
P
le

as
e 

no
te

 th
at

 th
is

 is
 a

n 
au

th
or

-p
ro

du
ce

d 
P

D
F

 o
f a

n 
ar

tic
le

 a
cc

e
pt

ed
 fo

r 
pu

bl
ic

at
io

n 
fo

llo
w

in
g 

pe
er

 r
ev

ie
w

. T
he

 d
ef

in
iti

ve
 p

u
b

lis
h

er
-a

ut
he

nt
ic

at
ed

 v
e

rs
io

n 
is

 a
va

ila
b

le
 o

n 
th

e 
pu

b
lis

he
r 

W
eb

 s
ite

 

 1

Journal of Marine Research 
May 2006; Volume 64 (3) : Pages 355-392  
http://dx.doi.org/10.1357/002224006778189608  
© 2006 Yale University 
 

Archimer 
Archive Institutionnelle de l’Ifremer 

http://www.ifremer.fr/docelec/ 

 

 

On the mechanism of centennial thermohaline oscillations 
 

Sévellec Florian1, *, Huck Thierry1, Jelloul Mahdi Ben1 

 
 
1 Laboratoire de Physique des Océans (UMR 6523 CNRS IFREMER UBO), Université de Bretagne Occidentale, 
UFR Sciences, 6 Avenue Le Gorgeu, CS 93837, 29238 Brest Cedex 3, France.   
 
 
*: Corresponding author : Sévellec F., email address : florian.sevellec@yale.edu 
 

 
 
 
 
Abstract:  
 
Centennial oscillations of the ocean thermohaline circulation are studied in a 2-D latitude-depth model 
under mixed boundary conditions (i.e. restoring surface temperature and prescribed freshwater flux). 
The oscillations are revealed through linear stability analysis of a steady state obtained in a single 
hemisphere configuration. A density variance budget is performed and helps determine the physical 
processes sustaining these oscillations: the restoring surface temperature appears as a source of 
density variance - this is a consequence of positively-correlated temperature and salinity anomalies. A 
minimal model, the Howard-Malkus loop oscillator, enables us to understand physically the oscillatory 
and growth mechanisms. The centennial oscillation is connected to the advection of salinity anomaly 
around the loop; it is also related to the salinity feedback on the overturning which reinforces 
anomalies through a change of residence time in the freshwater flux regions. Analytical solutions of 
this loop model show that these centennial oscillations exist in a specific parameter regime in terms of 
the freshwater flux amplitude F0: oscillations are damped if F0 is too weak, but if F0 is too large, the 
instability grows exponentially without oscillating-the latter regime is known as the positive salinity 
feedback. The robustness of these oscillations is then analyzed in more realistic bihemispheric 
configurations, some including a highly idealized Antarctic Circumpolar Current: oscillations are then 
always damped. These results are rationalized with the loop model, and compared to the oscillations 
found in general circulation models. 
 
 
 
 

1. Introduction 
 
 
Centennial scale variability is ubiquitous both in historical records of temperature and proxy data from 
sediments and ice cores – see for instance a recent review by Jones and Mann (2004). As the slow 
component of the Earth climate system, the ocean circulation is a potential candidate for the 
generation of oscillations on such long-time scales. Given the predominant centennial signal in the 
North Atlantic Ocean, Stocker and Mysak (1992) suggested a possible connection with the 
thermohaline circulation. Here we extend this idea through an analysis of ocean circulation stability in 
a hierarchy of simplified one- and two-dimensional (1- and 2-D) models, using linear stability analysis 
and density variance budgets in order to better understand the mechanism of oscillation. 
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Centennial scale variability is found in ocean general circulation models forced by various
surface boundary conditions, stochastic forcing included (Mikolajewicz and Maier-Reimer,
1990). In a more idealized single-hemisphere flat-bottom geometry, Winton and Sarachik
(1993) used both 3-D and 2-D models to investigate the oscillations mechanism and sug-
gested the use of the simple Howard-Malkus loop oscillator as prototype. Mysak et al.
(1993) described these centennial oscillations in a double-hemisphere 2-D model forced
by mixed boundary conditions and addition of a stochastic freshwater flux. Similar oscilla-
tions also appear in box-models and rely on the strength of the freshwater flux under mixed
boundary conditions (Tziperman et al., 1994).

The bifurcation structure of such 2-D thermohaline circulations has been widely investi-
gated (Quon and Ghil, 1995; Dijkstra and Molemaker, 1997). In a double-hemisphere basin
symmetrically-forced by prescribed SST and freshwater flux, the symmetry breaking of
both thermally- and salinity-driven double-cell flows results from asymmetric salt trans-
ports. Depending on the freshwater shape, Hopf bifurcation may occur and lead to limit
cycle with periods of about the overturning time scale, where the salinity perturbations
mainly drive the oscillatory flow.

For oscillations occurring around a steady state, linear stability analysis is a classical
and powerful tool to get insight into the transitions to variability and their mechanism.
Huck and Vallis (2001) used an empirical linearization in 3-D ocean models to study the
interdecadal ocean variability under constant surface heat flux. To extend this study Te Raa
and Dijkstra (2002) used a proper continuation method together with linear stability analysis,
and confirmed a “generalized” large-scale baroclinic instability mechanism in agreement
with a suggestion by Colin de Verdière and Huck (1999).

Te Raa and Dijkstra (2003) also investigated the mechanism of centennial oscilla-
tions, using linear stability analysis and continuation methods in 3-D and 2-D models.
They related 3-D oscillations with centennial periods to 2-D oscillations with millennial
scales (maybe because the mean overturning is then reduced from 20 to 5 Sv). They also
found, from mean advection processes, that oscillations with active salinity, but uniform
mean background salinity field, were quite similar to the ones with no salinity despite
a reduced damping and a longer period. The focus here will be on a case with active
salinity and a prescribed freshwater flux that sets up a nonuniform mean salinity field.
By extending the linear stability analysis to a global model, Weijer and Dijkstra (2003)
found a damped global mode of millennial period. It is worth noting that these stud-
ies were all conducted with a rather large horizontal viscosity responsible for an ele-
vation of the damping rate, even though this increase was limited for the large-scale
mode.

The long history in oceanography of the Howard-Malkus loop oscillator proposed as a
prototype for centennial oscillations is likely dated back to the U-shaped thermal oscillator
discussed by Welander (1957). Its geometry has been adapted to resemble the oceanic
thermohaline circulation; it seems that the seminal loop oscillator was initially designed
during Welander’s stay at WHOI (Welander, 1965; Keller, 1966; Welander, 1967). The
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original Howard-Malkus model dates from the GFD summer school held at Woods Hole
in 1971 (Howard, 1971), and the model has also been applied to the turbulence of the
thermohaline circulation “à la Lorenz” (Malkus, 1972).

Two decades later, Dewar and Huang (1996) and Huang and Dewar (1996) investigated
the stability of the salinity-driven circulation with respect to different formulations of surface
fluxes, i.e. natural boundary conditions as introduced by Huang (1993), virtual salt flux and
restoring boundary conditions, applied to a weakly frictional loop model. As for us, we
expect the ocean circulation to be strongly damped on centennial time scales (Dewar and
Huang, 1995) and to be primarily thermally-driven.

The present study was aimed at constituting part of a systematic description of several
types of oscillations occurring in ocean models and made with similar objective methods
(linear stability analysis, density variance budget, reduced order models). Arzel (2004)
and Arzel et al. (2006) provided the first trial of this methodology by differentiating two
types of interdecadal thermohaline oscillations in 3-D ocean models; indeed, some of them
were identified as related to intrinsic ocean large-scale baroclinic instability, the other to
mixed surface boundary conditions. This systematic approach should enable us to unam-
biguously determine the nature of oscillations occurring in more realistic and/or coupled
models. Here, the same methodology is applied to the centennial oscillations of the ther-
mohaline circulation under mixed boundary conditions in a 2-D ocean model and a loop
model.

The paper is organized as follows: The 2-D ocean model is described in Section 2.
Section 3 deals with the numerical experiments carried out in a single-hemisphere configu-
ration where centennial oscillations can develop; it also describes the linear stability analysis
and shows its ability to accurately provide the oscillation periods and damping/growth rates.
The physical processes implied in the oscillations are identified through a detailed density
variance budget. These qualify the Howard-Malkus loop model as a minimal system for
reproducing the oscillations (Section 4): nonlinear integrations and analytical linear sta-
bility analysis provide some more insight in the physical mechanism of the oscillations.
The robustness of the centennial oscillations is then tested in a bihemispheric pole-to-pole
configuration, with and without an idealized Antarctic Circumpolar Channel (Section 5).
Conclusions are drawn in Section 6.

