species determination was carried out wherever a relationship to published descriptions could be established. The abundance was estimated 370 as% coverage (see Golubic, 1967).

Differences in species composition and dominance were conspicuous within each pond along the gradient of water supply and retention. The change in species composition along this desiccation gradient was related with the observed change in colour and texture of the mat (Fig. 3). Microbial mats along the margins of 'kopara' ponds were often polygonally cracked by desiccation. Scytonema cf. myochrous (Dillwin) Agardh (Figs 4-6) occurred in ponds with relatively low salinity (R2-4). This is a large cyanobacterium with 25.9 ± 2.1 (16) µm wide falsely branched filaments. Thick, dark brown sheaths with upward diverging layering surround 8-10-µm wide trichomes. Cells are short and compacted in the meristematic apical regions becoming longer and torulose in the older, mature trichome segments. Dry habitats in the ponds with higher salinities (R59-8) were occupied by Calothrix sp. (Figs 7, 8) and to a lesser extent by Lyngbya aestuarii (Mertens) Liebman (R59-5). 390 Both taxa are protected by thick, layered, scytonemin-stained sheaths. Lyngbya aestuarii was successfully transferred into culture (see below).

Microbial mats in the slightly wetter zone inside 395 the peripheral dark rim around the ponds were intensive yellow-orange in colour due to a high concentration of intracellular carotenoid pigments. They were observed in all ponds, but were particularly well developed in Pond R59, where the salinity fluctuated between brackish and 400 hypersaline levels. Scanning electron microscopy (SEM) of critical-point dried preparations of these mats showed that they comprised intertwined filaments of variable diameter (Figs 9-11). Light 405 microscopy revealed that these mats were built by multitrichomous filaments of two species of Schizothrix. In pond R59, they were distributed in a mosaical pattern, in which the larger one, identified as S, splendida (Golubic, 1973) formed cushions up to 5 cm in diameter elevated up to 1 cm 410 above the water level (Figs 12, 13). The depressions around these cushions were overgrown by the smaller species designated here as Schizothrix sp. 2 (Fig. 16; Table 2). S, splendida achieved complete dominance in dryer portions of the mat (samples 415 R59-5, R59-8). A third species, designated here as Schizothrix sp. 1 (Figs 14, 15) was dominant only in the semi-dry samples from pond R2. None of the Schizothrix species encountered in 'kopara' mats 420 grew in culture.

.2006-10:36pm] (TEJP)

Table 2	2. Cell	dimensions	and	abundance	of	cyanobacteria	in	'kopara'	ponds.
---------	---------	------------	-----	-----------	----	---------------	----	----------	--------

		Abundance in each pond ^b						
Taxon	Cell width × length $(\mu m)^a$	R2-1	R2-4	R59-5	R59-2	R59-8		
Schizothrix splendida.	$2.03 \pm 0.37 (196) \times 4.59 \pm 0.98 (175)$			1	5	5		
Schizothrix sp.1	$1.35 \pm 0.15 (52) \times 2.66 \pm 0.52 (52)$	2						
Schizothrix sp.2	$0.88 \pm 0.17 (51) \times 4.13 \pm 0.90 (47)$			3	+	+		
Scytonema cf. myochrous	$9.02 \pm 0.87 (15) \times 5.11 \pm 1.02 (35)$		2					
Calothrix sp.	5.89 ± 0.98 (7) × 2.61 ± 0.58 (14)				1	2		
Lyngbya aestuarii	8.92 ± 0.37 (11) $\times 1.82 \pm 0.44$ (11)				1			
Oscillatoria spp.	na	1	2	2	1	1		
Leptolyngbya spp.	na	1	1	1	1	1		
Spirulina spp.	na	1		2	1			
Johannesbaptistia sp.1	4.93 ± 0.63 (67) $\times 2.74 \pm 0.65$ (62)	1	1					
Johannesbaptistia sp.2	3.02 ± 0.36 (227) × 1.06 ± 0.22 (223)		1	1				
Chroococcus sp.1	9.02 ± 3.77 (5) × 12.74 ± 1.21 (5)	1	1	1				
Chroococcus sp.2	6.22 ± 1.70 (14) $\times 8.08 \pm 0.81$ (14)	1	1	1				
Chroococcus sp.3	3.92 ± 0.64 (58) × 5.16 ± 0.69 (58)	1	1	1				
Aphanocapsa sp.1	2.42 ± 0.31 (146) $\times 2.83 \pm 0.33$ (146)			1	1			
Aphanocapsa sp.2	2.91 ± 0.31 (12) $\times 2.52 \pm 0.42$ (12)	1						
Aphanocapsa sp.3	4.70 ± 0.37 (16) $\times 5.24 \pm 0.22$ (16)			1				
Aphanothece sp.1	3.86 ± 0.32 (107) $\times 5.64 \pm 0.88$ (105)	1						
Aphanothece sp.2	3.82 ± 0.36 (15) $\times 7.74 \pm 1.39$ (16)		1					
Aphanothece sp.3	2.12 ± 0.24 (35) × 2.84 ± 0.64 (29)				1			
Gloeocapsa deusta	2.50 ± 0.44 (7) $\times 3.52 \pm 0.41$ (7)				+			
Gloeocapsa sp.1	3.24 ± 0.78 (20) × 4.24 ± 0.62 (20)	1						
<i>Gloeothece</i> sp.1	2.95 ± 0.26 (24) × 4.98 ± 0.48 (16)	1						
<i>Gloeothece</i> sp.2	4.58 ± 0.61 (46) × 6.71 ± 1.06 (44)			1				
Xenococcus sp.	na	1						

^{*a*} These dimensions are expressed as mean \pm SD (number of measurments); na = not applicable.

^b Abundance codes: 5 = 75 - 100% coverage; 4 = 50 - 75% coverage; 3 = 25 - 50% coverage; 2 = 10 - 25% coverage; 1 = < 10% coverage, but frequent; + = rare.

Microbial mats in pond R2, with lower and stable salinity, were significantly more diverse than those in pond R59. The colour ranged from pale orange to blueish-green. Populations of different 425 Spirulina species and cyanobacteria with extremely narrow trichomes classified as *Leptolyngbya* spp. alternated in frequency of occurrence without prominent dominance. The group of species listed in Table 2 as Spirulina spp. refers to the following 430 identified morphospecies: S, tenerrima Kützing, S, subtilissima Kützing, S, subsalsa Oersted and S, labyrinthiformis (Meneghini) Gomont. The most common were S. tenerrima with helices 1.32 ± 0.13 (69) µm wide and 9-10 windings per 10 µm length 435 of helix (Figs 17-21) and S, subtilissima with helices $2.49 \pm 0.2 \,\mu\text{m}$ wide and 6–7 windings per 10 µm length. Several sheathed cyanobacteria with narrow trichomes, classified as Leptolyngbya, less than 1 µm wide were present in these mats in 440 considerable densities. Some of these morphotypes are characterized by aerotopes (intracellular clusters of gas vesicles; Figs 22, 23), as determined by the use of Differential Interference Contrast (DIC)

microscopy. Others have gas vesicle clusters at the 445 tip of their terminal cells (Figs 24-26). These observations need to be confirmed by electron microscopy. Some of these filaments are distinguished by their extremely small cell dimensions (Figs 27-29). The identification as cyanobacteria needed to be confirmed by autofluorescence to 450 distinguish them from flexibacteria that were also present in the mat (e.g. Fig. 30, upper right). Several small filamentous cyanobacteria occurred intermingled in the mat as free trichomes. These could be classified within the genus Geitlerinema 455 (Oscillatoria, sensu Geitler).

Coccoid cyanobacteria commonly occurred interspersed among filamentous members of the mat. They included colonial forms with division in one plane representing different species of Aphanothece 460 (Figs 31-33), and those dividing in two or three planes such as Aphanocapsa (Figs 34, 35) and Gloeocapsa (Fig. 36), At least three different species of Chroococcus were observed as minor constituents of the mats, occurring in small clusters (Figs 37–41). 465 These populations were distinct, with hardly any overlap in size (Table 2) and were considered different species. The largest, Chroococcus sp.1. (Figs 37, 38), was most likely the source of the cultured strain C, cf. submarinus strain BM. 470 The two smaller taxa, Chroococcus sp. 2 and 3 did not correspond to any known species and may represent new species. Clusters of cells with variable dimensions (Fig. 42) possibly belong to 475 cyanobacteria with multiple fission, such as Xenococcus spp.

[15.6.2006–10:36pm] (TEJP)

[First Proof]

Figs. 4–8. Filamentous, heterocystous (N-fixing), falsely branched cyanobacteria responsible for dark colouration of the mat along the margins of 'kopara' ponds. These relatively large microorganisms are embedded into a matrix of finer filamentous cyanobacteria of *Leptolyngbya* morphotype. Fig. 4. Filaments of *Scytonema* cf. *myochrous* from pond R2, with dark scytonemin pigment invested in the sheaths. Fig. 5. Club-shaped 'meristematic' growth-zone at the tip of a *Scytonema* trichome, characterized by compact stacks of short cells. Fig. 6. Central portion of the filament with torulose trichome cells and a bipolar intercalary heterocyst. Fig. 7. *Calothrix* cf. *pulvinata* from pond R59. Fig. 8. Detail of false branching in *Calothrix* with differentiated basal unipolar heterocysts. Scale bars: 100 μm (Fig. 4), 50 μm (Fig. 7) and 10 μm (Figs 5, 6, 8).

