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Abstract 

Computer-assisted tools need to be developed to help in the accurate and efficient acquisition of fish 
age and growth data for ecological and assessment issues. Stating fish age and growth analysis as 
pattern classification issues, the proposed approach relies on a statistical learning strategy. Given 
otolith images interpreted by an expert, probabilistic kernel-based methods (namely Kernel Logistic 
Regression) are used to infer interpretation rules. More precisely, two different probabilistic models are 
introduced: one to infer fish age from otolith images and a second one aiming at evaluating whether or 
not a given otolith growth pattern is realistic w.r.t. training examples. These probabilistic models 
provide us with the basis for coping with three different issues: the automated estimation of fish age 
from otolith images, the estimation of individual otolith growth patterns, and the definition of a 
confidence measure of otolith interpretations. These computer-assisted ageing tools are validated for 
a dataset of plaice otoliths.  

Keywords: Statistical learning; Otolith interpretation; Otolith image analysis; Computer-assisted fish 
age and growth analysis 

  
 



1 Problem statement and related work

The acquisition of fish age and growth data from the analysis of calcified struc-

tures is at the core of stock assessment and marine Ecology issues. Fish otoliths

are among the most commonly used structures for age determination. As illus-

trated in Fig.1 for a plaice otolith, otoliths are formed through an accretionary5

process, which may result in an alternation of translucent and opaque rings. For

many species, seasonal rings can be observed. Hence, fish age can be estimated by

counting these rings, while the estimation of otolith growth resorts to measuring

the distance between the otolith center and the successive seasonal growth rings.

One should stress that the analysis of otolith microstructures may also be consid-10

ered to analyze daily growth increments. In this paper, the emphasis is given on

seasonal growth rings, though the presented methodology is generic and cold be

applied to the analysis of otolith microstructures.

[Figure 1 about here.]

Assessment or ecological issues typically require the interpretation of several15

thousand of calcified structures a year per stock or species. This tedious task is

achieved by expert readers. Precision and accuracy issues are of key interest since

age and growth data serves as the basis for further analysis: for instance, this data

is used to estimate biological parameters (abundance, mortality,...) (Mesnil, 2003),

and they also provide the time reference to calibrate other measures (e.g., chemi-20

cal signatures) extracted from the calcified structures (Pontual and Geffen, 2003).

Therefore, there is a need for defining protocols and tools targeted at quality assur-

ance and quality control (Morison et al., 1998).

Computer-assisted tools provide means for the standardization of objective age

reading techniques with a view to improving accuracy and precision levels. A va-25
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riety of solutions can be designed to help in the acquisition of age and growth data

(for instance, the automation of the acquisition of series of otolith images(Ogor and

Fablet, 2004) or the storage and management of bases of images of interpreted cal-

cified structures (CS) (Morison et al., 1998; Ogor and Fablet, 2004)) or to automate

this task thansk to the estimation of fish age and growth estimation from CS images5

(Fablet et al., 2004b; Guillaud et al., 2002; Robertson and Morison, 1998; Troadec

et al., 2000). The research effort has been mainly focused on the automation of the

estimation of fish age and growth. Two broad categories of approaches can be dis-

tinguished: 1D methods (Lagardère and Troadec, 1997; Welleman and Storbeck,

1995) restrict their analysis to an intensity profile extracted along a given reading10

axis, while 2D techniques (Guillaud et al., 2002; Troadec et al., 2000) are aimed

at providing a 2D segmentation of growth rings. While being far more robust, pro-

posed 2D techniques are still limited to the detection of likely growth rings, and

do not cover the interpretation task which requires a priori information to cope

with false rings ro checks. The study by Robertson and Morrison (Robertson and15

Morison, 1998) was the first attempt to benefit from readers’ experience to design

a better system based on neural networks. Though promising, the reported results

highlight the need for a better extraction of the information conveyed by otolith

images. Though promising, the reported results highlight that the exploited image

features (Fourier coefficients of the intensity signal along a given axis) do not to20

bring significant improvement for age estimation compared to other features (eg,

otolith weight, fish size and sex). This somewhat contradicts the interpretation

protocols followed by experts, who mainly rely on the interpretation of the internal

otolith macrostructures to estimate the age. Hence, there is need for an improved

automated extraction of the information conveyed by otolith images in terms of25

alternation of translucent and opaque rings.