2. The ocean model

For time scales much longer than the adjustment time of an ocean basin, which is of order
of decades given baroclinic Rossby wave speed at midlatitudes, the ocean dynamics is in
balance with the density field even in zonal average. For the centennial timescales of interest
here, a zonally-averaged 2-D model of the ocean circulation, where a single overturning
streamfunction is sufficient to capture the dynamics, is clearly appropriate (Winton and
Sarachik, 1993; Te Raa and Dijkstra, 2003). The model equations and forcing are described
hereafter.
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a. Model equations

The latitude-depth 2-D model is based on the 3-D planetary geostrophic equations in
Cartesian coordinates with a linearized equation of state for the seawater:

f k × u = −∇P

ρ0
− ρgk

ρ0
+ D, (1)

ρ = ρ0[1 − α(T − T0) + β(S − S0)], (2)

where k is the unit vector pointing upward, f is the Coriolis parameter, u is the velocity, P
is the pressure, D is the friction term which will be discussed later, ρ (ρ0) is the (reference)
density, α is the thermal expansion coefficient, T (T0) is the (reference) temperature, β is
the haline contraction coefficient, and S (S0) is the (reference) salinity.

The thermodynamic equations are the same as in the primitive equations and are readily
transformed in two dimensions as follows:

∂tT = −J (ψ, T ) + KH ∂2
yT + KV ∂2

z T + FT + CT , (3a)

∂tS = −J (ψ, S) + KH ∂2
yS + KV ∂2

z S + FS + CS, (3b)

where y is the latitude (in km), z is the vertical coordinate, T is the temperature, S is the
salinity, J is the Jacobian operator, ψ is the overturning streamfunction defined as w̄ = ∂yψ

and v̄ = −∂zψ (where the overbar denotes the zonal average), KH (KV ) is the horizontal
(vertical) eddy diffusivity, F is the forcing term and C is the convection term. Convection
sets in if ∂zρ > 0 and instantaneously mixes T and S downward (while conserving total
heat and salt content) until a stable profile is achieved.

In a 2-D model, zonal averaging requires some dynamical approximations (Wright et al.,
1995, 1998). Marotzke et al. (1988) used Fickian vertical eddy viscosity for the friction
term (A∂2

z u), but with an enhanced vertical viscosity, A∗, based on the hypothesis that the
overturning is proportional to the nonrotating approximation one. Wright and Stocker (1991)
set the east-west pressure difference proportional to the meridional gradient of zonally-
averaged pressure and used a vertical eddy viscosity for the friction term. Application of
the same method together with the replacement of vertical eddy viscosity with a linear
friction provided us with a much simpler system (especially for the linearization):

1

ρ0
∂y

�P = −εv̄, (4)

where ε = 1.45×10−4 s−1 was such that the obtained overturning is reasonable for a typical
North Atlantic thermohaline stratification. This solution corresponds to a very frictional
system where the meridional momentum dynamical balance is between the pressure gradient
and the linear friction, like in the box model by Stommel (1961). The final equations are
identical to the nonrotating 2-D equations of Marotzke et al. (1988), where the Fickian eddy
viscosity is replaced with linear friction, and requires largely enhanced coefficients as well.
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Table 1. Parameters used for the 2-D model integrations.

ny 30 number of gridpoints in latitude
nz 15 number of gridpoints on the vertical
H 4500 m ocean uniform depth
W 4000 km zonal basin extent
y0 0 km southern boundary position
y1 6000 km northern boundary position
KH 103 m2 s−1 horizontal tracer diffusion
KV 10−4 m2 s−1 vertical tracer diffusion
g 9.8 m2 s−1 gravity acceleration
f 10−4 s−1 Coriolis parameter
ρ0 1027 kg m−3 reference density
α 2.2 × 10−4 K−1 thermal expansion coefficient
β 7.7 × 10−4 psu−1 haline contraction coefficient
τT 1.75 × 10−7 s−1 temperature restoring time
ε 1.45 × 10−4 s−1 linear friction coefficient

These equations are solved by using a finite difference formulation (Table 1), on a uniform
latitudinal grid but nonuniform vertical grid (15 levels of thickness varying from 50 m at
the surface to 550 m at the bottom). No-normal-flow conditions are used on the boundaries,
resulting in zero streamfunction, and zero flux conditions are applied to temperature and
salinity except at the surface.

We compared all these parametrization to a full 3-D planetary geostrophic model (Huck
et al., 1999b), under the same forcing, i.e. restoring boundary conditions for both temper-
ature and salinity so as to get a steady state. The linear-friction solution used afterwards is
not significantly different from those employed by others (Marotzke et al., 1988; Wright
and Stocker, 1991), and is in good agreement with the 3-D model about thermohaline
stratification and maximum overturning depth around 1000 m.

b. Surface forcing

In the next sections, the surface boundary conditions for temperature and salinity will
differ (“mixed boundary conditions”), to take into account the different feedbacks on sur-
face heat and freshwater flux. Welander (1986) took different restoring time scales for
temperature and salinity. On the other hand, Weaver et al. (1991) used a restoring condition
for surface temperature but a constant flux boundary condition for salinity; regarding vari-
ability, they concluded that the constant freshwater forcing permits decadal to centennial
oscillations. Hence we follow here the latter, i.e. using constant freshwater forcing. The
surface forcing is then expressed as:

FT = τT [T ∗(y) − SST(y)], (5)

FS = S0

h
FW, (6)



360 Journal of Marine Research [64, 3

where SST is the sea-surface temperature (uppermost model level of thickness h = 50 m);
the restoring surface temperature and the freshwater flux read:

T ∗(y) = 13.5 [1 + cos(π(y − y0)/(y1 − y0))], (7)

FW(y) = −F0 sin [2π(y − y0)/(y1 − y0)]. (8)

The main parameter for the following experiments is F0; it corresponds to half of the
precipitation–evaporation amplitude.

Given the positive salinity feedback on the thermohaline overturning (Marotzke, 1996),
the freshwater flux forcing likely plays a key-role in the variability through increasing
the meridional salinity gradient. This feedback is crucial to counterbalance the negative
temperature feedback and enable the growth of an oscillatory regime.

3. Single hemisphere configuration

a. Nonlinear integrations with and without convection

This section will deal with two different experiments carried out with and without con-
vection in order to investigate the effect of convective mixing, a very non-differentiable
process, on 2-D ocean model internal variability. Different values of the freshwater forcing
amplitude are determined in both cases to obtain centennial scale variability, but also to
avoid millenial scale oscillations. Figure 1 shows that the two time-mean states are very
similar, despite the slightly more intense overturning with no convection. Zhang et al. (1992)
as well as Marotzke and Scott (1999) have both suggested that convective adjustment does
not matter as crucially for a realistic thermohaline structure in 2-D as in 3-D since its effect
remains efficiently represented through downwelling. Our two experiments show centen-
nial variability, although it is only transient as a damped oscillation with convection, but
perpetually sustained without. The effect of convection, like mixing in general, is to reduce
the density gradients which are necessary to propagate the anomalies: convection mixes
down any positive density anomalies on very short time scales. It is thus a sink of potential
energy. However in our study aimed at understanding the variability mechanism, we will
analyze both experiments with and without convection, the latter being more convenient to
perform a linear stability analysis: it is likely that a qualitative study carried out with no
convection would clarify the instability mechanism at the origin of oscillations growth.

The period of oscillation is deduced from the results of our nonlinear experiments, and
thus the growth/damping rate ensues from the transient build-up and decay of the oscillatory
regime. The convection experiment gave us a 171-yr oscillation and a 507-yr decaying time
scale (Fig. 2). For the experiment without convection we find a 171-yr (coincidentally!)
oscillation and a 201-yr growing time scale (Table 2). Most importantly, the density anoma-
lies seem to be passively advected along the overturning streamlines (see Figs. 3a and 5
below).
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Figure 1. Two experiments with centennial variability (171 yr period for both): (left column) with
convection and FW = 93.6 cm yr−1; (right column) with no convection and FW = 80 cm yr−1.
Timeseries of the overturning streamfunction maximum; temperature, salinity and overturning
averaged over the last 171 yr. The oscillations are damped in the first case, and perpetual in the
second one (saturation at finite amplitude).
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Figure 2. Time series of mean basin temperature (◦C) for the two-dimensional model with convection
and FW = 93.6 cm yr−1 (top left), and without convection and FW = 80 cm yr−1 (top right).
Bottom figures show the evolution of the log of the oscillations amplitude (defined as the difference
between two consecutive extremas) as a function of time, and highlight the linear behavior of the
oscillations growth/decay. The damping/growing time scale is found through linear regression in
the linear phase of growth/decay of oscillations.

b. Linear stability analysis

The principle of linear stability analysis is to examine the evolution of a small perturbation
near a steady state. The prognostic equations of our model (3) can be written as a general
dynamical system:

∂tX = A(X), (9)

where A is a nonlinear operator and X = (T , S) is the state vector. Let X be a steady state,
i.e. A(X) = 0, the system can be written for the perturbation X′ = X − X, and linearized:

∂tX
′ = MX′, M = ∂A

∂X

∣∣∣∣
X

, (10)

where the Jacobian matrix, M, is a function of X only (autonomous system).
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Table 2. Period and growth time scale obtained from time integration (nonlinear) and predicted by the
linear stability analysis (linear) of the centennial modes. These values are done for all experiments
(one and two hemispheres, with and without convection/ACC) for the 2-D latitude-depth model
and the Howard-Malkus loop.