Two different morphotypes of *Johannesbaptistia pellucida* (Dickie) Taylor et Drouet (listed in Table 2 as *Johannesbaptistia* sp. 1 and 2) occur in separate populations with distinctive size ranges (see below). Both morphotypes co-occurred in pond R2, but only the larger one was found in pond R59. One strain of this species has been successfully isolated and grown in culture.

485 *Phylogenetic and morphotypic characterization of cultured isolates*

1

480

None of the dominant forms of cyanobacteria observed in natural samples grew in our cultures,

but most cultured cyanobacteria were identified in natural populations as minor components. The isolation and culturing lead to establishment of seven uni-cyanobacterial cultured strains, three of coccoid and four of filamentous cyanobacteria:

- Chroococcus cf. submarinus (Hansgirg) ⁴ Kováčik – strain BM;
- (2) *Johannesbaptistia pellucida* (Dickie) Taylor et Drouet strain GC;
- (3) *Rhabdoderma* cf. *rubrum* (Ålvik) Komárek et Anagnostidis strain CH;
- (4) Geitlerinema (Oscillatoria) sp. strain FE;

490

7

495

L. Richert et al.

Figs. 9–16. *Schizothrix* species are dominant mat-building cyanobacteria in 'kopara' ponds, comprising most of the biomass of the bumpy brightly orange mats. Fig. 9. SEM of critical point-dried fabric of multitrichomous filaments of *Schizothrix splendida* forming1–2-cm high cushions on surface of mat. Figs 10, 11. Details of fabric. Figs 12–16. DIC (Nomarski contrast) light micrographs. Fig. 12. Multitrichomous filaments of *Schizothrix splendida* from pond R59. Fig. 13. Filament of *Schizothrix splendida* with single trichome and wide textured and birefringent sheath. Fig. 14. Trichome of *Schizothrix* sp.1, from pond R2 with conical terminal cell, surrounded by wavy, externally diffluent sheath. Fig. 15. A bundle of filaments of *Schizothrix* sp.2 from pond R59. Scale bars: 100 μm (Fig. 9), 20 μm (Fig. 11) and 10 μm Figs (10, 12–16).

- (5) Lyngbya aestuarii (Mertens) Liebman strain LY;
- (6) *Leptolyngbya* cf. *golenkiniana* (Gomont) Komárek & Anagnostidis – strain FF;
- (7) *Pseudophormidium* cf. *battersii* (Gomont) Komárek & Anagnostidis – strain GF.

These organisms were characterized phenotypically by their microscopic morphological properties and phylogenetically by analysing partial, (~620 bp) 16S rRNA sequences. Their phylogenetic affiliation was first assessed through the BLAST search, which related them to complete or partial 16S rRNA gene sequences published in the data banks (Genbank, EMBL, DDBJ). The closest affiliations varied between 99% and less than 92%. The seven sequences obtained were then multiple-aligned with 143 complete and

505

510

2006-10:36pm] (TEJP)

Cyanobacteria in 'kopara' microbial mats

Figs. 17-30. Small filamentous cyanobacteria distributed within the matrix of the 'kopara' mats. Figs 17-21. Spirulina tenerrima occurred in small groups among fine filamentous cyanobacteria. Figs 22, 23. A sheathed Leptolyngbya-type cyanobacterium with coarse intracellular gas vesicle clusters. Note the sheathed trichomes on the top of both pictures and the hood-like gas vesicle clusters in the terminal cells (also in Fig. 21, upper right). Figs 24-26. A submicron-sized sheathed 'Leptolyngbya' morphotype with light-refracting terminal gas vesicle clusters. Figs 27-29. Fine, filamentous 'Leptolyngbya' forms with shorter, clearly separated cells. Fig. 30. A larger 'Leptolyngbya' form with thick sheaths, without gas vesicles. Scale bar: 10 µm.

520 163 partial (>600 bp) known sequences of the cyanobacterial 16S rRNA gene. The interrelationships were expressed by their positions in the constructed phylogenetic trees. The topology of the trees is the same with the two methods used, 525 neighbour-joining and maximum parsimony. Only the distance tree is presented here as a simplified outline in Fig. 43. The isolates are marked by bold lines and lettering.

The total number of nucleotides compared was 530 600 after elimination of non-informative portions. Fifteen shorter partial (~450 bp) sequences of mat-forming cyanobacteria from the lagoon of the neighbouring atoll Tikehau (Abed et al., 2003b) were added for comparison (TK, bold).

535 1. Chroococcus cf. submarinus strain BM (Figs 44-47) is characterized by cells dividing by cleavage in three planes, surrounded by firm gelatinous envelopes. Cells are isodiametric, sometimes mutually flattened at contact, 540 elongated in the course of the division with shorter to longer dimensions: 7.78 ± 1.09 $(59) \,\mu\text{m} \times 10.35 \pm 1.28$ $(59) \mu m$. The cultured strain occupies by its size an intermediate position between the natural populations of Chroococcus 545 sp. 1 and 2. (Figs 37, 38; Table 2).

There are at present no 16S rRNA gene sequences available in data banks for the genus Chroococcus, although two Chroococcus strains are maintained in culture collections, identified as Chroococcus turgidus PCC 7946 and Chroococcus prescottii Drouet and Daily CCAP 1412/4. The sequence of our Chroococcus cf. submarinus strain BM plots distant from all published sequences. This strain occupies a position close (8.1% divergence) to Chroococcus turgidus PCC 9340 in 555 the phylogenetic tree published in Bergey's manual, i.e. between clusters VII and VIII of Wilmotte & Herdman (2001). The next closest sequence with 8.8% divergence is Cyanothece PCC 7424 (isolated by P.A. Roger from a rice field, Senegal), which is 560 currently the PCC reference strain for the Cyanothece group, subcluster 1.1.

Johannesbaptistia pellucida strain GC (Figs 48, 49) is a coccoid cyanobacterium, dividing in one plane forming series of cells, often in pairs after division, embedded into a thick smooth gelatinous sheath. Cells of the cultured strain are wider than long, 10.87 ± 1.94 (122) µm wide and 6.12 ± 2.14 (116) µm long. They are significantly larger than the cells in natural populations (Fig. 50; 570 Table 2). As in the case of Chroococcus, there are

550

9

L. Richert et al.

Figs. 31–42. Coccoid cyanobacteria in 'kopara' mats. Figs 31–33. Three species of *Aphanothece* distinguished by cell division in one plane and production of extracellular gel. Figs 34, 35. Two species of *Aphanocapsa*, which divide in two or three planes, but form similar colonies held by extracellular gel. Fig. 36. *Gloeocapsa* cf. *deusta* with scytonemin-stained envelopes, Figs 37–41. Different morphotypes of *Chroococcus* with populations covering a wide spectrum of sizes. Fig. 42. Clonal cluster of cells of *Xenococcus* sp. Variable sizes within the same population are characteristic of cyanobacteria with multiple fission. Scale bar: 10 µm.

at present no 16S rRNA gene sequences available in data banks for *Johannesbaptistia*. To our knowledge, there are also no strains of *Johannesbaptistia* available in culture collections. The closest sequence with about 7.5% divergence was *Gloeocapsa* PCC 73106, isolated by R. Rippka

575

from a sphagnum bog in Switzerland and the next closest was *Cyanothece* ATCC 51142 with 8.9% divergence.

3. *Rhabdoderma* cf. *rubrum* strain CH (Fig. 51) exhibited properties between those of coccoid and filamentous cyanobacteria. It is a cyanobacterium

5.6.2006-10:36pm] (TEJP)

Cyanobacteria in 'kopara' microbial mats

Fig. 43. The positions of 'kopara' mat isolates within a simplified 'closest neighbour' phylogenetic tree for cyanobacteria, bold lines and letters showing the positions of Geitlerinema sp. strain FE, Johannesbaptistia pellucida strain GC, Chroococcus submarinus strain BM, Lyngbya aestuarii strain LY, Rhabdoderma rubrum strain CH, Leptolyngbya golenkiniana strain FF, Pseudophormidium battersii strain GF and 15 sequences of Tikehau lagoonal populations (TK). Triangular branches represent condensed clusters. Numbers are bootstrap percentages.

with rod-shaped cells dividing in one plane and forming short series of 4-8 cells, without visible sheath or envelope, with cells 1.54 ± 0.24 (198)µm wide and 2.29 ± 0.90 (221) µm long. The strain has not been observed in natural populations. Morphologically, it is close to Rhabdoderma

585

rubrum (Ålvik) Komárek & Anagnostidis, which 590 was also described from cultures isolated from saltwater bodies along the coast of Norway (Komárek & Anagnostidis, 1999, p.115).