3



In this paper, a statistical learning strategy is also adopted and it is assumed

that one can benefit from experts’ experience by means of bases of interpreted

otolith images. Whereas Robertson and Morrison only focus on fish age estima-

tion from otolith images, two other applications are investigated: the estimation of

individual growth patterns from otolith images and the definition of indicators of5

the reliability of readers’ interpretation. To our knowledge, our work is the first

attempt to provide such tools for computer-assisted aging. The key point of this

work is to state the considered within a pattern classification framework, so that it

benefits from the recent advances in statistical learning (Bishop, 1995; Scholkopf

and Smola, 2002; Zhu and Hastie, 2001). They provide us with the methodologi-10

cal background to infer interpretation rules from training examples. This paper is

organized as follows. Section 2 points out the key ideas of kernel-based statistical

learning. Section 3 presents the information extraction stage within otolith images

and the application to fish age estimation. The analysis and the estimation of indi-

vidual otolith growth patterns is discused in Section 4. In Section 5, the design of a15

confidence measure of readers’ interpretation is detailed. Results for plaice otolith

samples are reported in Section 6 and Section 7 provides concluding remarks and

an outline for future work.

2 Statistical learning using kernel methods

Age and growth analysis from otolith images is regarded as a pattern classification20

issue. More precisely, two main issues are considered: mapping otolith images to

age groups and evaluating whether or not a given otolith growth pattern is realistic.

In the first case, the classes are given by the age group and numerical descriptors

will be extracted from otolith images to define a feature space. In the second case,

it will resort to a binary (realistic vs. non-realistic) classification issue, where the25
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feature space will be defined from otolith growth patterns. Thus, in both cases,

a generic classification issue is considered: assigning a class to observed feature

vectors.

To solve for this issue, kernel approaches are among the most efficient tech-

niques (Scholkopf and Smola, 2002). The kernel principle is illustrated in Fig.2.5

The use of a kernel function can be viewed as a means to map the original feature

space to a higher dimensional space, within which the considered classification is-

sue should be easier solved for. Given a feature space X , kernel approaches rely on

the introduction of the so-called kernel function K. Its key feature is to be defined

as a dot product within a mapped space:10

∀(x, x′) ∈ X 2, K(x, x′) =< Φ(x),Φ(x′) > (1)

where Φ defines a mapping from the initial feature space X to the transformed

one Φ(X ). A typical example of kernel function is given by the radial basis func-

tion: Krbf (x, x′) = exp(−(x− x′)2/2σ2). It should be stressed that the mapping

function Φ is never actually used. All the computations only involve its product.

This property is often referred to as the kernel trick.15

[Figure 2 about here.]

In the following, the focus is given to two categories of kernel approaches:

Support Vector Machines (SVM) and Kernel Logistic Regression (KLR).

2.1 Support vector Machines

SVMs have initially been developed by Vapnik (Vapnik, 1998) for character recog-

nition. Given a binary classification issue within the feature space X and a training5

set {(xi, yi) ∈ X × {−1, 1}}, SVM techniques resort to the estimation of the hy-

perplane best separating as illustrated in 2. In the transformed feature space Φ(X ),

5



the hyperplane equation is given by: < Φ(w),Φ(x) > +b = 0, where w is the

vector normal to the hyperplane, and b a translation parameter. Each half-space

separated by this hyperplane refers to the two classes assigned according to the10

decision function y = sign (< Φ(w),Φ(x) > +b).