One 2D with conv. 2D with no conv. Howard-Malkus loop
Hemisphere nonlinear linear nonlinear linear nonlinear linear
Period (yr) 171 424 171 162 170 167
Growth (yr) −507 −208 201 186 454 476

Two 2D model (linear) Howard-Malkus loop
Hemispheres without ACC with ACC nonlinear linear
Period (yr) 733 750 605 502
Growth (yr) −67 −129 −908 ∞

A general problem for such linear stability analysis is the choice of the steady state, and
that is why continuation techniques are so interesting: sometimes a steady state is readily
available upon a switch of surface boundary conditions for instance (Huck and Vallis, 2001);
it may also be possible, although not rigorously correct, to use the time-average of the model
state over a full oscillation. In the case with convection we use the steady state reached after
the decline of the oscillations near year 7000. For the case without convection, we have
used the unstable steady state closest to the time-mean state over an oscillation period: we
found it through an iterative solver for the zeros of the nonlinear system consisting in the
time-derivatives of each gridpoint temperature and salinity (function ‘fsolve’ in matlab,
using trust-region dogleg method), and initialized from the time-averaged temperature and
salinity fields over an oscillation period.

The Jacobian matrix was calculated with two different methods; the empirical and ver-
satile numerical method used in Huck and Vallis (2001) was found to be valid with and
without convection; on the other hand, the rigorous analytical linearization of Eqs. (3)
can be done only in the no-convection case. It is worth underlining that both methods
gave identical results with no convection. Once the Jacobian matrix is computed for
each steady state, an eigenanalysis is performed, and the oscillatory eigenmodes with
largest real part are analyzed: in each case, it is a centennial scale oscillation. It is then
compared to the (transient) oscillations appearing in direct integration of the nonlinear
model.

In the two experiments carried out in this study, the similarities in spatial structure and
time evolution are very strong between the oscillation present in the direct integration and
the one issued from the most unstable linear mode. Both cases show a dipole of density
anomaly is advected around the overturning circulation (Figs. 3 and 4). A phase diagram of
salinity anomalies along a closed overturning streamfunction contour even shows a slow-
down of the anomalies in the evaporation region, followed by a speedup in the precipitation
region (Fig. 5). Furthermore, in the experiment with no convection, the oscillation period
and the growth rate are very similar for the linear mode and the nonlinear model integra-
tion. However, the linear stability analysis does not provide a good quantitative estimate



364 Journal of Marine Research [64, 3

Figure 3. (a) Nonlinear model damped oscillation vs. (b) linear eigenmode (the nonlinear model year
is chosen to optimize the correlation with the linear eigenvector, and the eigenvector amplitude is
adjusted to give the same density variance as the nonlinear oscillation), in terms of temperature,
salinity (both scaled in terms of density), and overturning anomalies, for the experiment with
convection (FW = 93.6 cm yr−1). (a) Snapshots are given at year 3112 and a quarter-period later.
The solid, dashed and dotted lines respectively correspond to positive, negative and zero anomalies;
contour interval is 2.5 × 10−6 or 0.1 Sv. (b) For the damped linear eigenmode, real and imaginary
parts are provided; they evolve as: XR → XI → −XR → −XI → XR , with X = {T ′, S′, ψ′}.
Spatial structure and time evolution are similar, but period (growth time scale) greatly differs: 171
(−507) vs. 424 (−208) yr.
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Figure 4. As in Figure 3 for the experiment with no convection (FW = 80 cm yr−1): here year 9452
and a quarter-period later are shown for the sustained nonlinear oscillation, and the associated
linear eigenmode is unstable; contour interval is 10−5 or 0.5 Sv. Note the high similarity of spatial
structures and period (growing time scale): 171 (201) vs. 162 (186) yr.
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Figure 5. Hovmöller diagram of the salinity anomaly (×β) along the 5-Sv mean streamfunction
contour for the experiment with no convection (Fig. 1). The solid, dashed and dotted lines respec-
tively correspond to positive, negative and zero anomalies. The contour interval is from 0.1 to ∞
by 6.1 × 10−2 for the positive values, and from −0.1 to −∞ by −6.1 × 10−2 for the negative
ones.

in the convective case (Table 2). Convection being the only nondifferentiable term, its
effect on the nonlinear evolution of the perturbations is poorly assessed with this empirical
linearization.

c. Density variance budget

In order to gain insight into the physical processes at the origin of oscillating perturbations,
we focused on the variance budget for temperature and salinity investigated through their
influence on density. Hence, further estimating the density variance budget as a simple
proxy for available potential energy (Lorenz, 1955) helps in the determination of physical
mechanism and spatial localization of variance sources and sinks (Arzel, 2004; Arzel et al.,
2006). So, in this section let us note the time average:

X = 1

P

∫ P

0
X dt, (11)
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where P is the oscillation period, and the anomaly is X′ = X − X. The domain average is
then expressed as:

〈X〉 = 1

H(y1 − y0)

∫ 0

−H

∫ y1

y0

X dy dz, (12)

where H is the total depth, y0 and y1 are the domain latitude boundaries.
In the anomaly we have ρ′ = ρ0(−αT ′ + βS ′), such that:〈

1

2
∂tρ′2

〉
= α2ρ2

0

〈
1

2
∂tT ′2

〉
+ β2ρ2

0

〈
1

2
∂tS ′2

〉
− αβρ2

0 〈∂t (T ′S ′)〉 . (13)

The density variance budget is developed hereafter from Eqs. (3) and under the follow-
ing conditions: no convection, D encompasses the horizontal and vertical eddy diffusion
terms, and F is the surface forcing, with the indices T and S for temperature and salinity,
respectively:〈

1

2
∂tT ′2

〉
= − 〈T ′J (ψ̄, T ′)〉 − 〈T ′J (ψ′, �T )〉 + 〈D′

T T ′〉 + 〈F ′
T T ′〉 , (14a)

〈
1

2
∂tS ′2

〉
= − 〈S ′J (ψ̄, S ′)〉 − 〈S ′J (ψ′,�S)〉 + 〈D′

SS ′〉 + 〈F ′
SS ′〉 , (14b)

〈∂t (T ′S ′)〉 = − 〈T ′J (ψ̄, S ′)〉 − 〈S ′J (ψ̄, T ′)〉 − 〈T ′J (ψ′,�S)〉 − 〈S ′J (ψ′, �T )〉
+ 〈D′

T S ′〉 + 〈D′
ST ′〉 + 〈F ′

T S ′〉 + 〈F ′
ST ′〉 . (14c)

Some simplifications arise from the lateral boundary conditions of zero mass, heat and
salinity flux:

〈T ′J (ψ, T ′)〉 = 0,

〈S ′J (ψ, S ′)〉 = 0,

〈T ′J (ψ, S ′)〉 + 〈S ′J (ψ, T ′)〉 = 0,

〈D′
T S ′〉 = 〈D′

ST ′〉 . (15)

The last peculiarity of our variance equation derives from the constant freshwater flux:

〈F ′
SS ′〉 = 〈F ′

ST ′〉 = 0. (16)

We finally end up with the following simplified density variance budget:

ρ−2
0

〈
1

2
∂tρ′2

〉
= −α2 〈T ′J (ψ′, T )〉 − β2 〈S ′J (ψ′, S)〉 + αβ 〈T ′J (ψ′, S)〉

+ αβ 〈S ′J (ψ′, T )〉 + α2 〈D′
T T ′〉 + β2 〈D′

SS ′〉
− αβ 〈D′

T S ′〉 − αβ 〈D′
ST ′〉 + α2 〈F ′

T T ′〉 − αβ 〈F ′
T S ′〉 . (17)
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Table 3. Notations for the advection, diffusion and forcing terms in the density variance budget. These
terms are easily adapted to the 1-D loop model.