The sequence of Rhabdoderma cf. rubrum strain CH plots close to several marine Synechococcus 595

[1-21] [First Proof]

Figs. 44–50. Cocoid cyanobacteria isolated in culture and sequenced. Figs 44–47. *Chroococcus submarinus* strain BM in culture. Fig. 44. Culture shows stable rhythmic growth with cells dividing by binary fission and separating after two subsequent divisions. The intermittent production of gelatinous envelopes confines the cells following cleavage. Fig. 45. Culture showing binary fission in three planes forming groups with separation after three subsequent divisions. Fig. 46. Teratologic irregular cell size increase in freshly transferred culture. Fig. 47. Culture with rapidly dividing cells separating after each division. Figs 48–50. *Johannesbaptistia pellucida* in culture and nature. Fig. 48. Cultured strain GC showing stable growth and normal morphology. Cells divide in one plane and remain connected in a series by the intercellular gel. Fig. 49. Teratologic deformation of shape in and cells shifted by crowding, following the transfer into fresh medium. Fig. 50. *Johannesbaptistia* populations observed in nature among other mat microorganisms including *Leptolyngbya* morphotypes with gas vesicle clusters (lower left). Scale bars: 20 μm (Fig. 44), 25 μm (Fig. 46), 10 μm (Figs 45, 47–50).

sequences: within 0.7% divergence of Synechococcus PCC 7117 (isolated by A. Neilson from a low salinity brine pond, Port Hedland, Western Australia), at 0.8% divergence of both Synechococcus PCC 8807 (isolated by K. Giebler & R. Rippka from a lagoon at Port Gentil, Gabon) and a strain identified as Synechococcus elongatus, isolated by A. Lopez-Cortes (1999a) from calcareous oncoids in a coastal thermal spring in Bahia Concepcion, Baja California, Mexico (salinity of 2.9% and temperature ranging from 28 to 45°C, pH 7.1). The marine strain of Synechococcus PCC 73109 (isolated by C. Van Baalen from sea water at City Island, New York) shows 1.0% divergence with our strain of Rhabdoderma cf. rubrum. Because of the formation of distinct cell series by this organism and the known polyphyletic nature of the genus Synechococcus, we preferred

600

605

610

to affiliate this morphotype with the morphogenus *Rhabdoderma* Schmidle & Lauterborn, a designation which may be applicable to other phylogenetically and ecologically close isolates of the same branch.

4. Geitlerinema (Oscillatoria) sp. strain FE (Fig. 52) is a motile cyanobacterium with narrow, 620 somewhat rigid trichomes, slightly attenuated and curved at the tip, without sheath. The constrictions at the cross walls are absent or barely noticeable, the cells slightly longer than wide: 2.33 ± 0.31 $(121) \mu m$ wide and 3.55 ± 1.14 $(122) \mu m$ long. 625 The end-cell is narrower than trichome cells and rounded. This sequence clusters within 3.1% divergence with Oscillatoria cf. laetevirens (isolated by T.L. Nadeau and R.W. Castenholz from a 630 hypersaline pond in Guerrero Negro, Baja California, Mexico), 3.2% divergence with the

[15.6.2006-10:36pm] (TEJP) [1-21] [First Proof]

Figs. 51–60. Filamentous cyanobacteria isolated in culture and sequenced, Fig. 51. *Rhabdoderma* cf. *rubrum* strain CH forms short cell series of 4–8 cells following division in one plane. Fig. 52. *Geitlerinema* sp. strain FE with trichome tips slightly tapered and bent. Figs 53–58. *Lyngbya aestuarii* as observed in nature and culture. Fig. 53. Field population in 'kopara' pond R59 with characteristic layered yellow-brown sheath. Fig. 54. Cultured *Lyngbya aestuarii* strain LY, showing trichome tip with a slightly narrower calyptrate end cell within a firm but thin sheath. Fig. 55. Degraded trichome with cells separating like coins in a stack (left), and a biconcave collapsing necridic cell (right). Figs 56, 57. Two optical sections of a site of trichome fragmentation, which starts with the biconcave collapse of necridic cells, and ends by differentiation of terminal cells at the two ends of separating fragments. Note the formation of a ring of probable gas vesicle clusters around the new terminal cells. Fig. 58. External surface of an old *Lyngbya* sheath degraded by bacteria. Fig. 59. *Leptolyngbya* cf. *golenkiniana* strain FF. Fig. 60. *Pseudophormidium* cf. *battersii* strain GF. Scale bar: 10 µm.

highly salt resistant *Oscillatoria* UTCC 487 (isolated by J.A. Hellebust from potassium mine drainage in Saskatchewan, Canada), and at 3.5% divergence with *Oscillatoria* sp1-SLR2 (isolated by T. Kuritz from hypersaline alkaline lake Qaroun,

Egypt). More distantly at 7.0% divergence there is the *Geitlerinema* cluster including the PCC reference strain for a marine species of *Geitlerinema* strain PCC 7105. This identification is compatible with morphological characterization, particularly

640

with respect to the terminal cell morphology, but the strain FE is smaller than given in the species description of *Oscillatoria laetevirens* (Gomont, 1892).

645

650

5. Lyngbya aestuarii strain LY (Figs 54–58) is characterized by short-cells, somewhat rigid trichomes within a thick layered and brownpigmented sheath. Trichomes are slightly constricted at the cross walls and briefly attenuated at the tip with a distinct hourglass-shaped calyptra. Cells are 12.48 ± 1.30 (51) µm wide and 2.51 ± 0.47

- (46) μm long. The strain LY sequence is closest to two sequences corresponding to the PCC 7419
 strain, which is the PCC type strain of *Lyngbya*
- *aestuarii* (isolated by J.B. Waterbury, from a salt marsh, Woods Hole, Massachusetts). The LY sequence clusters at 2.1% divergence with the sequence of L, *aestuarii* PCC 7419 deposited by
- 660 Nübel *et al.* (1997) and 2.2% divergence with the sequence of the same strain deposited by Ishida *et al.* (2001). It clusters at 3.3% divergence with *Lyngbya majuscula* strain CCAP 1446/4 (isolated by George from a brackish ditch at Great
- Yarmouth, Norfolk, England), and 4.4% divergence with *Lyngbya hieronymusii* (isolated by W.J. Lee and K.S. Bae from Daecheong reservoirs, Korea). By morphotype, the strain LY is similar to the field population in 'kopara' mats (Fig. 53);
 it complies with the description and is within the
- range of variation of *L. aestuarii* as described by Gomont (1892).

6. Leptolyngbya cf. golenkiniana strain FF (Fig. 59) is characterized by very narrow 675 trichomes without sheaths, non-attenuated at the tip, exhibiting peculiar crooked growth, with sudden angular distortions. Cells are slightly wider than long: 1.28 ± 0.18 (132) µm wide and 1.02 ± 0.26 (184) µm long with clearly expressed 680 constrictions at the cross walls. The end-cell is rounded and larger than others. The sequence clusters at 3.1% divergence with a strain isolated by A. Lopez-Cortes (1999b) from an intertidal pond in Mexico under the name 'Oscillatoria 685 limnetica', 4.1% divergence with LPP strain MBIC10087 (isolated from Pacific Ocean around Japan), 4.4% divergence with Phormidium strain MBIC10003 (isolated from equatorial Pacific Ocean), and 4.5% divergence with LPP strain 690 MBIC10012 (isolated from the Pacific Ocean). More distantly at 4.6% divergence there is

Leptolyngbya thermalis isolated by A. Lopez-Cortes (1999*a*) from a thermal spring in a coastal brackish system (salinity 2.5 to 2.8%), Bahia Concepcion, Mexico.

7. *Pseudophormidium* cf. *battersii* strain GF (Fig. 60) has filaments with thin sheaths, with torulose trichomes with clear constrictions at the cross walls, not attenuated at the tip. Cells are

slightly wider than long: 1.63 ± 0.24 (144) µm wide 700 and 1.39 ± 0.40 (294) µm long; the end-cell is conical. The sequence clusters at 5.6% divergence with *Synechococcus* IR11 – sequence deposited by N. Tezuka and M.M. Watanabe in 2001 and the second closest (with 7.9% divergence) is LPP 705 MBIC 10086 – sequence deposited by S. Suda and H. Sekiguchi in 2001.

Discussion

The results of the current study of 'kopara' 710 microbial mats support the polyphasic approach to microbial ecology, which combines culturedependent and culture-independent methods, and includes morphotypic as well as phylogenetic characterizations (e.g. Abed et al., 2002, 2003a, b). The results illustrate the value as well as the 715 limitations of the culture-dependent approaches, and the need to complement them with cultureindependent ones (see Amann et al., 1995). The taxa grown in our cultures represented a small 720 subset of those observed in natural populations, from which the cultures were isolated. None of the taxa that were observed dominating natural populations survived in culture, although three out of seven cultured morphotypes could be observed and confidently identified in natural populations. 725 The other four were not observed but are assumed to be present as minor components. Thus, culturing as a selective process is insufficient to characterize microbial diversity, but it does reveal a part of a cryptic diversity, which may 730 be important when environmental conditions change.

The identification of the field populations studied and the isolated strains was carried out to the species level whenever possible. The concept of 735 species in microbiology is currently under scrutiny (Castenholz, 1992); however, a new picture of the speciation process in prokaryotes is gradually emerging (Ward, 1998; Rossello-Mora, 2001; Cohan, 2001, 2002; Konstantinidis & Tiedje, 740 2005; Gevers et al., 2005), which is more consistent with the dynamics of microbial natural populations (Abed et al., 2003a). For determination of morphotypes, we have used the taxonomic references that are traditional in phycological field 745 studies as the best approximation, and related them to the terminology accompanying published phylogenetic information. Morphotypic characterization was carried out comparatively for natural populations and those isolated and grown in our 750 cultures. Phylogenetic characterization was applied to cultured forms alone and related to the morphotypic properties observed on cultured strains.

760

[15.6.2006–10:36pm] (TEJP)

Cyanobacteria in 'kopara' microbial mats

755 *Phenotype comparisons of natural populations with cultured isolates*

The dark grey colouration (black when wet), which characterizes the mats on dry margins of 'kopara' ponds, originates from the cyanobacterial extracellular pigment scytonemin, which protects the

cells from high irradiances of light and UV radiation (Garcia-Pichel & Castenholz, 1991). The pigment is located in thick cyanobacterial polysaccharide envelopes and sheaths. In 'kopara'

765 ponds, dark pigmented envelopes were observed in species of the coccoid *Gloeocapsa* and *Chroococcus*, in non-heterocystous *Lyngbya*, and heterocystous *Scytonema* and *Calothrix* (Figs 4, 7F).