More formally, SVMs are maximum margin classifiers and resort to the fol-

lowing minimization (Scholkopf and Smola, 2002):

(ŵ, b̂) = arg min
(w,b)

1

2
‖Φ(w)‖2 + C

∑

i

ηi (2)

under the constraints ∀i, yi(< w, xi > +b) ≥ 1 − ηi and ηi ≥ 0. Variables ηi are

measures of the errors of the classification of the data (xi, yi): Thus, the term
∑

i ηi

is a complexity-related penalty term, and the constant C a regularization parameter

used to balance the maximization of the margin against this complexity term.

Solving for this minimization issue comes to select support vectors {xSVj }
within the training data {xi} and to estimate their weights {αj} such that the hy-

perplane vector w is given by Φ(w) =
∑

j αjΦ(xSVj ). Hence, the binary decision

function over X is defined as:

dSVM (x) = sign


∑

j

αjK(xSVj , x) + b


 (3)

The parameters of a SVM model are the supports vectors {xSVj }, the weights {αj},5

the bias b and the kernel function K.

2.2 Kernel Logistic regression

Contrarily to SVMs, kernel logistic regression (KLR) is aimed at estimating a prob-

abilistic output PKLR(y(x) = 1) of the classification function. Using a logistic

model, PKLR(y(x) = 1) is set as (Zhu and Hastie, 2001):

PKLR(y(x)) =

[
1 + exp

(∑

i

αiK(xi, x) + b

)]−1

(4)
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where {xi} are the training data, {αi} their estimated weights, and b the estimated

bias. One should point out that KLR does not share the important property of

sparsity of SVMs: whereas in SVMs, only a few training samples are kept as the10

support vectors to actually define the classification function, all training samples

contribute to the probabilistic output of the KLR model. However, the estimation

of their parameters are issued from a slight adaptation of the SVM algorithms (Zhu

and Hastie, 2001).

2.3 Parameter estimation15

In practice, SVMs and KLR models require the selection of the appropriate ker-

nel function K. In this paper the radial basis function is used: Krbf (x, x′) =

exp(−(x− x′)2/2σ2) parametrized by the scale parameter σ. In addition, in both

cases, it is required to estimate the optimal value of the regularization parameter

C. Since no theoretical result exists to set σ and C, one generally uses a cross-20

validation strategy to determine the best parameter setting within a grid of prede-

fined values of the regularization parameters C and of the kernel parameter σ. The

set of training samples T is first split in a number n (typically, n is set to 5) of sub-

sets {T1, ..., Tn} of equal number. The cross-validation procedure is then applied

as follows. At iteration k between 1 and n, a SVM (respectively KLR) model is

estimated using the {Tj , j 6= k} as the training samples. The performance of the

estimated classifier is evaluated according to a loss function (for instance, the mean

misclassification rate) for the samples of the subset Tk. The final stage consists in

computing the mean loss value for the different values of the regularization and5

kernel parameters, and in retaining the parameter setting with the best classifica-

tion performance.
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3 Automated fish age estimation

In a first step, the aim is to infer fish age from otolith images. To state this issue

as a classification issue, it is first required to define an appropriate feature space10

X . Therefore the computation a vector of numerical descriptors of the 2D image

content is needed. Consequently, the extraction of relevant features from otolith

images (in terms of alternation of translucent and opaque rings) is first detailed.

Then, the application of a statistical learning scheme is described to automate fish

age estimation from the defined feature space.15

3.1 From 2D image content to 1D representation

Since otolith interpretation is usually performed by experts along a predefined read-

ing axis. For instance, for plaice otoliths, as shown by Fig.1, experts mainly con-

sider the zone corresponding to the greatest growth. Consequently, our automated

analysis the analysis of the content of otolith images can then be restricted to a

region around the main reading axis. Let us stress that the proposed approach can

be easily extended to several reading axes if required.