Advection Diffusion Forcing

Adv(T ′, T ) = −α2〈T ′J (ψ′,T )〉
ρ−2

0 〈ρ′2〉 Diff(T ′, T ′) = α2〈D′
T

T ′〉
ρ−2

0 〈ρ′2〉 Forc(T ′, T ′) = α2〈F ′
T

T ′〉
ρ−2

0 〈ρ′2〉

Adv(S′, S) = −β2〈S′J (ψ′,S)〉
ρ−2

0 〈ρ′2〉 Diff(S′, S′) = β2〈D′
S
S′〉

ρ−2
0 〈ρ′2〉 Forc(T ′, S′) = −αβ〈F ′

T
S′〉

ρ−2
0 〈ρ′2〉

Adv(T ′, S) = αβ〈T ′J (ψ′,S)〉
ρ−2

0 〈ρ′2〉 Diff(T ′, S′) = −αβ〈D′
T

S′〉
ρ−2

0 〈ρ′2〉 TotForc = −α〈F ′
T

ρ′〉
ρ−1

0 〈ρ′2〉

Adv(S′, T ) = αβ〈S′J (ψ′,T )〉
ρ−2

0 〈ρ′2〉 Diff(S′, T ′) = −αβ〈D′
S
T ′〉

ρ−2
0 〈ρ′2〉

TotAdv = −〈ρ′J (ψ′,ρ)〉
〈ρ′2〉 TotDiff = 〈D′

ρρ′〉
〈ρ′2〉 Tot = 〈 1

2 ∂tρ′2〉
〈ρ′2〉

Positive and negative contributions to the tendency in density variance can be diagnosed
from the numerical solutions (Tables 3 and 4). We find a balance between the anomalous
streamfunction advective terms, which thus have a reduced contribution on density variance.
Diffusion being a variance sink, the only source is finally the restoring surface temperature
term. Moreover the spatial distribution of the total variance term (Fig. 6) shows that, although
the basin average is zero, density variance sources are localized in the upper layers (0 to
500 m), mainly in the subpolar region and more weakly in the subtropics. The sinks are more
important around 35N at the surface, as well as within 150 and 500 m over all latitudes, and
between 750 and 2500 m close to the polar boundary.

In the surface mixed layer (thickness hm), the correlation coefficient between temperature
and salinity anomalies is more than 0.7 for both the nonlinear integration and the linear
eigenvector, it allows us write approximately that in the mixed layer S ′ = rT ′. Then, the
variance term associated with surface restoring temperature reads:

−αρ−1
0 〈F ′

T ρ′〉 = α2 〈F ′
T T ′〉 − αβ 〈F ′

T S ′〉
= 〈(−α2τT T ′2 + αβτT T ′S ′)H(z + hm)〉
= 〈(−α2τT T ′2 + αβτT rT ′2)H(z + hm)〉
= 〈((βr − α)ατT T ′2)H(z + hm)〉 , (18)

where H is the Heaviside function. It clearly appears that this type of forcing becomes a
source of variance when:

−αρ−1
0 〈F ′

T ρ′〉 > 0 ⇒ r >
α

β
. (19)
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Table 4. Source (positive) and sink (negative) terms in the density variance budget (yr−1) for the
nonlinear model oscillation and for the linear eigenmode (whose phase is fitted to optimize the
correlation with nonlinear model oscillation, and amplitude is adjusted to give the same density
variance). The analysis is performed for the single hemispheric latitude-depth model (nonlinear
case, corresponding to direct integration, and linear one, corresponding to the eigenmode of the
linear stability analysis) and for the Howard-Malkus loop (with two different values of rT ).

One hemisphere: Latitute-depth model Howard-Malkus loop

Variance term nonlinear linear rT = 1 yr−1 rT = 0.1 yr−1

Adv(T ′, T ) 0.148 −0.018 0.00076 0.00377
Adv(S′, S) 0.0584 −0.003 0.00226 0.00198
Adv(T ′, S) −0.062 0.007 −0.00003 −0.00033
Adv(S′, T ) −0.144 0.017 −0.00052 −0.00488
TotAdv 0.000 0.004 0.00247 0.00054

Diff(T ′, T ′) −0.123 −0.137 0.00000 −0.00008
Diff(S′, S′) −0.059 −0.061 −0.00228 −0.00242
Diff(T ′, S′) 0.056 0.063 0.00000 0.00010
Diff(S′, T ′) 0.056 0.063 0.00000 0.00010
TotDiff −0.070 −0.072 −0.00228 −0.00230

Forc(T ′, T ′) −0.026 −0.029 −0.00076 −0.00371
Forc(T ′, S′) 0.096 0.095 0.00066 0.00464
TotForc 0.070 0.065 −0.00010 0.00093

Tot 0.000 −0.003 0.00009 −0.00083

Table 5. Parameters used for the Howard-Malkus loop model.

α 2.2 × 10−4 K−1 thermal expansion coefficient
β 7.7 × 10−4 psu−1 haline contraction coefficient
k 34.4 yr−1 buoyancy torque/overturning parameter
rT 1 yr−1 temperature restoring time
T0 10 K temperature forcing amplitude
h 1000 m fluid thickness
S0 35 psu reference salinity
F0 80/101 cm yr−1 freshwater flux intensity (1 hemisphere/2 hemisphere)
Kφ 2.2 × 10−3 yr−1 tracer diffusion
IT (φ) − sin(φ) temperature forcing geometry in one-hemisphere

cos(2φ)Π[
π
2 , 3π

2

] temperature forcing geometry in two-hemisphere

IS(φ) − sin(2φ)Π[
π
2 , 3π

2

] salinity forcing geometry in one-hemisphere

sin(4φ)

(
Π[

π
2 ,π

] − Π[
π, 3π

2

]) salinity forcing geometry in two-hemisphere
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Figure 6. Spatial distribution of the total density variance term 1
2 ∂tρ′2/ 〈ρ′2〉, for the nonlinear model

integration with no convection, averaged over an oscillation period and for the associated linear
oscillatory eigenmode. The solid, dashed and dotted lines respectively correspond to the positive,
negative and zero variances, the contour interval is 0.2 yr−1. Both nonlinear and linear modes give
similar qualitative results.



2006] Sévellec et al.: Mechanism of centennial thermohaline oscillations 371

A linear regression gives r = 1.06 psu K−1 for the nonlinear integration and r = 0.91 psu K−1

for the eigenvectors; these values should be compared to α/β = 0.29 psu K−1. Thus the
condition (19) is fulfilled and allows the surface temperature relaxation to generate density
variance.

In conclusion, under mixed boundary conditions, the surface temperature restoring forc-
ing provides a source of density variance sustaining the variability: this ensues from the good
correlation between temperature and salinity anomalies at the surface during oscillations.
When positive (negative) density anomalies consisting of positive (negative) anomalies of
temperature and salinity are exposed to surface forcing, the relaxation to zero of the tem-
perature anomaly induces the intensification of the density anomaly. It is worth noting that
similar conclusions have been drawn about interdecadal oscillations under mixed boundary
conditions (Arzel, 2004; Arzel et al., 2006).

We are thus led to consider the cause of such positive correlations between temperature
and salinity anomalies. Given the mean θ − S relationship in the ocean, and the correspon-
dence between regions of warming (cooling) and evaporation (precipitation), variations in
the circulation induce T − S anomalies with positive correlations, just like the mean T − S

relationship. Alternatively, perturbation structures, whose density is dominated by salinity,
but without such a good correlation between T − S anomalies would not be able to draw
energy from the surface forcing, and hence would not appear as weakly unstable or damped
modes, but much further in the eigenvalue spectrum.