Scytonema cf. myochrous occurred in pond R2
 with low salinity, which is ecologically consistent with the known terrestrial-subaerial habitats of this species. Calothrix sp. was found in the ponds with higher salinity and is presumed to be a marine or salt-tolerant organism close to C, pulvinata

- (Mertens) Agardh. Neither of these dominant cyanobacteria survived in culture. The traditional phycological systems recognize separate marine and freshwater species of this genus (Gomont, 1892; Geitler, 1932; Komarek & Anagnostidis,
- 780 2005). In contrast, Bergey's manual reserves the genus name *Calothrix* exclusively for freshwater isolates, whereas the marine cultured forms of similar morphology are moved to the genus *Rivularia* (Rippka *et al.*, 2001), which, in phycolo-
- ⁷⁸⁵ gical systems, also includes several marine and freshwater species with distinctive morphotypical and ecological properties (Golubic & Campbell, 1981; Whitton, 1987; Obenlüneschloss & Schneider, 1991). The problem remains unresolved as these populations were not phylogenetically

evaluated. Large areas covered by bright orange-yellow microbial mats of *Schizothrix* (Figs 2, 3) were the most conspicuous feature in the 'kopara' ponds

(see also Golubic *et al.*, 1999, colour plate I. fig. *A*). The dominance of *Schizothrix* species in pond R59 was also observed earlier (Mao Che *et al.*, 2001). The presence of small-size multitrichomous cyanobacteria, consistent with the morphological characters of the genus *Schizothrix* was also

- photodocumented for pond R2 by cryo-scaning electron microscopy (see Trichet & Défarge, 1997, plate 53). Although consistently present in the ponds, none of the *Schizothrix* species grew in our
- 805 cultures. In our study, *Schizothrix* species dominated in ponds with elevated salinities. Apparently, the two species in pond R59 achieved a niche differentiation, in which the larger (*S, splendida*), occupied minor elevations with better drainage and higher insolation, whereas the smaller (*Schizothrix*)
- higher insolation, whereas the smaller (*Schizothrix* sp. 2) preferred lower, water-logged positions in

the mat. Only a few species of Schizothrix have been described from marine and saline habitats. Gomont (1892) described this genus as containing terrestrial and aquatic, but not completely marine 815 species. Geitler (1932) shared the same opinion, but accepted S, creswellii Harvey and two species described incompletely by Hansgirg, S, minuta and S, litoralis as marine. Since then, bona fide Schizothrix species have been observed in both 820 marine and hypersaline environments (Komárek & Anagnostidis, 2005). Schizothrix gebeleinii forms subtidal stromatolites in the high-energy marine setting of the Exuma Sound, Bahamas (Golubic & Browne, 1996). Schizothrix splendida dominates 825 hypersaline ponds in the Coorong lagoon (Australia) and intertidal mats of Abu Dhabi (United Arab Emirates), the Bahamas and Florida Keys (Golubic, 1973), suggesting a global distribution as has been documented for 830 Microcoleus chthonoplastes by Garcia-Pichel et al. (1996). Schizothrix sp.1, which was observed in the low salinity 'kopara' pond R2, is similar to the marine S, cresswellii Harvey, but also close to the freshwater S, coriacea (Kützing) Gomont and 835 S, lacustris A. Braun.

We have observed in 'kopara' mats a variety of cyanobacteria with single narrow and sheathed could be trichomes, which classified as Leptolyngbya Anagnostidis & Komárek, 840 or placed among the narrow species of Phormidium sensu Geitler. Mao Che et al. (2001) and Défarge et al. (1994a) reported a small Phormidium to be dominant in pond R2, which may correspond 845 to one of the Leptolyngbya populations observed by us in the submerged 'kopara' mats (Figs 22-30). However, the identity of these small forms is difficult to establish on purely morphological grounds, in part because of the incomplete nature 850 of early descriptions. Marine Leptolyngbya (Pormidium) morphotypes were characterized by Wilmotte (1991) and subsequently sequenced (Wilmotte et al., 1992). However, many organisms of similar morphology plotted distant from this group. Forms with narrow trichomes, long cylind-855 rical cells and a terminal gas vesicle cluster (Figs 24-26) are similar to Phormidium cf, crosbyanum Tilden [= Leptolyngbya crossbyana (Tilden) Anagnostidis & Komárek], which forms 860 large microbialites in the lagoon of the neighboring Tikehau Atoll.

Some of the cyanobacteria with narrow trichomes are also characterized by unusually short, torulose cells with clear constrictions at cross walls and occasional formation of false branching. Forms with similar growth habit, but slightly larger, have been cultured by Silva & Pienaar (2000) under the generic designation of *Leptolyngbya*, Two strains of this morphotype

865

L. Richert et al.

- developed in our cultures (Figs 59, 60), which were quite similar to common marine epiphytes, described originally by Gomont as *Plectonema golenkinianum* and *P, battersii* (Gomont, 1892; see also Golubic *et al.*, 1999, pl.2-A). Komárek & Anagnostidis (2005) are uncertain regarding the
- generic identity of these forms, placing them alternatively either within the genus *Leptolyngbya* or within *Pseudophormidium*, With respect to the 16S rRNA sequences obtained, these two morpho-
- types plotted distant from one another suggesting distinction above the genus level. For this reason, we have also assigned them to two morphotypically similar but distinct genera. Such designations remain provisional awaiting results of molecular sequencing of a larger number of similar morpho-

types (Komárek & Anagnostidis, 2005). Species of the genus *Oscillatoria* Vaucher

- with narrow trichomes and elongated cells have recently been classified separately under the name *Geitlerinema* (Anagnostidis, 1989; Castenholz *et al.*, 2001; Komárek & Anagnostidis, 2005). Our cultured strain *Geitlerinema (Oscillatoria)* strain FE (Fig. 52) has not been observed in field
- samples collected from the ponds. Our cultured organism is similar in shape and size to a South African marine isolate of Silva and Pienaar (2000), which they identified as *Geitlerinema lemmermannii* (Wołoszyńska) Anagnostidis, a species that was originally described from a lake
- 900 in Java. Our isolate is also similar to, but slightly smaller than a hypersaline taxon found in Solar Lake, Sinai and described as Oscillatoria lacus solaris (Campbell & Golubic, 1985, fig. 8), currently revised as Geitlerinema (Anagnostidis, 1989).

The genus *Rhabdoderma* is placed in the family *Synechococcaceae*, Our isolate is consistent with the description of the genus. When cells are separated, the organism is similar to *Synechococcus*

- 910 elongatus. Défarge et al. (1994a) observed in pond R2 a coccoid rod-shaped cyanobacterium, identified by them as Synechococcus elongatus. Formation of short chains of 4–8 cells following division has been described in several species of
- 915 Synechococcus (Komárek & Anagnostidis, 1999). This feature occurs regularly in the genera *Rhabdogloea* and *Rhabdoderma*, although in conjunction with extracellular envelope formation, which was not observed in our culture. Silva &
- 920 Pienaar (2000) cultured a similar marine organism isolated from a *Codium* sp., which they identified as cf. *Borzia* sp.1. We consider the affiliation of our isolates to be closer to coccoid cyanobacteria of the genus *Rhabdoderma* Schmidle & Lauterborn than
- 925 to *Borzia* Cohn, which was originally described as a filamentous oscillatoriacean cyanobacterium.

Among our seven isolates, the following source populations could be identified in natural settings: Chroococcus cf. submarinus, Johannesbaptistia pellucida and Lyngbya aestuarii (Figs 7, 13, 14). 930 These taxa were present in natural populations in substantial numbers, but did not dominate in any of the mats. The isolates could be characterized and identified by their morphology, because their morphotypic expression was maintained in culture 935 with only minor modifications, including some change in dimensions. Apparently the application of simple, low-nutrient media helped to minimize morphological alteration in cultured populations, 940 which is common in standard media for cyanobacteria such as BG11 and ASN-III.

The *Chroococcus* cf. *submarinus* strain BM isolated from Rangiroa ponds retained a morphology typical of the genus, including multiple encapsulation by extracellular gelatinous envelopes (Fig. 44). The strain is slightly smaller than the natural *Chroococcus* sp. 1 population to which it is morphologically closest, and larger than the natural populations of *Chroococcus* spp. 2 and 3.