[Figure 3 about here.]5

A template-based approach inspired from (Troadec et al., 2000) is then ex-

ploited to extract a one-dimensional signal depicting the 2D image content within

an angular sector around the considered reading axis. More precisely, as illustrated

in Fig.3 given the otolith center 0 and an angular sector S , the following 1D signal

sS is computed:

sS(α) = med(I(O + α ∗ TS)) (5)

wheremed() is the median operator, TS is the template model used within S , I the

image intensity function, and α a scaling factor between 0 and 1. As in (Troadec
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et al., 2000), the template model TS is given by the sampled external otolith shape

within S . sS(α) is then the median intensity value along the template TS scaled by

α w.r.t. the otolith center O. Since the scaling of the external otolith shape w.r.t.10

the otolith center provides a good approximation of the shape of the seasonal rings

(Troadec et al., 2000), sS depicts oscillations corresponding to the alternation of

translucent and opaque rings within S .

3.2 Peak-based representation

Expert interpretations rely on the detection of ridge and valley structures corre-15

sponding to translucent and opaque rings. In order to detect ridge and valley struc-

tures within S , one needs to extract the meaningful extrema of the signal sS . This

is achieved by determining the zero-crossings of derivative of sS . Since otolith

growth is not linear but rather exponential, sS is not stationary in terms of fre-

quency content. It is then needed to adapt the scales at which the derivative of sS20

is computed. This is done by applying a convolution to a Gaussian kernel whose

variance is deduced from an a priori exponential otolith growth model. This is

similar in spirit to the demodulation scheme applied in (Lagardère and Troadec,

1997).

Given the positions of the detected maxima (or equivalently the minima) of sS

{t1, ....., tn}, a new normalized peak-based signal sPBS is defined by:

sPBS (t) = min {ρ(t− tk/tn)}k∈{1,...,n} (6)

where ρ is a distance kernel. The computation of {t1, ....., tn} is based on the

detection of the zero crossings of the first derivative of sGS , estimated by finite dif-

ferences. In practice, ρ(u) = 2atan(u)/π. The resulting signal sPBS only depends5

on the extrema position as shown in Fig.4. In particular, compared to sGS , sPBS is

invariant to the variability of intensity ranges over images.
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[Figure 4 about here.]

3.3 Application to fish age estimation

The feature space defined by the normalized peak-based representation of the con-10

tent of the otolith is rather high-dimensional (typically about 1000 dimensions).

Hence, the straightforward application of SVM and KLR techniques is not feasi-

ble. A Principal Component Analysis (PCA) is therefore applied to retain only the

first NPCA principal components (typically, NPCA < 100).

Given this reduced feature space, fish age estimation comes to map an image15

n to an age group given its feature vector xn. To cope with this multi-class issue,

binary SVM and KLR models are extended to multi-class classification. A one

vs. all strategy (Scholkopf and Smola, 2002) is used. It comes to train several

binary classifiers, using a given age group as the first class and merging all the

other age groups to define the second class. The outputs of these binary classifiers20

are combined according to a simple voting rule to lead to am ulti-class classifi-

cation. When using KLR models, let us denote by PAge(.|A = a) the resulting

probabilistic model for the age class a.

The reader is referred to (Fablet et al., 2004b) for a more detailed description

of the training issues, especially in terms of improvement of the generalization

properties of the learned model.

4 Analysis and estimation of individual growth patterns

In addition to inferring fish age from otolith images, a key application is to esti-

mate individual otolith growth patterns and at evaluating the relevance of otolith5

interpretations w.r.t. previously interpreted samples. Both tasks require the devel-

opment of an appropriate otolith growth model.
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Otolith growth is usually modeled using some a priori mean model, such as

exponential and polynomial models, and the associated statistical distribution char-

acterizing the variability of the studied growth phenomena. This category of sta-10

tistical models is not suited for the issues considered in this paper. It rather comes

to evaluate whether or not a given growth pattern is likely to be an actual one.