4. A minimal model: The Howard-Malkus loop oscillator

The 2-D model oscillation shows advection of temperature and salinity anomalies along
contours of the mean overturning streamfunction (Fig. 5). To simplify the system further,
it seems appropriate to model our basin as the Howard-Malkus loop (Malkus, 1972), a
1-D model of the overturning circulation. This widely studied oscillator (Welander, 1957,
1965; Keller, 1966; Welander, 1967, 1986; Winton and Sarachik, 1993; Dewar and Huang,
1995, 1996; Huang and Dewar, 1996) is composed of a fluid contained in a circular loop
(Fig. 7). The uniform angular velocity ω is proportional to the buoyancy torque integrated
around the loop (Maas, 1994) through a dynamical balance between the buoyancy forces
and the friction as done in the Stommel (1961) box model. As shown above, we set mixed
boundary conditions, i.e. prescribed freshwater (salinity) flux and temperature restoring
(the forcing distribution along the loop is not necessarily restricted to the ‘surface’). The
evolution equations for temperature and salinity in this fluid loop read:

∂tT + ω∂φT = rT [T0I
T (φ) − T ] + Kφ∂2

φT , (20a)

∂tS + ω∂φS = −F0S0

h
IS(φ) + Kφ∂2

φS, (20b)
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Figure 7. Schematic of the Howard-Malkus loop oscillator along with the temperature and freshwater
(dashed) forcing profiles used here.

where ω is the overturning pulsation and is given by

ω = −k

∫ 2π

0
(−αT + βS) sin φ dφ, (21)

where T is the temperature, S is the salinity, α is the thermal expansion coefficient, β is the
haline contraction coefficient, φ is the counterclockwise angle around the loop measured
from the bottom, F0 is the freshwater flux intensity, S0 is the reference salinity, h is the
fluid thickness, rT is the relaxation coefficient for temperature (inverse of the restoring
time), T0 is the amplitude of the temperature forcing, I {T ,S} is the temperature and salinity
forcing geometry, and Kφ is a Laplacian eddy diffusion used for the numerical integration
only. The proportionality factor k between the overturning and the buoyancy torque is such
that it gives a realistic overturning value for typical temperature and salinity contrasts. One
should note the lack of convection, here, resulting from the absence of difference between
horizontal and vertical processes.

a. Nonlinear integrations and density variance budget

First we verify that the Malkus loop oscillator is a valid approximation to represent our
2-D oscillation. The numerical integration of the Malkus loop equations with the parameters
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Figure 8. Numerical integration of the nonlinear Malkus loop oscillator leading to perpetual oscilla-
tions. (left) Overturning as a function of time. (right) Hovmöller diagram of the salinity anomaly
(×β). The solid, dashed and dotted lines respectively correspond to positive, negative and zero
anomalies, the contour interval is 0.75 × 10−4. The oscillation period is 170 yr for an advective
period 2π/ω = 169 yr and the propagation is governed by the advection of the mean overturning
circulation.

given in Table 5 settles into perpetual oscillations (note the small diffusion term added for
numerical stability). The friction parameter k was adjusted in order to get a mean overturning
period (2π/ω, where ω is the time-averaged ω) equal to the renewal time of the water from
the two-dimensional model (basin volume/maximum overturning ∼ 171 yr).

In the nonlinear integration with perpetual oscillations, the diffusion and nonlinear term
finally balance the initial (linear) growth of the perturbation. The oscillation period (Fig. 8)
is 170 yr vs. 171 yr in the 2-D model, as a consequence of the choice for parameter k. Salinity
anomalies clearly propagate at the angular velocity of the time-averaged overturning (Fig. 8
to be compared to Fig. 5 for the 2-D model). Temperature (salinity) anomalies are about
0.09◦C (0.70 psu), and thus density anomalies are dominated by salinity. These two results
suggest that oscillations in the 2-D model and the Malkus loop oscillator are governed by
the same physical processes (in the next section we will provide a quasi-analytical stability
analysis of the loop oscillator in order to characterize the oscillation mechanism).
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In order to compare the oscillations in this very simple model to those in the 2-D one, a
similar density variance budget is performed (Table 4). It shows that, for standard coeffi-
cients, there is no need to have a positive surface temperature relaxation term for sustaining
the oscillations. Hence, the surface relaxation may not be fundamental to the oscillatory
mechanism. In fact, here, the contribution by the advective terms to the variance budget is
positive.

A second simulation conducted with a reduced relaxation coefficient (rT = 0.1 yr−1)

allowed us to explore a parameter regime more similar to the one used in the 2-D experi-
ments: indeed the density variance terms now compare much better to the 2-D case, with a
positive contribution of surface temperature relaxation.

From these two simulations, the density variance budget suggests that, at least for the
Howard Malkus loop, the fundamental contributor to the growth of the centennial oscillation
is not the surface relaxation. However, the temperature relaxation remains a necessary ele-
ment for this growth: indeed, we performed the same simulations with prescribed heat fluxes
diagnosed as the time-averaged temperature restoring term over one oscillation period, and
observed as expected the decay of oscillations. The growth of oscillations occurs only on
condition (i) that the density be affected by both temperature and salinity and (ii) that the
restoring time scale associated to T and S be different; thus, the mean circulation is con-
trolled by the more rapidly relaxed variable (temperature here) whereas the oscillations rely
on the more ‘free’ variable (salinity) that is not restored.

b. Linear stability analysis

The periodicity of the Malkus loop suggests that the spectrum of the solutions is discon-
tinuous in terms of φ and allows the following decomposition:

X(t) = �
[∑

nεN

Xn(t)e
inφ

]
,

where � indicates the real part, with the reverse projection:

Xn = Xrn + iXin = 1

2π

∫ 2π

0
Xe−inφdφ,

where X represents T or S. The inviscid Malkus oscillator equations can thus be rewritten
as:

∂tSrn − nωSin = −F0S0I
S
rn

h
, (22a)

∂tSin + nωSrn = −F0S0I
S
in

h
, (22b)

∂tTrn − nωTin = rT (T0I
T
rn − Trn), (22c)

∂tTin + nωTrn = rT (T0I
T
in − Tin), (22d)
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where the subscripts r and i respectively state for the real and imaginary parts and I
{T ,S}
n

respectively represent the specific geometry of the temperature and salinity forcing:

I {T ,S}
n = I {T ,S}

rn + iI
{T ,S}
in = 1

2π

∫ 2π

0
I {T ,S}(φ)e−inφdφ.

It appears that ω depends only on the first harmonic in T and S:

ω = −kαTi1 + kβSi1. (23)

The steady state (∂t ≡ 0) reads in terms of ω:

Srn = −F0S0I
S
in

nωh
, (24a)

Sin = F0S0I
S
rn

nωh
, (24b)

T rn = r2
T T0I

T
rn + nωrT T0I

T
in

r2
T + n2ω2 , (24c)

T in = r2
T T0I

T
in − nωrT T0I

T
rn

r2
T + n2ω2 . (24d)

Introducing these expressions in (23) gives a fourth-order equation for the steady-state
overturning:

ω4 +
(

r2
T − kβF0S0I

S
r1

h
− kαrT T0I

T
r1

)
ω2 + kαr2

T T0I
T
i1ω − r2

T

kβF0S0I
S
r1

h
= 0. (25)

The linear stability analysis around the steady state is performed using the standard
notations:

{T , S}{r,i}n = {T , S}{r,i}n + {T ′, S ′}{r,i}n,
where the overbar and the prime indicate the steady state value and the perturbation, respec-
tively. Linearization leads to:

∂t

⎛
⎜⎜⎝

S ′
rn

S ′
in

T ′
rn

T ′
in

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 nω + nkβSinδ1,n 0 −nkαSinδ1,n

−nω −nkβSrnδ1,n 0 nkαSrnδ1,n

0 nkβT inδ1,n −rT nω − nkαT inδ1,n

0 −nkβT rnδ1,n −nω −rT + nkαT rnδ1,n

⎞
⎟⎟⎠

⎛
⎜⎜⎝

S ′
rn

S ′
in

T ′
rn

T ′
in

⎞
⎟⎟⎠ , (26)

where δ is the Kronecker symbol. The diagonalization of the Jacobian matrix provides the
eigenvectors and their associated eigenvalues.
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Now, we will distinguish the case n = 1 from the one where n �= 1 in our analysis. If
n �= 1 four complex eigenvalues are obtained:

λn1± = ±in|ω|, (27a)

λn2± = −rT ± in|ω|. (27b)

They correspond to the subharmonics of ω; one of them is a damped oscillation due to
temperature restoring. The case where n = 1 is more interesting because the overturning
anomalies are included. This is why focus, hereafter, will be on it; the index will be dropped
accordingly for simplification of notations. It is worth recalling that the n = 1 projection
completely describes the advection term ω.

Figure 9 shows the stability diagram as a function of the freshwater intensity F0, keeping
the other values alike those given in Table 5. The steady state is unstable when F0 > 0,
and the most unstable eigenmode is oscillatory for F0 < 1470 cm yr−1 for 1/rT = 1 yr (the
fixed point is an unstable spiral). Above this threshold the fixed points become unstable
nodes, but their unstable modes are not oscillatory. All the eigenvectors are more marked in
salinity than in temperature, and thus the associated density anomaly (β|S ′{r,i}| � α|T ′{r,i}|).