Cell dimensions are regularly used in determina-950 tion of cyanobacterial species. Dimensions of cyanobacterial cells in optimally growing natural populations appear to be fairly stable with little intraclonal variability, although interclonal varia-955 bility is higher within the same basic morphotype (Campbell & Golubic, 1985; Abed et al., 2003a). Similarly narrow variability was observed in culture as long as the growth conditions were favourable. Minor variation in cell dimensions correlate with changes in cell division rhythm, as well as with the 960 stage in which cells separate from each other (compare Figs 13A, B and D). However, under unfavourable growth conditions, the balance between cell size increase and cell division rhythm 965 is often disturbed, resulting in changes in cell dimensions and proportions and leading to teratogenic cell shape distortions. We observed such teratogenic effects following initial culture transfers of Chroococcus cf. submarinus strain BM (Fig. 46) and Johannesbaptistia pellucida strain 970 GC (Fig. 49), which later stabilized and assumed normal morphology. Similar cell size increases associated with cell deformations, called 'involution forms' were described for Synechococcus 975 species in thermal springs and hypersaline habitats. Their frequency increased toward the tolerance limits of these taxa to high temperature and salinity respectively (Komárek & Anagnostidis, 1999, pp. 121-122). Such distortions caused occasional confusion in taxonomic determinations (e.g. Hoff 980 & Frémy, 1933, reviewed by Montoya & Golubic, 1991 and Komárek & Anagnostidis, 1999, p. 91). Dependence of cell size from culture conditions, specifically with changes in illumination and

2006-10:36pm] (TEJP)

Cyanobacteria in 'kopara' microbial mats

- 985 temperature was tested for cultured marine cyanobacteria in South Africa (Silva & Pienaar, 2000). These studies reported that a marine Chroococcus cf. turgidus isolate almost doubled in size when transferred from standard medium with low light
- 990 at 22°C to increased irradiance and 25°C. The effect was reversed when temperature reached 29°C. Burja et al. (2002) found size differences when they compared a fresh isolate of Lyngbya majuscula from Moorea lagoon (French Polynesia) 995 with L, majuscula CCAP 1446/4 strain, which was

isolated and maintained in culture since 1953. The growth conditions appear to influence strongly the cell size of Johannesbaptistia, The cells of the cultured Johannesbaptistia pellucida

- 1000 strain GC are significantly larger than those observed in natural populations of the same species (compare Figs 13E and F with G). Several species of Johannesbaptistia have been described in the literature, but subsequently revised to the status 1005 of synonyms of a single species Johannesbaptistia
- pellucida (Dickie) Taylor & Drouet (reviewed by Komárek & Anagnostidis, 1999, p. 135), Natural populations of Johannesbaptistia in 'kopara' ponds exhibit two distinct size ranges. These different
- 1010 populations, which co-occur in one pond, but do not have intermediate forms, suggest taxonomic distinction. It remains open whether these distinctive morphotypes represent genetically distinct taxa, or whether this taxon is capable of adjusting
- 1015 its cell size to available nutrient conditions, which may account for its unusual size variation. Johannesbaptistia is common in tropical coastal ponds and is cosmopolitan in distribution. Défarge et al. (1994a, b) record its presence in the 'kopara'
- 1020 of Moruroa Atoll (French Polynesia), but not for pond R2.

Our cultured strain of Lyngbya aestuarii - strain LY (Figs 54–58) – with cells 12.48 ± 1.30 (51) μ m wide, was also somewhat larger than the specimens

- 1025 observed in the 'kopara' mat (Fig. 53; Table 2), but well within the range attributed to this species in the literature: (8–) 10–16 (–24) µm (Gomont, 1892). Lyngbya aestuarii is a common and often dominant cyanobacterium in intertidal microbial mats world wide (e.g. Golubic, 1985). 1030
- Phylogenetic characterization of cyanobacteria cultured from 'kopara' mats

For the construction of phylogenetic trees, it is important to have long sequences and the mini-1035 mum size required for phylogenetic characterization by bacterial 16S rRNA analysis is more than 1,000 bp (Murray et al., 1990). Our goal was to orient our isolates in terms of the phylogenetically closest neighbours as an aid to their characteriza-1040 tion and identification. Because our cultures were not axenic, we have resorted to extracting partial sequences of $\sim 600-700$ bp, marked by cyanobacterial group-specific primers (Nübel et al., 1997). For tree construction, we have compared a set of aligned 600 bp from the known complete and 1045 partial sequences after elimination of gaps. The clusters formed on the basis of 16S rRNA sequences appear to have good reliability in distinction of genera, possibly approaching species-level resolution, although published trees 1050 are frequently burdened by misidentification of isolates.

In our tree (Fig. 8), we could recognize particular phylogenetic clusters revealed by other studies (Wilmotte, 1994; Turner, 1997; Ishida 1055 et al., 1997, 2001; Honda et al., 1999; Robertson et al., 2001; Wilmotte & Herdman, 2001; Abed et al., 2003b): the cluster of heterocystforming cyanobacteria (i.e. the first phylogenetic lineage according to Honda et al., 1999), the cluster 1060 Synechococcus PCC 6716, PCC of 6717. Synechococcus elongatus (Toray), proposed by Robertson et al. (2001) to be the eighth phylogenetic lineage, as well as seven other clusters as revealed by 1065 Honda et al. (1999). The small cluster including Oscillatoria sp. M-117, Leptolyngbya boryanum PCC 73110, Phormidium sp. M-99 and Leptolyngbya foveolarum, as well as the Halothece cluster of extremely halotolerant cyanobacteria as in Garcia-Pichel et al. (1998) are all distinguished. 1070 In addition, the sequences of the isolates obtained from the lagoon of the Tikehau Atoll, the neighbouring atoll to Rangiroa, maintain the same relations as in the tree presented by Abed et al. (2003b). For example, the isolates 1075 'Leptolyngbya' strains TKB32 and TK511 shared 93.5 and 95% sequence similarity, respectively, with the strain of Halomicronema excentricum TFEP-1 (Abed et al., 2002), and 95% to each other (Abed et al., 2003b). In our calculations, the values are 1080 93.2, 94.9 and 95.2%, respectively. The small differences might be due to the algorithms used and the shortness of the sequences (400 bp) but the strong correlations are maintained in our trees.

Thus, our results show that our strains are not 1085 closely related to the lagoonal strains of the Tikehau Atoll. In spite of geographic proximity, the ecological differences between the open lagoon and 'kopara' ponds are significant, and have selected for different mat-building organisms. 1090 This conclusion is consistent with the results of phenotype determinations.

The phylogenetic tree presented here illustrates the phylogenetic distance between our sequences (GC, BM, FF, GF, FE) and all the previously known ones, and thus represents a new contribution to our knowledge of cyanobacterial diversity. Our Geitlerinema sp. strain FE occupied a separate

17

L. Richert et al.

- branch within a cluster of phenotypically similar 1100 organisms. The separate positions of the sequences of Johannesbaptistia pellucida strain GC and Chroococcus cf. submarinus strain BM were expected, since no sequences of these morphotypically well-characterized genera were available in
- 1105 the data banks. Our isolate Lyngbya aestuarii, characterized by phylogenetic and morphotypic properties, differs slightly from the type strain L. aestuarii PCC 7419 in size (diameter 12.5 µm for our strain LY vs. 15-16 µm for PCC 7419) and in 1110 16S rRNA sequence (2.1% divergence). The latter difference could be due to the relatively short
- length of our sequence (600 bp) biasing the calculation, or it could indicate a micro-evolution on environmental or geographic grounds (tropical
- 1115 vs temperate). A polyphasic study of tropical marine Lyngbya species (L, aestuarii not included) combining phylogenetic clustering of short (605 bp) 16S rRNA gene sequences with phenotypic (morphological and biochemical) properties
- 1120 has recently been published (Thacker & Paul, 2004). The interest in this genus has been generated by the toxic properties of many marine species and massive blooms occurring and threatening coral reefs (Luesch et al., 2000).
- 1125 The cultured organism identified morphotypically as Rhabdoderma cf. rubrum strain CH (Fig. 51) plotted within cluster 3 of Herdman et al. (2001), i.e. within the fifth phylogenetic lineage of Robertson et al. (2001) of the poly-
- 1130 phyletic form-genus Synechococcus. This lineage contains euryhaline Synechococcus strains PCC 7002, PCC 7003, PCC 73109, PCC 7117 and Oscillatoria rosea M-220, all isolated from marine environments, but capable of growth both in
- 1135 freshwater and marine media. They do not synthesize phycoerythrin. There are at least two documented cases where filamentous and coccoid cyanobacteria appear in genotypically close clusters (Wilmotte & Herdman, 2001). The cell size and
- 1140 proportions, pigmentation and ecology are consistent with the observations on our strain. However, the species Synechococcus elongatus is itself considered polyphyletic because it has been used to name the strains in at least
- 1145 three separate and distant lineages. Robertson et al. (2001) proposed that only the strains of the sixth phylogenetic lineage of the form-genus Synechococcus (cluster 1.1 of Herdman et al., 2001) be considered a monophyletic group of the
- 1150 'real' Synechococcus, whereas all Synechococcus sequences that fall outside the sixth lineage should be considered misclassified. The Synechococcus strains of the cluster containing Rhabdoderma cf. rubrum strain CH (fifth lineage) is distant from

1155 the sixth lineage and is expected to be re-named. chomes have been classified by the bacteriological system as LPP-group B (Rippka et al., 1979), a term which has since been replaced by the formgeneric designation of Leptolyngbya (Komárek & 1160 Anagnostidis, 2005), without any claim of phylogenetic coherence (Castenholz et al., 2001). Early work on 16S rRNA sequence analyses has already shown that many small cyanobacteria of similar size and morphology are polyphyletic (Wilmotte & 1165 Golubic, 1991; Wilmotte, 1994). Our sequences of cyanobacterial strain with narrow trichomes (strains GF and FF) are separated from the known Leptolyngbya sequences. When compared with similar morphotypes in marine environment, 1170 our strains GF and FF showed similar cell sizes and arrangements to morphotypes classified in the past as Plectonema golenkinianum and P, battersii, respectively. However, these isolates plotted separately from each other and from other 1175 known sequences both by sequence analysis and the BLAST search. This finding appears to support Komárek & Anagnostidis (2005) revision of these forms by placing them in separate genera. Leptolyngbya cf, golenkiniana (Gomont) Komárek 1180 & Anagnostidis strain FF plotted distant from other sequences classified as Leptolyngbya and showed 94% similarity with another form isolate with the name 'Oscillatoria limnetica'. Pseudophormidium cf, battersii (Gomont) 1185 Komárek & Anagnostidis strain GF showed 94% similarity with Synechococcus IR11. Thus, better generic assignments for these forms awaits further investigations of similar natural populations using 1190 polyphasic approach.