Due to the huge natural variability as illustrated in the experiments (see Section 6),

the distance to a simple mean a priori model is not sufficient to tackle this binary

classification issue. Therefore, a statistical learning scheme is exploited in order15

to train a system from labeled (realistic vs. non-realistic) examples of individual

growth patterns.

4.1 Statistical modeling of individual growth patterns

Let us denote by g an otolith growth pattern defined by the sequence of the dis-

tances {g1, ..., gA} from the otolith center to the translucent (or equivalently opaque)20

rings. Our aim is to evaluate the likelihood PGr(g) = P (g is realistic).

The probabilistic otolith growth model PGr(g) is estimated by statistical learn-

ing from a dataset of growth patterns labeled as realistic or non-realistic. Let us

denote by G this dataset. Kernel logistic regression is applied using the feature vec-

tor Xg = {g,∆g} with ∆g = {gi− gi−1} for any sample g ∈ G. The computation25

of ∆g to define this feature vector is motivated by the key information brought by

growth increments to discriminate actual growth patterns from erroneous ones. Let

us stress that the length of the feature vector Xg depends on the number of growth

rings. Therefore, one model PGr(.|A = a) is learned for each age class a.

The relevance of the learned models PGr(.|A) depends on the ability of the5

samples in G to convey enough information to discriminate realistic growth patterns

from erroneous ones. Given a set of otolith images interpreted by an expert, it
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is assumed that training samples for the “realistic” class are provided, but it is

also needed to determine examples for the “non-realistic” class. The following

procedure is exploited. For all the training images, the signal sS(α) as defined in10

Eq.5 is extracted, and the positions of its local maxima {ti}i∈[1,Nt] are computed.

From this position set {ti}, the 2Nt subsets obtained by selecting from 1 to Nt

ring positions in {ti} are generated and the associated growth configurations are

computed. From this set of 2Nt growth configurations, all those different from the

expert interpretation are kept as samples for the class “non-ralistic”. This scheme15

is illustrated in Fig.5

[Figure 5 about here.]

For each age class a, the probabilistic model PGr(.|A = a) is estimated from

the resulting training set using a cross-validation scheme as explained in Section 2.

4.2 Automated estimation of individual growth patterns5

The definition of the probabilistic otolith growth models {PGr(.|A = a)} is first

applied to the estimation of individual growth patterns from otolith images.

Given an otolith image I , the first step comes to extract the sS(α) as defined

in Eq.5 and to compute the positions {ti} of its local maxima. The age estimator

introduced in Section 3 infers an age class a(I) from sS . Then, one generates

the set G(a(I)) of all the growth configurations corresponding to the age class

a(I) which can be generated from the set of the candidate ring positions {ti}.
Growth patterns within G(a(I)) are sorted according to their likelihood w.r.t. the

growth model PGr(.|A = a(I)). The one with the greatest likelihood provides the

estimated otolith growth pattern ĝ:

ĝ = arg max
g∈G(a(I))

PGr (g|A = a(I)) (7)
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Let us point out that this scheme could also be used as an interactive tool for the ac-

quisition of otolith growth data for previously interpreted samples: given an expert

estimation of age, the positions of the growth rings can be automatically recovered.

5 Confidence measure of otolith interpretations

Beyond the automated estimation of fish age and growth from otolith images, the

computation of a confidence measure is investigated to evaluate the reliability of

otlith interpretations. As illustrated by Fig.5 for two different interpretations of the5

same otolith, the aim is to define a measure pointing out that the top interpretation

is unlikely, while the bottom one seems correct.