Negligible variations of temperature allow us to step further in the simplification process
and to consider the overturning variations only controlled by salinity anomalies: the linear
subsystem is then easily expressed analytically. Hereafter we will consider two cases accord-
ing to the salinity conditions: (i) with a passive salinity (advected by a mean overturning),
and (ii) with active salinity and passive temperature.

i. Fixed temperature and fixed overturning (∂ρ′ω = 0). By prescribing both the temperature
and the angular velocity, (26) becomes:

∂t

(
S ′

r

S ′
i

)
=

(
0 −ω

ω 0

) (
S ′

r

S ′
i

)
, (28)

and the eigenvalues are simply: λ± = ±i|ω|. The first subharmonic is thus equivalent to
those in the n �= 1 case. The approximation of fixed ω comes to neglect the projection of
the first harmonic perturbations (n = 1), then it is logical to find the same type of solution
as for n �= 1.

ii. Salinity-controlled overturning. Here, the influence of temperature anomalies on the
overturning is assumed to be negligible compared to the effect of salinity anomalies. Then
(26) becomes

∂t

⎛
⎜⎜⎝

S ′
r

S ′
i

T ′
r

T ′
i

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 ω + kβSi 0 0
−ω −kβSr 0 0
0 kβT i −rT ω

0 −kβT r −ω −rT

⎞
⎟⎟⎠

⎛
⎜⎜⎝

S ′
r

S ′
i

T ′
r

T ′
i

⎞
⎟⎟⎠ . (29)
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Figure 9. Stability diagram of the Malkus loop oscillator as a function of the freshwater intensity F0
(up to very strong, unrealistic, values). Ordinate is the imaginary part of the eigenvalues for our
different approximated systems compared to the overturning pulsation (dashed). All the points are
unstable (except for F0 = 0). The largest real part eigenmode is oscillatory until the critical values
F0 = 1470 (1350) cm yr−1 for the 1-yr (10-yr) temperature restoring time. Horizontal lines are the
steady-state overturning pulsation in each case. The ‘salinity-controlled overturning’ subsystem is
plotted in dash-dotted line.

In addition, we impose a realistic salinity forcing IS(φ), consisting in an antisymmetric
meridional structure (implying IS

r = 0, see Fig. 7). The steady salinity structure is now
symmetric (Si = 0). Using the steady state values (24c-d), the eigenvalues then satisfy

[
λ2 − kβF0S0I

S
i

hω
λ + ω2

]
[(λ + rT )2 + ω2] = 0. (30)

Let us focus first on the second part of this equation: the solutions of (λ + rT )2 + ω2 = 0
are the complex conjugates −rT ± i|ω|. It corresponds to an oscillation at the overturning
period with a strong damping rate O(1 yr).
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For the other part of the eigenvalues equation: λ2 − λ(kβF0S0I
S
i )/(hω) + ω2 = 0,

oscillations are possible only if

F0 <
2hω2

kβS0|IS
i | . (31)

Using the parameters in Table 5, the criterion becomes F0 < 1372 cm yr−1 and applies fairly
well to the general system too (Fig. 9), especially whenever the temperature restoring time
is shortened. Eq. (31) can be interpreted as a nondimensional ratio between freshwater
forcing and overturning advection: Increase of F0 decreases the characteristic freshwater
time scale, which becomes more important than the advection over the time evolution of
the anomalies, and eventually disables the advective oscillation.

If the oscillation criterion is satisfied we get λ = λr + iλi , with

λi = |ω|
√√√√1 −

(
kβF0S0I

S
i

2hω2

)2

. (32)

Given (31), 0 < λi < ω, i.e. the oscillation period is systematically longer than the average
overturning period. The oscillation growth rate is

λr = kβF0S0I
S
i

2hω
> 0, (33)

which is always positive for our parameters (thermally-driven ω < 0, and IS
i < 0 for

tropical evaporation and subpolar precipitation): thus the oscillations are unstable. If (31)
is satisfied the fixed point is an unstable spiral, otherwise it is an unstable node.

c. Physical mechanism of the oscillations

i. How can one understand the growth of the perturbations? Let us consider a pos-
itive haline anomaly at the equator surface advected by a thermal circulation (ω < 0,
Fig. 10a). This anomaly reduces the meridional density gradient, and thus the resulting
buoyancy torque reduces the overturning circulation. The residence time in the evaporation
zone is then increased, which strengthens the anomaly. Then, when the anomaly quits the
evaporation zone to enter the precipitation zone, it increases the meridional density gradi-
ent, and the overturning circulation is now enhanced by the resulting buoyancy torque. The
residence time in the precipitation zone is then decreased. Since the positive haline anomaly
spends more time in the evaporation zone than in the precipitation zone, it experiences a net
salt increase. A same argument is valid for a negative haline anomaly. These sketches were
numerically confirmed by introducing salinity perturbations in the loop model with weak dif-
fusion and by following their evolution with time. It is worth noting that the growth crucially
depends on the fact that the buoyancy flux resulting from the freshwater forcing opposes the
buoyancy forcing resulting from the thermal fluxes, which set the sign of the overturning
circulation. If the fluxes were not opposed, they would damp any anomaly (Fig. 10b).
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Figure 10. Schematic representation of the time evolution of salinity anomalies passing through
the freshwater forcing zone and influencing the overturning ω. Growth or decay perturbation is a
function of the freshwater forcing configuration: (a) tropical evaporation and subpolar precipitation
lead to perturbation growth, whereas (b) tropical precipitation and subpolar evaporation lead to
perturbation decay.

ii. How can one understand the oscillation? Let us imagine an initial dipole salinity perturba-
tion (which is the one with the main projection on the overturning), the positive perturbation
is in the equatorial region and the negative one in the polar region (S ′

i > 0). The circulation,
which is prescribed by the buoyancy torque, is thus reduced (ω′ > 0, recall ω < 0). Because
in this parameter regime the perturbed salt advection term is dominated by the advection
by the mean flow (as will be discussed in the following paragraph), the advection of the
dipole perturbation moves the positive perturbation to the top of the loop and the negative
one to the bottom (S ′

r < 0, and ω′ = 0). The dipole keeps being advected clockwise and the
negative perturbation comes into the polar region while the positive one enters the equatorial
region (S ′

i < 0, ω′ < 0). Next the mean advection leads the positive pertubation into the
bottom region and the negative one in the top region (S ′

r > 0, ω′ = 0). Then the positive
perturbation moves to the equatorial region and the negative one to the polar region: we are
back to the initial perturbation (S ′

i > 0, ω′ > 0), and the oscillation cycle can repeat itself
indefinitely. This simple advective mechanism is illustrated in Figure 11.

iii. What is the connection between this salinity oscillation mechanism and the more tra-
ditional positive salinity feedback? We can define a nondimensional parameter controlling
the salinity oscillation regime or the salinity feedback regime according to (31):

2hω̄2

kβF0S0|IS
i | = τ2

SF

τ2
O

. (34)

The characteristic response time of the overturning to the salinity forcing is defined as:

τSF =
√

2h

kβF0S0|IS
i | .
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Figure 11. Schematic representation of the different mechanisms between the salinity oscillation
regime (right, solid arrows) and the positive salinity feedback (left, dashed arrows). South-North
(Down-Up) salinity gradients,∆S′

S−N (∆S′
D−U ), correspond toS′

i (S′
r ) in the Howard-Malkus loop.

Whether ω∂φS′ or ω′∂φS term dominates the perturbed salinity advection we obtain respectively the
salinity oscillation or the positive salinity feedback: (left) a retroaction diagram is sketched, arrows
with circled signs corresponding to the sign of coupling; (right) the phases of a salinity oscillation
are sketched, the circle represents the overturning loop (ω < 0), the ± signs corresponding to the
sign of salinity anomalies, and the arrows corresponds to about a quarter-period delayed response.
In some cases, oscillations will be sustained, at second order, by the positive salinity feedback.

This derives from the rate of change of the overturning (21) as a function of the salinity
meridional gradient (kβ), through the influence of the salinity surface forcing only in (20b):
F0S0|IS

i |/h. The characteristic time of the overturning circulation is simply:

τO = 1

|ω| .

A comparison of the two advection terms for the evolution of salinity anomaly, i.e. the
mean flow advection of the salinity perturbation gradient and the anomalous advection of
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the mean salinity gradient, shows a strong relation with these two timescales:

O(ω∂φS ′)
O(ω′∂φS)

=
O

(
ω

√
S ′2

i + S ′2
r

)
O(kβS ′

i |Sr |)
≈ ω2h

kβF0S0|IS
i | ≈ 1

2

τ2
SF

τ2
O

. (35)

Two cases arise depending on the ratio of these two characteristic times:

• If τSF > τO the model is in the salinity oscillation regime. In this case the overturning
circulation is so strong that the freshwater flux has almost no effect on the variations
of the overturning circulation (ω′). At first order, the salinity variations are controlled
by the the mean flow advection of the salinity perturbation gradient (ω∂φS ′), inducing
the salinity oscillations (solid arrows in Fig. 11). At second order, small variations of
the overturning allow dipolar anomalies to be sustained through the freshwater flux
(Fig. 10a).