Oscillatoriacean cyanobacteria with narrow tri-

In conclusion, our results are consistent with the hypothesis that isolation and enrichment culturing favour cyanobacteria, which are minor components in natural settings. These may be opportunistic species, which respond to particular nutrient 1195 conditions (Abed et al., 2003b). However, their presence is indicative of a cryptic diversity in natural populations of cyanobacteria, which may be important when environmental conditions change. Our conclusions are in agreement 1200 with those derived from other studies applying a polyphasic approach to cyanobacterial populations in extreme (Garcia-Pichel & Belnap, 1996; Garcia-Pichel et al., 1998, 2001; Nübel et al., 1997, 1999; Abed & Garcia-Pichel, 2001) as well as 1205 in normal marine environments (Abed et al., 2003*a*, *b*). Such conclusions were firmly supported by studies applying inoculum dilution series in conjunction with genotype determination (Ward et al., 1997, 1998; Ramsig et al., 2000). There is 1210 considerable influence of growth conditions on size and shape of cyanobacteria in culture and in natural settings, which need to be quantified for

[15.6.2006–10:36pm] (TEJP)

Cyanobacteria in 'kopara' microbial mats

the purposes of characterizing cyanobacteria.
1215 Identification of cyanobacteria is presently at a stage of orienting the specimens within the spectrum of available phenotypic and genotypic characters.

Acknowledgements

- We thank Annick Wilmotte for providing her compiled listing of complete and partial 16S rRNA gene of cyanobacteria and for her advice, and Katarzyna Palinska for providing unpublished sequences for comparisons. The international contacts and collaborations were supported by University of French Polynesia, CAIRAP Sarl, Hanse Institute for Advanced Study, Delmenhrst,
- and Alexander von Humboldt Foundation, Bad Godesberg, Germany. Boston University
 Marine Program and the Marine Biological Laboratory, Woods Hole, MA Mr. R. Rottenfusser and Zeiss Corporation provided photomicrographic

References

1255

1270

support for this work.

- 1235 ABED, R.M.M. & GARCIA-PICHEL, F. (2001). Long-term compositional changes after transplant in a microbial mat cyanobacterial community revealed using a polyphasic approach. *Environ. Microbiol.*, 3: 53–62.
- ABED, R.M.M., GARCIA PICHEL, F. & HERNANDEZ MARINE, M. (2002). Polyphasic characterization of benthic, moderately halophilic, moderately thermophilic cyanobacteria with very thin trichomes and the proposal of *Halomicronema excentricum* gen. nov., sp nov. *Arch. Microbiol.*, **177**: 361–370.
- ABED, R.M.M., GOLUBIC, S., GARCIA-PICHEL, F., CAMOIN, G. & SEONG-JOO LEE (2003a). Identity and speciation in marine benthic cyanobacteria: the *Phormidium* complex. *Algol. Stud.*, 109: 35–56.
 - ABED, R.M.M., GOLUBIC, S., GARCIA PICHEL, F., CAMOIN, G.F. & SPRACHTA, S. (2003b). Characterization of microbialite-forming
- 1250 cyanobacteria in a tropical lagoon: Tikehau atoll, Tuamotu, French Polynesia. J. Phycol., 39: 862–873.
 ALTSCHUL, S.F., MADDEN, T.L., SCHÄFFER, A.A., ZHANG, J.,
 - ALISCHUL, S.F., MADDEN, I.L., SCHAFFER, A.A., ZHANG, J., ZHANG, Z., MILLER, W. & LIPMAN, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucl. Acids Res.*, 25: 3389–3402.
 - AMANN, R.I., LUDWIG, W. & SCHLEIFER, K.-H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. *Microbiol. Rev.*, **59**: 143–169.
- ANAGNOSTIDIS, K. (1989). *Geitlerinema*, a new genus of oscillatorialean cyanophytes. *Plant Syst. Evol.*, **164**: 33–46.
 - ANAGNOSTIDIS, K. & KOMÁREK, J. (1985). Modern approach to the classification system of cyanophytes: I. Introduction. *Algol. Stud.*, **38/39**: 291–302.
- BORNET, E. & FLAHAULT, C. (1886, 1887, 1888). Revision des Nostocacées hétérocystées. Ann, Sci, Nat., Bot, Sér, 7, 3: 323–381, 4: 343–373, 5: 51–129, 7: 177–262.
 - BURJA, A.M., ABOU-MANSOUR, E., BANAIGS, B., PAYRI, C., BURGESS, J.G. & WIGHT, P.C. (2002). Culture of the marine cyanobacterium Lyngbya majuscula (Oscillatoriaceae), for bioprocess intensified production of cyclic and linear lipopep-
 - tides. J. Microbiol. Methods, **48**: 207–219. CAMPBELL, S.E. & GOLUBIC, S. (1985). Benthic cyanophytes (cyanobacteria) of Solar Lake (Sinai). Algol. Stud., **38/39**: 311–329.
- 1275 CAMPBELL, S.E., SEELER, J. & GOLUBIC, S. (1989). Desert crust formation and soil stabilization. *Arid Soil Res. Rehabil.*, **3**: 217–228.

- CASTENHOLZ, R. (1992). Species usage, concept and evolution in the Cyanobacteria (blue-green algae). J. Phycol., 28: 737–745.
- CASTENHOLZ, R., RIPPKA, R., HERDMAN, M. & WILMOTTE, A. (2001). Subsection III. Formerly Oscillatoriales Elenkin 1934). 1280 In: *Bergey's Manual of Systematic Bacteriology*, 2nd edition (Garrity, G., editor). Springer-Verlag, New York.
- COHAN, F.M. (2001). Bacterial species and speciation. *Syst. Biol.*, **50**: 513–561.
- Сонал, F.M. (2002). What is a bacterial species? Ann. Rev. 1285 Microbiol., 56: 457–487.
- DÉFARGE, C. & TRICHET, J. (1990). Rôle de substrats organiques hérités d'organismes vivants dans la mineralisation de microbialites carbonates actuels (kopara de Polynesie francaise); implications concernant l'intervention des matières organiques sédimentaires dans les processus géologiques. C. R. Acad. Sci., 310: 1461–1467.
- DÉFARGE, C. & TRICHET, J. (1993). From biominerals to organominerals: The example of the modern lacustrine calcareous stromatolites from Polynesian atolls. In: 7th International 1295 Symposium on Biomineralization, vol. SP 14, no, 2 e (Allemand, D. & Cuif, J.P., editors), 265–271 Musee Oceanographique, Monaco.
- DÉFARGE, C., TRICHET, J. & SIU, P. (1985). Premières données sur la biogéochimie des dépôts de kopara de l'atoll de Rangiroa. Fifth 1300 International Coral Reef Congress Tahiti, 3: 365–370.
- DÉFARGE, C., TRICHET, J. & COUTÉ, A. (1994a). On the appearance of cyanobacterial calcification in modern stromatolites. *Sediment. Geol.*, **94**: 11–19.
- DÉFARGE, C., TRICHET, J., MAURIN, A. & HUCHER, M. (1994b). 1305 Kopara in Polynesian atolls: Early stages of formation of calcareous stromatolites. *Sediment. Geol.*, 89: 9–23.
- DéFARGE, C., TRICHET, J., JAUNET, A., ROBERT, M., TRIBBLE, J. & SANSONE, F.J. (1996). Texture of microbial sediments revealed by cryo-scanning electron microscopy. J. Sediment. Res., 66: 1310 935–947.
- DESIKACHARY, T. (1959). *Cyanophyta*. ICAR Monographs on Algae. Indian Council of Agricultural Research, New Delhi.
- GARCIA-PICHEL, F. & BELNAP, J. (1996). Microenvironments and microscale productivity of cyanobacterial desert crusts. 1315 *J. Phycol.*, **32**: 774–782.
- GARCIA-PICHEL, F. & CASTENHOLZ, R.W. (1991). Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J. Phycol., 27: 395–409.
- GARCIA-PICHEL, F., PRUFERT-BEBAUT, L. & MUYZER, G. (1996). 1320 Phenotypic and phylogenetyic analyses show *Microcoleus chthonoplastes* to be a cosmopolitan cyanobacterium. *Appl. Environ. Microbiol.*, **62**: 3284–3291.
- GARCIA-PICHEL, F., NÜBEL, U. & MUYZER, G. (1998). The phylogeny of unicellular, extremely halotolerant cyanobacteria. 1325 *Arch. Microbiol.*, **169**: 469–482.
- GARCIA-PICHEL, F., LÓPEZ-CORTÉS, A. & NÜBEL, U. (2001). Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau. *Appl. Environ. Microbiol.*, **67**: 1902–1910.
- GAUTRET, P. & TRICHET, J. (2005). Automicrites in modern cyanobacterial stromatolitic deposits of Rangiroa, Tuamotu Archipelago, French Polynesia: Biochemical parameters underlaying their formation. *Sediment. Geol.*, **178**: 73.
- GAUTRET, P., CAMOIN, G., GOLUBIC, S. & SPRACHTA, S. (2004). ¹³³⁵ Biochemical control of calcium carbonate precipitation in modern lagoonal microbialites, Tikehau Atoll, French Polynesia. J. Sediment. Res., **74**: 462–478.
- GEITLER, L. (1932). Cyanophyceae. Kryptogamenflora von Deutschland, Österreich und der Schweiz. Akademische Verlagsgesellschaft, Leipzig. [Reprinted 1971, Johnson, New York, London.].
- GEVERS, D., COHAN, F.M., LAWRENCE, J.G., SPRATT, B.G., COENYE, T., FEIL, E.J., STACKEBRANDT, E., VAN DE PEER, Y., VANDAMME, P., THOMPSON, F.L. & SWINGS, J. (2005). 1345 Re-evaluating prokaryotic species. *Nat. Rev. Microbiol.*, **3**: 733–739.