Formally, the definition of this confidence measure is viewed as the evalua-

tion of the likelihood PConf (g is relevant|I) that a given interpretation (or growth

pattern) g is relevant given the observed otolith image I . Exploiting Bayes rule,

PConf (g is relevant|I) is written as :

PConf (g is relevant|I) ∝ P (I|g is relevant)

· P (g is realistic)

(8)

P (I|g is relevant) is aimed at determining how likely the image I is correctly

explained by the interpretation g in terms of age and growth. As a first step, this

likelihood is computed from the statistical model PAge(a(g)|.) introduced in Sec-

tion 3, with a(g) the age estimate associated with the growth pattern g. Therefore,

the peak-based representation sPBS is computed within an angular sector specified

by the expert as detailed in Section 3, and the likelihood P (I|g is relevant) is eval-

uated as:

P (I|g is relevant) = PAge(s
PB
S |a(g)). (9)
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Similarly, P (I|g is not relevant) is defined as 1− PAge(sPBS |a(g)).

P (g is realistic) conveys a priori information on growth patterns. It is eval-

uated from the probabilistic growth model PGr(g|A = a(g)), as introduced in10

Section 4. Besides, P (g is not realistic) is given by 1− PGr(g|A = a(g)).

PConf (g is relevant|I) is then expressed as follows:

PConf (g is relevant|I) = PAge(s
PB
S |a(g))

· PGr(g|a(g)) · Z−1

(10)

with the normalization factor Z given by:

Z = PAge(s
PB
S |a(g)) · PGr(g|a(g))

+
(
1− PAge(sPBS |a(g))

)
(1− PGr(g|a(g)))

(11)

Given an image I and an interpretation g, the closest PConf (g is relevant) to

one, the more relevant the interpretation. Conversely, the closestPConf (g is relevant)

to zero, the less relevant the interpretation. Let us point out that this relevance mea-

sure needs to be interpreted with respect to the variability encountered within the15

training sets exploited to learn the probabilistic models PAge and PGr.

6 Results

6.1 Otolith database

[Figure 6 about here.]

[Figure 7 about here.]5

Experimental results are reported for a database of 320 images of plaice otoliths

from age group 1 to 6 caught during the fourth quarter in 1994 and 2000. The
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ground truth for fish age estimation is given by the interpretation of an expert.

Due to the lower number of samples in age groups 5 and 6, these two groups are

merged for aging issues to end up with a five-class issue: age groups 1 to 4 and 5+.10

This grouping can also be motivated by the fact that age groups 4 and less usually

represent more than 85% of the commercial landings. Similarly, too few samples

from age group 0 were available to add this class in our experiments. The age

distribution of this otolith set is given in Fig.6.a. As an illustration, Fig.7 depicts

sample images for the different age groups. Fig.6.b also stresses the biological15

variability encountered when dealing with fish age and growth analysis. More

precisely, this plot proves that there is a high degree of overlap in the distance

from the otolith center to the first three translucent rings. This feature makes it

infeasible to develop an accurate a priori prediction of the ring positions and leads

to a complex multi-class classification issue.20

For different issues considered in this paper, the training set is formed by se-

lecting the two third of the images of each age class, while the remaining images

are used for the test set. The training set and the test set then depict the same age

distribution displayed for the whole image databse in Fig.6.

6.2 Automated ageing25

In Fig.8 is reported the classification results for the images of the test set (i.e.,

one third of the considered image dataset for each age group), the mean rate of

correct classification (w.r.t. the expert ground truth) with SVMs and KLR is of

88%. Not surprisingly, classification errors are more numerous for the older age

groups. it should also be stressed that for 96% of the samples the absolute ageing5

error is below or equal to one. This mean rate of correct age estimation is close to

inter-expert agreement rates. This highlights the interest of the proposed scheme

15



and the need for a carefully designed pattern recognition scheme to achieve good

classification performance.

[Figure 8 about here.]10

These results can be favorably compared to those obtained by previous ap-

proaches (Guillaud et al., 2002). In addition, the application to routine aging seems

promising since these results are in the range of the levels of agreement observed

between expert readers. The reader is referred to (Fablet et al., 2004b) for a more

detailed evaluation of the proposed approach for automated ageing and a compar-15

ison between different feature types (frequency vs peak-based features) and statis-

tical classifiers (neural nets vs. SVMs). This evaluation stresses that kernel-based

learning outperforms neural networks, and that the proposed feature set leads to

significant improvements (greater than 10% in terms of mean correct classification

rate) compared to previous work.20

6.3 Estimation of individual growth patterns

[Figure 9 about here.]