• If τSF < τO the model is in the salinity feedback regime. The surface freshwater flux
is here strong enough to significantly impact the salinity over an overturning period,
hence the overturning circulation itself (ω′). The variations of salinity anomalies are
controlled by the anomalous advection of the mean salinity gradient (ω′∂φS). The mean
flow advection, predominant in the previous case, is now negligible: salinity anomalies
grow and modify the overturning before being advected around the overturning loop.
This case results in the positive salinity feedback regime sketched with dashed arrows
in Figure 11 (Marotzke, 1996).

When the freshwater forcing amplitude is continuously increased in the Howard-Malkus
loop, the regimes found are, first, a stable thermally-driven steady state, which is later
destabilized through a Hopf bifurcation with growing centennial salinity oscillations, and
further on through a second bifurcation with a non-oscillatory unstable mode driven by
the positive salinity feedback regime. Most importantly, this scenario is also found in time
integrations of 2-D and 3-D models.

5. Bihemispheric pole-to-pole configuration

a. Pole-to-pole 2-D model

In this section we investigate the centennial mode in a more realistic bihemispheric
basin extending from 66S to 66N (other parameters alike those given in Table 1). Because
of the great uncertainty in the observed freshwater forcing, we first run the 2-D model
with no convection under surface restoring boundary conditions for temperature and salin-
ity (Fig. 12). This experiment leads to a first steady-state. The implied freshwater flux is
diagnosed (Fig. 12) and used in the second experiment carried out under mixed boundary
conditions, but the initial state is perturbed by −1◦C (+1◦C) in the northern (southern)
hemisphere: the model settles in a pole-to-pole steady-state circulation revealing a strong
overturning (around 24 Sv) with northern downwelling (Fig. 13). This procedure enables us
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Figure 12. Forcing profiles in the bihemispheric configuration experiments. (top) Surface tempera-
ture restoring profile used for the bihemispheric configurations. (middle) Surface salinity restoring
profile used to obtain the first bihemipheric steady state. (bottom) Freshwater flux diagnosed at
the first bihemispheric steady-state under restoring surface boundary conditions for both temper-
ature and salinity, and used for the subsequent bihemipheric experiments under mixed boundary
condition.

to investigate the stability of a asymmetric bihemispheric circulation, but allows the salinity
to evolve freely.

A linear stability analysis on this pole-to-pole steady state reveals a much longer oscilla-
tion period (733 yr) than previously, and strong damping (in 67 yr) (Fig. 13). The anomalies
(whose density is strongly determined by salinity) seem to be passively advected by the
mean circulation as observed in the single hemisphere configuration.

The upwelling region now extends on both hemispheres. Some of the salinity anomalies
propagating southward at depth are brought back to the surface in the northern hemi-
sphere, where they still experience a reinforcement through the surface freshwater fluxes,
as described in the single hemispheric case. But, some among the salinity anomalies prop-
agate down to the southern hemisphere (almost 10 Sv), and upwell in regions where the



2006] Sévellec et al.: Mechanism of centennial thermohaline oscillations 383

Figure 13. First row: temperature (◦C), salinity (psu) and overturning (Sv) of the steady state in
our bihemispheric model. Second and third rows: less damped oscillation from the linear stability
analysis of the bihemispheric pole-to-pole experiment. The solid, dashed and dotted lines respec-
tively correspond to the positive, negative and zero anomalies. The periodic time evolution is:
XR → XI → −XR → −XI → XR . The anomalies at depth seem to be passively advected
around the main overturning loop. Note that the mode is damped, and its period is now 733 yr.

freshwater flux may no longer provide reinforcement but rather weaken the anomalies. The
net impact on the anomalies may finally be insufficient to counterbalance other damping
effects like diffusion.

Hence the eigenmode is quite different from the single-hemisphere one as it has, now,
a wavenumber 2 structure along the mean streamfunction contours. A major difference
with the one-hemisphere solution is also the oscillation period now increased to 733 yr.
However, the maximum overturning is around 24 Sv for a basin of twice the volume of
the one hemisphere, so that the renewal time of the water remains the same (here, basin
volume-to-maximum overturning ratio ∼ 170 yr). These results may suggest a change in
the physical mechanism between the two configurations.

As we can see in the density variance budget (Table 6) the bihemispheric pole-to-pole
configuration introduces a strong diminution of the temperature forcing term which cannot
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Table 6. As Table 4 for the bihemispheric pole-to-pole experiments: latitude-depth model (without
and with Antarctic Circumpolar Current) and Howard-Malkus loop.

Two hemisphere: Latitute-depth model Howard-Malkus loop

Variance term without ACC with ACC

Adv(T ′, T ) −0.00709 −0.0203 0.000646
Adv(S′, S) −0.00167 0.0104 0.000782
Adv(T ′, S) 0.00353 0.00669 −0.000402
Adv(S′, T ) 0.00649 −0.051 −0.00213
TotAdv 0.00126 −0.0542 −0.0011

Diff(T ′, T ′) −0.0109 −0.00616 −0.00009
Diff(S′, S′) −0.027 −0.0123 −0.00336
Diff(T ′, S′) 0.0111 0.063 0.000184
Diff(S′, T ′) 0.0111 0.063 0.000184
TotDiff −0.0157 −0.0119 −0.00309

Forc(T ′, T ′) −0.000106 −0.000112 −0.000461
Forc(T ′, S′) 0.000697 −0.000416 0.00155
TotForc 0.000591 −0.000528 0.00109

Tot −0.0139 −0.0666 −0.0031

counterbalance the high negative diffusive term, as it could be in the one hemispheric case
(Table 6). The density variance budget, as our linear stability study, highlights the forcing to
explain the damping of the centennial oscillation in this pole-to-pole configuration. We will
now extend further the Howard-Malkus loop to a bihemispheric configuration, in order to
better understand these changes in the structure and damping of the oscillatory eigenmode.

b. Howard-Malkus loop in bihemispheric configuration

Eqs. (20) are readily applicable to the bihemispheric case with only a modification of
forcing geometries (IT and IS). Actually in the one hemispheric case, the atmospheric
forcing is antisymmetric with respect to the middle latitude. In a bihemispheric case the
forcing becomes symmetric with respect to the equator (Fig. 14). The renewal time of the
water being the same in both cases, we will keep unchanged the frictional parameter (k) of
the model.

The nonlinear time integration reveals damped oscillatory anomalies (Fig. 15) where
density is salinity-dominated. The period of this oscillation is around 605 yr (Table 2).

As expected this experiment shows a strong modification of the centennial oscillation
mechanism upon the shift from one- to two-hemisphere configuration. The only change
between the two Howard-Malkus configurations is the geometry of the forcing; the slight
variation in freshwater intensity (from 80 to 101 cm yr−1) cannot explain such a big differ-
ence in the oscillation period. This geometry was previously shown to be of high importance
for the oscillation growth and mechanism in the one-hemispheric case; so the issue now
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Figure 14. Bihemispheric configuration of the Howard-Malkus loop with symmetric forcing.

Figure 15. Nonlinear integration of the bihemipsheric Howard-Malkus loop model showing a damped
oscillation of 605-yr period.
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Figure 16. Stability diagram for the bihemispheric Malkus loop oscillator as a function of the fresh-
water intensity F0 (up to very high, unrealistic, values). All the points are stable. The eigenmode
with the largest real part is oscillatory. Dashed lines are the steady-state overturning pulsation in
each case. The ‘salinity-controlled overturning’ subsystem is plotted in dash-dotted line.

is to understand why and how the period and growth of the centennial oscillations are so
deeply modified by this new forcing geometry.