1350

1360

1370

1390

L. Richert et al.

- GOLUBIC, S. (1967). Algenvegetation der Felsen, Eine ökologische Algenstudie im dinarischen Karstgebiet, Binnengewässer 23. Schweizerbartsche Verlagsbuchhandlung, Stuttgart.
- GOLUBIC, S. (1973). Three new species of *Schizothrix* Kützing (Cyanophyta) from marine algal mats. *Schweiz. Z. Hydrol.*, **35**: 152–156.
- GOLUBIC, S. (1985). Microbial mats and modern stromatolites in Shark Bay, Western Australia. In: *Planetary Ecology* (Caldwell, D.E., Brierley, J.A. & Brierley, C.L., editors), 3–16. Van Nostrand Reinhold, New York.
 - GOLUBIC, S. (1991). Modern stromatolites a review. In: *Calcareous Algae and Stromatolites*, (Riding, R., editor), 541–561. Springer-Verlag, Heidelberg, Berlin, New York.
 - GOLUBIC, S. (1994). The continuing importance of cyanobacteria. In: *Early Life on Earth*: (Bengtson, S., editor), 334–340, Nobel Symposium 84. Columbia University Press, New York.
- GOLUBIC, S. & BROWNE, K.M. (1996). Schizothrix gebeleinii sp. nov.
 builds subtidal stromatolites, Lee Stocking Island, Bahamas.
 Algol. Stud., 83: 273–290.
 - GOLUBIC, S. & CAMPBELL, S.E. (1981). Biogenically formed aragonite concretions in marine *Rivularia*. In: *Phanerozoic Stromatolites* (Monty, C.L.V., editor), 209–229. Springer-Verlag, Heidelberg, Berlin, New York.
 - GOLUBIC, S., LE CAMPION-ALSUMARD, T. & Campbell, S.E. (1999).
 Diversity of marine cyanobacteria. In: *Marine Cyanobacteria* (Charpy, L. & Larkum, A.W.D., editors), 53–76 Bulletin de l'Institut Océanographique de Monaco, Spec. No. 19.
- 1375 GOLUBIC, S., SEONG-JOO LEE. & BROWNE, K. (2000). Cyanobacteria: Architects of sedimentary structures. In: *Microbial Sediments* (Riding, R. & Awramik, S., editors), 57–67. Springer-Verlag, Berlin, Heidelberg, New York.
- GOMONT, M. (1892). Mongraphie des Oscillariées (Nostocacées 1380 Homocystées), I and II. *Ann. Sci. Nat. Bot. Sér.*, **7**, **15**: 263–368, **16**: 91–264.
 - HALL, T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucl. Acids Symp. Ser.*, 41: 95–98.
- 1385 HERDMAN, M., CASTENHOLZ, R.W., WATERBURY, J.B. & RIPPKA, R. (2001). Form-genus XIII Synechococcus. In: Bergey's Manual of Systematic Bacteriology, 2nd edition (Garrity, G.M., editor), 508–512. Springer-Verlag, New York.
 - HOFF, T. & FRÉMY, P. (1933). On myxophyceae living in strong brines. *Recl. Trav. Bot. Neerl.*, **30**: 140–162.
- HONDA, D., YOKOTA, A. & SUGIYAMA, J. (1999). Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new sequences of five marine *Synechococcus* strains. J. Mol. Evol., 1395
 48: 723-739.
 - ISHIDA, T., YOKOTA, A. & SUGIYAMA, J. (1997). Phylogenetic relationships of filamentous cyanobacterial taxa inferred from 16S rRNA sequence divergence. J. Gen. Appl. Microbiol., 43: 237–241.
- 1400 ISHIDA, T., WATANABE, M.M., SUGIYAMA, J. & YOKOTA, A. (2001). Evidence for polyphyletic origin of the members of the orders of Oscillatoriales and Pleurocapsales as determined by 16S rDNA analysis. *FEMS Microbiol. Lett.*, **201**: 79–82.
- JEHL, C. & ROUGERIE, F. (1995). Phosphatogenese en atolls polynesiens: La filiation mattes cyanobacteriennes-phosphorites. *Oceanol. Acta*, 18: 79–93.
 - JØRGENSEN, B.B. & GALLARDO, V.A. (1999). Thioploca spp,: filamentous sulfur bacteria with nitrate vacuoles. FEMS Microbiol. Ecol., 28: 301–313.
- 1410 KOMAREK, J. (1994). Current trend and species delimitation in the cyanoprokaryote taxonomy. *Algol. Stud.*, **75**: 11–29.
 - KOMÁREK, J. & ANAGNOSTIDIS, K. (1989). Modern approach to the classification system of cyanophytes. 4-Nostocales. *Algol. Stud.*, 56: 247–345.
- 1415 Komárek, J. & Anagnostidis, K. (1999). Cyanoprokaryota 1. Chroococcales. In: Süsswasserflora von Mitteleuropa. Vol. 19/1. (Ettl, H., Gärtner, G., Heynig, H. & Mollenhauer, D., editors), 1–548. Gustav Fischer Verlag, Jena.

- *Oscillatoriales*. In: *Süsswasserflora von Mitteleuropa*, Vol. 19/2 1420 (Büdel, B, Gärtner, Krienitz, L. & Schagerl, M., editors). Spectrum Academischer Verlag, Elsevier, München.
- KONSTANTINIDIS, K.T & TIEDJE, J.M. (2005). Genomic insights that advance the species definition for prokaryotes. *Proc. Nat. Acad. Sci. USA*, **102**: 2567–2572. 1425
- Kossinskaya, E.K. (1948). Opredelitel' morskikh sineselenykh vodorosley [Determination key of marine blue-green algae], Akad. Nauk USSR, Moscow-Leningrad.
- KRUMBEIN, W.E., COHEN, Y. & SHILO, M. (1977). Solar lake (Sinai).
 4. Stromatolitic cyanobacterial mats. *Limnol. Oceanogr.*, 22: 1430 635–656.
- KRUMBEIN, W., PATERSON, D. & ZAVARZIN, G. (2003). Fossil and Recent Biofilms, a Natural History of Life on Earth. Kluwer Academic Publishers, Dordrecht, Boston, London.
- KUMAR, S., TAMURA, K., JAKOBSEN, I.B. & Nei, M. (2001). 1435 MEGA2: Molecular Evolutionary Genetics Analysis software. Arizona State University, Tempe, Arizona, USA.
- LOPEZ-CORTES, A. (1999a). Marine cyanobacteria from Bahia Concepcion, BCS, Mexico. In: Marine Cyanobacteria (Charpy, L. & Larkum, A., editors), 87–93. Musée océanogra-1440 phique, Monaco, special vol. 19.
- LOPEZ-CORTES, A. (1999b). Population changes of benthic cyanobacteria during a shrimp production operation. *Algol. Stud.*, **129**: 245–248.
- LUESCH, H., YOSHIDA, W.Y., MOORE, R.E., PAUL, V.J. & 1445 MOOBERRY, S.L. (2000). Isolation and structure of the cytotoxin lyngbyabellin B and absolute configuration of lyngbyapeptin A from the marine cyanobacterium. *Lyngbya majuscula. J. Nat. Prod.*, **63**: 1437–1439.
- MAO CHE, L., ANDREFOUET, S., BOTHOREL, V., GUEZENNEC, M., ROUGEAUX, H., GUEZENNEC, J., DESLANDES, E., TRICHET, J., MATHERON, R., LE CAMPION, T., PAYRI, C. & CAUMETTE, P. (2001). Physical, chemical, and microbiological characteristics of microbial mats (KOPARA) in the South Pacific atolls of French Polynesia. *Can. J. Microbiol.*, **47**: 994–1012. 1455
- MIR, J., MARTINEZ-ALONSO, M., ESTEVE, I. & GUERRERO, R. (1991). Vertical stratification and microbial assemblage of a microbial mat in the Ebro Delta (Spain). *Microb. Ecol.*, **86**: 59–68.
- MONTOYA, H.T. & GOLUBIC, S. (1991). Morphological variability in natural populations of mat-forming cyanobacteria in the salinas of Huacho, Lima, Perú. *Algol. Stud.*, **64**: 423–441.
- MURRAY, R.G.E., BRENNER, D.J., COLWELL, R.R., DE VOS, P., GOODFELLOW, M., GRIMONT, P.A.D., PFENNIG, N., STACKEBRANDT, E. & ZAVARZIN, A. (1990). Report of the ad hoc committee on approaches to taxonomy within the 1465 Proteobacteria. *Int. J. Syst. Bacteriol.*, **40**: 213–215.
- NICHOLSON, J.A.M., STOLZ, J.F. & PIERSON, B.K. (1987). Structure of a microbial mat at Great Sippewisett Marsh, Cape Cod, Massachusetts. *FEMS Microbiol. Ecol.*, **45**: 343–364.
- NÜBEL, U., GARCIA-PICHEL, F. & MUYZER, G. (1997). PCR primers 1470 to amplify 16S rRNA genes from cyanobacteria. *Appl. Environ. Microbiol.*, 63: 3327–3332.
- NÜBEL, U., GARCIA-PICHEL, F., KUEHL, M. & MUYZER, G. (1999). Quantifying microbial diversity: morphotypes, 16S rRNA genes, and carotenoids of oxygenic phototrophs in microbial mats. 1475 *Appl. Environ. Microbiol.*, **65**: 422–430.
- OBENLÜNESCHLOSS, J. & SCHNEIDER, J. (1991). Ecology and calcification patterns of *Rivularia* (Cyanobacteria). *Algol. Stud.*, **64**: 489–502.
- PEARL, H., STEPPE, T. & REID, R. (2001). Bacterially-mediated 1480 precipitation in marine stromatolites. *Environ. Microbiol.*, **3**: 123–130.
- POTTS, M. (1980). Blue-green algae (Cyanophyta) in marine coastal environments of the Sinai Peninsula; distribution, zonation, stratification and taxonomic diversity. *Phycologia*, **19**: 60–73.
- RAMSIG, N.B., FERRIS, M.J. & WARD, D.M. (2000). Highly ordered vertical structure of Synechococcus populations within the onemillimeter thick photic zone of a hot spring cyanobacterial mat. *Appl. Environ. Microbiol.*, **66**: 1038–1049.