As an illustration of the proposed approach for the estimation of individual

growth patterns, Fig.9 depicts an otolith image belonging to the age class 4. It

reports the candidate ring positions which are provided by the maxima of the

template-signal sS , the expert interpretation. From the set of growth configurations

of age class 4, the configuration with the greatest likelihood value PGr(g|a = 4)

is depicted. As shown by Fig.9, the actual growth pattern is successfully esti-5

mated. Similarly to the age estimation application, the probabilistic growth model

is trained from the two third of the considered plaice datasets.
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A quantitative evaluation of the proposed approach has also been performed.

Given the test set of otolith images, the statistical learning approach has been ap-

plied to the estimation of the growth pattern, given the age estimate provided by10

the expert. For 95% of the samples, one retrieves the same growth interpretation as

the one provided by the expert.

6.4 Confidence measure of otolith interpretations

[Figure 10 about here.]

In Fig.10 several examples of the computation of a confidence measure of the15

interpretation of otolith growth rings for plaice otoliths are displayed. For each

image, the confidence measure is compputed for two different interpretations the

expert one and an erroneous one. As expected, the confidence measure is greater

than 0.5 in the first case and closer to zero in the latter. Besides, Fig.10 shows that

the computation of these confidence measures may assist the reader in ambiguous20

cases. For instance, for the second and third examples reported in Fig.10, it helps

in interpreting the first growth ring. This case illustrates the potential interest of

this confidence measure for routine ageing, where the interpretation of the first ring

is known to be one of the key issue.

These different examples stress that the computation of these confidence mea-

sures of otolith interpretation could be used for routine ageing issues: either as an

interactive tool to assist the expert for ambiguous cases, or as an automated verifi-5

cation tool to detect erroneous or unlikely interpretations within a set of interpreted

otolith sets with a view to asking for a second reading.
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7 Conclusion

This paper has discussed the use of statistical learning techniques, namely ker-

nel approaches, to benefit from a training set of interpreted data in order to cope10

with computer-assisted fish age and growth analysis. Information extraction within

otolith images has been regarded as the computation of a template-based 1D signal

summing up the image content within a predefined area of interest (typically de-

fined as an angular sector around the main reading axis). Using statistical learning,

this signal can be used to infer fish age. New probabilistic models of otolith growth,15

learned from otolith samples interpreted by an expert, have been introduced to dis-

criminate realistic growth patterns from erroneous one. These models are exploited

to estimate individual otolith growth patterns and to compute confidence measures

of otolith interpretations.

The evaluation of the proposed approach on a set of several interpreted plaice20

otoliths from the fourth quarter validates the proposed models and demonstrates

their key interest for routine age and growth estimation, especially in the context

of quality assurance and quality control in age determinations. There are a number

of potential applications such as the complete automation of the acquisition of age

and growth data for otolith subsets, the automation of the creation of bases of CS25

images and of the associated interpretations from aged CS datasets, or computer-

aided CS interpretation. At the operational level (for instance, for the determination

of age structures used for stock assessment), the key benefits expected from these

tools are to reduce the cost of the acquisition of age data from CS, while improving

data quality (mainly, in terms of precision) and data traceability (both in terms of

age determinations and in terms of growth ring interpretations through the automa-5

tion of the creation of databases of images of interpreted materials).