We will thus perform the same kind of analysis, through modal decomposition, as pre-
viously done to obtain the steady state (24a-d) and perturbations (26). This decomposition
evidenced a strong modification of the steady state responsible for changes in the pertur-
bations equations. The projection of the forcing now occurs on harmonics different from
those in the one hemispheric case: IT

i and IS
i are canceled instead of IT

r and IS
r . As a result,

the mean overturning ω is controlled by salinity instead of temperature (ω � kβSi).
Results for modes n �= 1 are not modified (27). For n = 1, the diagram of stability shows a

stable oscillatory branch (Fig. 16) really different from the one found in the one hemispheric
case (Fig. 9). The oscillation period for a freshwater amplitude of 101 cm yr−1 is 502 yr,
and is comparable to the one found for the bihemispheric pole-to-pole configuration with
the 2-D model (733 yr).
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Concerning the ‘salinity-controlled overturning’ subsystem, the symmetric geometry of
the forcing (IS

i = 0 induces Sr = 0) leads to the following characteristic equation from
(29) and (24c–d):

[λ2 + ω2 + ωkβSi][(λ + rT )2 + ω2] = 0. (36)

The second part of the equation leads to the complex conjugate solutions: −rT ± i|ω|. It
corresponds to an oscillation at the overturning period with a strong damping rate O(1 yr).
The first part of the equation provides a purely oscillatory eigenmode (although the nonlinear
time integration shows a damped oscillation, because of diffusion not considered in this
calculation):

λ = i

√
ω2 + kβS0F0IS

r

h
, (37)

which corresponds to an oscillation period of 502 yr for a freshwater intensity worth
101 cm yr−1. The control of overturning by salinity (ω � kβSi) leads to the simple solution
λ � i

√
2|ω|. In this pole-to-pole configuration the period is no longer as close to ω as in

the one hemispheric case.
Unlike in the one hemispheric case, the growth of the anomaly is, here, impossible. Actu-

ally the decrease and increase of overturning by the anomalies are no longer correlated with
the adequate forcing zone. As shown in Figure 17 the anomaly cannot be enhanced by the
salinity feedback in a bihemispheric case. This result highlights the importance of the dual-
ity between the temperature-dominated steady flow and the impact of salinity-dominated

Figure 17. Schematic representation of the time evolution of salinity anomalies passing through the
freshwater forcing zone and influencing the overturning ω in the bihemispheric case. Perturbation
growth or decay is a function of the freshwater forcing configuration, here tropical evaporation and
subpolar precipitation in both hemispheres. The perturbation decreases as much as it increases the
overturning in each salinity forcing zone. Hence the perturbation does not experience a net increase.
In a symmetric forcing case there is then no positive salinity feedback.
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anomaly on the overturning. This duality does no longer exist in the bihemispheric config-
uration where the steady state and anomaly are both driven by salinity.

The density variance budget (Table 6) shows a negative total density variance due to a
negative contribution of the advection.

c. Pole-to-pole case with ACC

To take into account the main source of north-south asymmetry in the global ocean
circulation, let us now include a crude parametrization of the Antarctic Circumpolar Current
(ACC) through the Drake passage, extending here from 62S to 40S and 2500 m deep.
Because of the opening in this passage, a periodic boundary condition requires a null zonal
pressure difference, and thus the dynamical equation (4) has to be modified; following
Paillard and Cortijo (1999) we simply increase the local friction coefficient by a factor
1000 to substantially reduce the meridional velocities in the ACC.

The same restoring surface temperature, freshwater flux and initial fields from the pre-
vious experiment are used. The model settles into a steady state. A linear stability analysis
allows us to identify the centennial oscillatory eigenmode as a damped oscillatory mode
(Fig. 18). Anomalies in temperature and salinity are advected all around the North Atlantic
overturning cell, and their density is dominated by salinity. Their structure is very close to
the single hemisphere case. The oscillation period is 750 yr, which is more than twice the
one in the single hemisphere experiment but close to the one in the pole-to-pole case. This
damped oscillation is governed by the same mechanism as the one discussed in the previous
pole-to-pole 2-D and loop models.

A density variance budget is again performed to quantify the damping mechanism of the
oscillation in the last configuration (Table 6). The main difference between the cases with
and without ACC is the contributions of advection and restoring surface temperature that
become negative: hence the density variance is strongly damped.

d. Discussion

Such a centennial-scale oscillation where a large-scale salinity anomaly is advected all
around the overturning cell has been presented in the Large-Scale-Geostrophic (LSG) global
ocean model forced by mixed boundary conditions with stochastic noise added to the fresh-
water forcing (Mikolajewicz and Maier-Reimer, 1990). This study presents a compelling
figure of zonally-averaged salinity anomaly in the Atlantic where a dipole propagates in
a way very similar to our findings. This similarity seems to validate a posteriori our 2-D
model approach; hence, for investigations on such long-period and large-scale oscillations
the zonally-averaged model seems a valid simplification.

More recently, Weijer and Dijkstra (2003) described a damped oscillation through a
linear stability analysis of a global 3-D ocean model: its pattern resembles ours except
that the dipole anomalies are advected over the whole conveyor belt across the Antarctic
Circumpolar Current and Pacific Ocean. Their study reported on a similar scale for thermal
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Figure 18. As in Figure 13 for the asymmetric configuration with ACC. The anomalies seem to
be passively advected around the main overturning loop in the northern basin. The oscillatory
eigenmode, which period is 750 yr, is damped.

and haline anomalies, but gave no clue about the dominant term. However, their 3-D model
remains very frictional, and may not differ too much from our 2-D approximation.

6. Conclusion

This study discussed the stability of simplified models of the oceanic thermohaline cir-
culation able to reproduce the centennial scale oscillations found in 3-D models. We used
a 2-D latitude-depth model based on planetary geostrophic dynamic. By considering, first,
a single-hemisphere basin configuration under mixed boundary conditions, we observed
centennial oscillations with a density signature more intense in salinity than in temperature.
A linear stability analysis revealed the same centennial oscillation. A density variance bud-
get provided an objective way to identify the sources of variance sustaining the oscillations
against dissipation, i.e. the temperature restoring term, through well-correlated temperature
and salinity anomalies likely associated with changes in the overturning.

To get the roots of the oscillation mechanism, we also used an even more simplified model
constituted by the 1-D Howard-Malkus loop oscillator. Through various cases tractable
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analytically, we characterized the different regimes and damping processes of oscillation.
We found that the period is set by the mean overturning advection. At first order, salinity
anomalies are purely advected by the mean overturning flow. The mechanism sustaining
this oscillation enters at second order, it is close to the traditional positive salinity feedback.
Growing salinity oscillations and positive salinity feedback correspond to a different regime
of the same mechanism ruled by the model parameters, namely, the characteristic time scale
of the overturning and the response time of the overturning to the salinity forcing. Below
a threshold for the freshwater flux, oscillations are possible because salinity anomalies
are advected by the mean flow faster than reinforced by the freshwater flux (through the
anomalous advection of the mean salinity gradient). Above the threshold, reinforcement of
salinity anomalies and subsequent modifications of the overturning overwhelm the mean
flow advection and lead to the positive feedback.

Maybe in contrast with the 2-D model, the density variance budget in the Howard-Malkus
loop suggests an internal instability connected to the correlation of salinity and overturning
anomalies. In fact, depending on the surface temperature relaxation strength, the forcing
contribution to the density variance of the centennial oscillations can be either positive
(for the case most similar to the two-dimensional model) or negative (stronger relaxation).
These considerations made us suggest that the salinity-overturning oscillator mechanism
applies to the 2-D case, but requires some help from the surface temperature relaxation to be
sustained against the dissipation. The tracer diffusion is certainly the most active damping
term, as already shown for interdecadal oscillations (Huck et al., 1999a).

At last, the configuration of our 2-D model is adapted to a single basin extending on
the two hemispheres. Oscillations are no longer sustained through the nonlinear model
integration. Linear stability analyzes performed at various pole-to-pole steady states, with
and without a parametrization of the Antarctic Circumpolar Current through the Drake
passage, showed damped eigenmodes with spatial structures very similar to the ones found in
a single hemisphere. These last results confirm that the centennial oscillation is more heavily
damped and cannot persist in such a bihemispheric configuration. The Howard Malkus loop
analysis extended to this two-hemisphere configuration suggests that the symmetric surface
forcing strongly damps the oscillations, but also largely increases the oscillation period
(fundamentally the steady state overturning is no longer thermally- but salinity-driven).
These oscillations would need strong stochastic noise in the atmospheric forcing to be
continuously excited (Mysak et al., 1993). These results are in agreement with experiments
in 3-D global ocean models (Mikolajewicz and Maier-Reimer, 1990; Weijer and Dijkstra,
2003) showing that (i) the centennial mode structure and mechanism are well captured in
a zonally-averaged 2-D ocean model, and (ii) the centennial mode is strongly damped and
requires stochastic forcing to be excited.

The mechanism and signature of the centennial oscillation now being clearly identified
in simplified models, they need to be tested in 3-D realistic global models in order to
determine their most realistic patterns and growth or damping rate. Given the critical role
of the surface relaxation for the oscillation damping or growth, this oscillation mechanism
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should be tested in more realistic ocean models coupled with atmospheric models, eventually
simplified like energy balance model ones. The salinity being the essential density variable
for the oscillation, the coupling with sea-ice would be worth considering given its influence
on the freshwater flux and air-sea interactions. These studies should give more insight into
the robustness of this centennial oscillation and into its possible relevance for observed or
future climate variability.
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