1525

2006-10:36pm] (TEJP)

[1-21] [First Proof]

Cyanobacteria in 'kopara' microbial mats

- 1490 RICHERT, L., GOLUBIC, S., LE GUÉDÈS, R., RATISKOL, J., PAYRI, C. & GUEZENNEC, J. (2005). Characterization of exopolysaccharides produced by cyanobacteria isolated from Polynesian microbial mats. Curr. Microbiol., 51: 379-384.
- RIDING, R. & AWRAMIK, S. (2000). Microbial Sediments. Springer-1495 Verlag, Berlin, Heidelberg, New York.
 - RIPPKA, R. (1988). Isolation and purification of cyanobacteria. Methods Enzymol., 167: 3-27.
- RIPPKA, R., DERUELLES, J., WATERBURY, J., HERDMAN, M. & STANIER, R. (1979). Generic assignments, strain histories and 1500 properties of pure cultures of cyanobacteria. J. Gen. Microbiol., 111: 1-61.
 - RIPPKA, R., CASTENHOLZ, R.W. & HERDMAN, M. (2001). Subsection IV. (Formerly Nostocales Castenholz 1989b sensu Rippka, Deruelles, Waterbury, Herdman and Stanier 1979). In: Bergey's
- 1505 Manual of Systematic Bacteriology, 2nd edition (Garrity, G.M., editor), 562-589 Springer-Verlag, New York.
 - Robertson, B.R., Tezuka, N. & Watanabe, M.M. (2001). Phylogenetic analyses of Synechococcus strains (cyanobacteria) using sequences of 16S rDNA and part of the phycocyanin
- 1510 operon reveal multiple evolutionary lines and reflect phycobilin content. Int. J. Svst. Evol. Microbiol., 51: 861-871.
 - ROSSELLO-MORA, R. & AMANN, R. (2001). The species concept for prokaryotes. FEMS Microbiol. Rev., 25: 39-67.
- Rougeaux, H., Guezennec, M., Mao Che, L., Payri, C., 1515 DESLANDES, E. & GUEZENNEC, J. (2001). Microbial communities and exopolysaccharides from Polynesian mats. Mar. Biotechnol., 3: 181-187.
- ROUGERIE, F., JEHL, C. & TRICHET, J. (1997). Phosphorus pathways in atolls: Interstitial nutrient pool, cyanobacterial accumulation 1520 and Carbonate-Fluoro-Apatite (CFA) precipitation. Mar. Geol., 139: 201-217.
 - RÜTTERS, H., SASS, H., CYPIONKA, H. & RULLKÖTTER, J. (2002). Microbial communities in a Wadden Sea sediment core - clues from analyses of intact glyceride lipids, and released fatty acids. Org. Geochem., 33: 803-816.
 - SAITOU, N. & NEI, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4: 406-425.
- SILVA, S.M.F. & PIENAAR, R.N. (2000). Benthic marine 1530 Cyanophyceae from Kwa-Zulu Natal, South Africa. Biblioth. Phycol., 107: 1-456.
 - STAL, L.J., VAN GEMERDEN, H. & KRUMBEIN, W.E. (1985). Structure and development of a benthic marine microbial mat. FEMS Microbiol. Ecol., 31: 111-125.
- 1535 THACKER, R.W. & PAUL, V.J. (2004). Morphological, chemical and genetic diversity of tropical marine cyanobacteria Lyngbya spp. and Symploca spp. (Oscillatoriales). Appl. Environ. Microbiol., 70: 3305-3312.
- THOMPSON, J.D., GIBSON, T.J., PLEWNIAK, F., JEANMOUGIN, F. & 1540 HIGGINS, D.G. (1997). The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acids Res., 24: 4876-4882.
- TILDEN, J. (1910). The Myxophyceae of North America, -Minnesota Algae, Vol, 1. Botanical Series. Minneapolis. 1545 [Reprinted 1968 in Bibliotheca Phycologica v.4. - J. Cramer;
 - Lehre.]. TRIBOVILLARD, N., TRENTESAUX, A., TRICHET, J. & DÉFARGE, C. (2000). A jurassic counterpart for modern kopara of the Pacific
- atolls: lagoonal, organic matter-rich, laminated carbonate 1550 of Orbagnoux (Jura Mountains, France). Palaeogeogr. Palaeoclimatol. Palaeoecol., 156: 277-288.

- TRICHET, J. (1967). Essai d'explication du dépôt d'aragonite sur des substrats organiques. C. R. Acad. Sci., III, 265: 1464-1467.
- 1555 TRICHET, J. & DÉFARGE, C. (1997). High resolution cryo-scanning electron microscopy of modern stromatolites (Lake R2, Rangiroa Atoll, Tuamotu Archipelago, Central Pacific Ocean). Facies, 36: 207-210.
- TRICHET, J., DÉFARGE, C., TRIBBLE, J., TRIBBLE, G. & SANSONE, F. 1560 (2001). Christmas Island lagoonal lakes, models for the deposition of carbonate-evaporite-organic laminated sediments. Sediment. Geol., 140: 177-189.
- TURNER, S. (1997). Molecular systematics of oxygenic photosynthetic bacteria. Plant Syst. Evol, suppl. 11: 13-52.
- 1565 UMEZAKI, I., (1961). The marine blue-green algae of Japan. Mem, of the College of Agriculture, Kyoto University (Fisheries Series No. 8), 83: 1-149.
- WALNE, P.R., (1966). Experiments in the large-scale culture of the larvae of Ostrea edulis. L, Fishery Investigations (London), 25: 1 - 53.
- WARD, D. M. (1998). A natural species concept for prokaryotes. Curr. Opin. Microbiol., 1: 271-277.
- WARD, D.M., FERRIS, M.J., NOLD, S.C., BATESON, M.M., KOPKCZYNSKI, E.D. & RUFF-ROBERTS, A.L. (1994). Species 1575 diversity in hot spring microbial mats as revealed by both molecular and enrichment culture approach - relationship between biodiversity and community structure. In: Microbial Mats, Structure, Development and Environmental Significance (Stal, L.J. & Caumette, P., editors), 33-44. NATO ASI Series, 1580 G.35, Springer-Verlag, Heidelberg.
- WARD, D.M., SANTEGOEDS, C.M., NOLD, S.C., RAMSING, N.B., FERRIS, M.J. & BATESON, M.M. (1997). Biodiversity within hot spring microbial mat communities: Molecular monitoring of enrichment cultures. Antonie van Leuwenhoek, 1585 **71** · 143–150
- WARD, D.M., FERRIS, M.J., NOLD, S.C. & BATESON, M.M. (1998). A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiol. Mol. Biol. Rev., 62: 1353-1370.
- WHITTON, B. (1987). The biology of Rivulariaceae. In: The 1590 Cyanobacteria (Fay, P. & van Baalen, C., editors). Elsevier Science Publishers, Amsterdam.
- WILMOTTE, A. (1991). Taxonomic study of marine oscillatoriacean strains (Cyanophyceae, Cyanobacteria) with narrow trichomes. Morphological variability and autecological features. Algol. Stud., 64: 215-248.
- WILMOTTE, A. (1994). Molecular evolution and taxonomy of the cyanobacteria. In: The Molecular Biology of Cyanobacteria (Bryant, D.A., editor), 1-25. Kluwer Academic Publishers, Amsterdam.
- 1600 WILMOTTE, A. & GOLUBIC, S. (1991). Morphological and genetic criteria in the taxonomy of Cyanophyta/Cyanobacteria. Algol. Stud., 64: 1-24.
- WILMOTTE, A. & HERDMAN, M. (2001). Phylogenetic relationships among the cyanobacteria based on 16S 1605 rRNA sequences. In: Bergey's Manual of Systematic Bacteriology, 2nd edition (Garrity, G.M., editor), 487-493. Springer-Verlag, New York.
- WILMOTTE, A., TURNER, S., VAN DE PEER, Y. & PACE, N.R. (1992). Taxonomic study of marine oscillatorialean strains 1610 (cyanobacteria) with narrow trichomes, II. Nucleotide sequence analysis of the 16S ribosomal RNA. J. Phycol., 28: 828-838.

1570

3