Some potential limits of the application of statistical learning strategies should
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also be pointed out. Since they rely on the sets of interpreted CS structures with

a view to automatically inferring the associated interpretation rules and to apply-

ing these rules to new samples, the capability of the trained systems to efficiently10

extrapolate from the training set obviously depends on the features and the associ-

ated spread within the training set w.r.t. to those within the test set. For instance,

if significant changes occur in otolith growth for a given stock, new training sets

might be needed to apply these techniques from one year to another. This is of

key importance and should be evaluated in future work. Similarly, such techniques15

are not able to cope with age classes not present within the training sets and their

performance in terms of precision and accuracy rely on the quality of the training

data. In most cases, the latter provides upper bounds for the performances of the

trained system. One might point out that it should be preferred to build training

sets from known age materials, if available. Consequently, the transfer to the op-20

erational level of the proposed methodology should be evaluated on a species- and

stock-specific basis. While it should first provide a relevant alternative and support

to age determinations for rather “easy-to-read” species such as flat fish otoliths,

more complex cases need to be investigated. For instance, similar types of proba-

bilistic otolith growth models should be considered for situations where the growth25

analysis needs to be performed along polylines or curved axis. Otherwise, whereas

the proposed peak-based representation of the content of otolith images and the

exploited learning strategies can be regarded as generic, the emphasis should be

given on the information extraction stage (for instance, for the detection of the

growth rings) to cope with samples like cod or hale otoliths. Besides, the issue of5

combining the proposed approaches to schemes dedicated to 2D ring segmentation

(Guillaud et al., 2002; Troadec et al., 2000) is also of particular interest.
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Figure 1: Illustration of plaice otolith interpretation for a 4 year old individual. The
otolith image has been acquired using a binocular microscope under transmitted light.
The interpretation of the winter translucent rings is displayed by the markers set on the
radial drawn on the main reading axis.

24



������
������
������
������ ��������������������

������
������

��������������������
��������������������

��������������������
������
������

	�	�		�	�		�	�		�	�	

�

�


�

�


��������������������
������
������

������������������������������������������������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
��������������������������������������

original feature space transformed feature space

Φ

Figure 2: Key principle of kernel-based classification: map the original feature to
a higher-dimensional feature space via the kernel function Φ and determine the
separating hyperplane with maximum margin (from (Scholkopf and Smola, 2002)).
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Figure 3: Template-based approach aimed at extracting a 1D representation of the
image content within a region of interest.
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a) peak positions b) peak-based representation
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Figure 4: Illustration of the peak-based representation for the otolith image de-
picted in 1: a) signal sS and the extracted maxima positions (H markers), b) asso-
ciated peak-based representation sPBS .
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a) otolith image

b) growth patterns

Figure 5: Creation of the training set for probabilistic otolith growth modeling: a)
otolith image with the positions {ti} (red �) of the maxima of the signal sS(α) (cf.
Eq.5), the ring position for the actual otolith interpretation (blue •) and the ring
positions for the non-realistic one (magenta �), b) growth patterns examples for
the two classes standing for realistic and non-realistic growth patterns.
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a) age composition b) growth variability
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Figure 6: Plaice otolith dataset: a) age distribution of the database of 320 plaice
otoliths, b) illustration of growth variability within the considered dataset. The
otolith growth patterns (distance from the otolith center to the center as a function
of the age) are displayed for the 320 plaice otoliths.
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age group 1

age group 2

age group 3

age group 4

age group 5+

Figure 7: Sample images within the processed dataset of plaice otolith images.
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Figure 8: Plot of the ageing errors from age group 1 to age group 5+ for the plaice
test set.
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a) otolith image

a) growth patterns

Figure 9: Illustration of the estimation of the growth pattern for a plaice otolith
within age class a(I) = 4: a) the image I the expert interpretation (red ◦) is
depicted the extracted set of candidate growth ring positions (cyan ♦) and the
estimated ring positions (magenta �) (see Section 4 for further details), b) plot of
the growth patterns for the expert interpretation and the estimated growth pattern.
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otolith interpretations

growth patterns and associated confidence measures

Figure 10: Computation of confidence measures for otolith interpretations: the first col-
umn reports the images of plaice otoliths with two different interpretations (the expert one
and an erroneous one), while the second raw plots the associated growth pattern and the
associated confidence measure p = PConf (g is relevant|I) (cf. Eq.10).
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