A first genetic linkage map of the European flat oyster, *Ostrea edulis* towards the identification of *Bonamia* resistance QTLs

Delphine Lallias, Sylvie Lapègue, Chris Haley, Serge Heurtebise, Pierre Boudry, and Andy Beaumont

8th International Marine Biotechnology Conference

Eilat, Israel, 11-16 March 2007
Drastic reduction of the French production, from 20,000 tons in 1950’s and 1960’s to 2,000 tons nowadays

This is due to two parasitic diseases:
- Marteiliasis
- Bonamiasis
Context of the study

• Selective breeding for resistance to *Bonamia*

- **First stage:** production of improved oyster strains by individual selection in mass spawning populations (Naciri-Graven et al., 1998, Culloty et al., 2001)
 - Low effective population sizes (Launey et al., 2001)
 - Inbreeding depression (Naciri-Graven et al., 2000)

- **Second stage:** within- FS family selection

Higher survival and lower *Bonamia* prevalence (▲) of selected *versus* hybrid and wild families (Bédier et al., 2001)
In this context, the establishment of a genetic linkage map will provide a foundation for the identification of Quantitative Trait Loci for resistance (or tolerance) to *Bonamia*, with the ultimate objective to implement marker-assisted selection in *O. edulis*.

Linkage mapping in *Ostrea edulis*
Mapping family

- 2003: Cross between a wild oyster and a selected oyster (fifth-generation inbred line OELL2000 derived from the selected strain S89) → F1-L family

- 2004: F2 Cross between 2 F1-L oysters

<table>
<thead>
<tr>
<th>F0</th>
<th>L002-55 x W102</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1-L</td>
<td>23-31 x 23-32</td>
</tr>
<tr>
<td>OE.F2.04.63</td>
<td>F2 progeny (n=92)</td>
</tr>
</tbody>
</table>

Flat oysters are hermaphrodites and females brood their larvae for about 10 days

- 23-31 = “P1”
- 23-32 = “P2”
Markers and genotyping

- 20 available microsatellites
- 60 AFLPs primer pairs: 296 segregating markers

In total, 251 markers used for linkage analysis (16 microsatellites, 235 AFLPs)
Linkage analysis: CriMap (Green et al., 1990)
• High genetic load in *O. edulis*
 – segregation distortion (32.8% of overall markers): mostly homozygote deficiencies
 – distorted markers tended to cluster on some of the linkage groups

• First genetic linkage map in a flat oyster species, with a relatively good genome coverage
 – P1: 471 cM, average spacing 5 cM, genome coverage 82.4%
 – P2: 450 cM, average spacing 4 cM, genome coverage 84.2%
 – Number of linkage groups matches haploid number of chromosomes (2n=20 in *O. edulis*, P1 with 9 LGs, P2 with 10 LGs)

• Some differences in recombination frequencies between parents
 \[
 \begin{align*}
 &\text{Msat/msat} \quad p > 0.05 \\
 &\text{Msat/AFLP} \\
 &\text{Msat/msat} \quad p < 0.05 \\
 &\text{Msat/AFLP}
 \end{align*}
 \]
Coming work

• Mapping more codominant markers
 – Portability/transferability of the map
 – Increasing accuracy of the map, to find more homology groups (more anchor loci)
 – Investigating more deeply eventual recombination differences between the two parents (more pairwise comparisons)
Towards QTL mapping:
Bonamia challenge experiment
Mapping family

- 2004: Cross between a wild oyster and a selected oyster

 → F1-S family

- 2005: Cross between 2 F1-S oysters

F0 98AC703-29 x W31

F1-S 410-7 x 410-8

F2 F2 progeny

Three-generation pedigree
Bonamia challenge

12 raceways (150 l/h).
100 tested oysters / raceway

Cohabitation between wild over-infected oysters and our F2 family

- Mortality checked daily.
- Heart smears on dead oysters to search for Bonamia
Mortality (Jan-July 2006)

No significant raceway effect, so data were pooled between raceways.
550 F2 oysters

105 dead oysters

444 surviving oysters killed in August 2006 for heart smear

Dead oysters

41% ?
23% B0-
16% B0+
10% B0++
10% B0+++

Surviving oysters

89% B0-
3% B0+
0% B0++
0% B0+++

46 dead oysters B0+++

Scoring msats and AFLPs

46 surviving oysters B0-
Multistage testing strategy
(Moen et al., 2004)

6 probable susceptibility alleles

(Kaplan-Meier survival curves)
9 probable resistance alleles

(Kaplan-Meier survival curves)
QTL mapping: CriMap software + QTL express

- 2 parental maps built (410_7 and 410_8): CriMap
- binary trait (death/alive)
- regression interval mapping: QTL express
QTL mapping: CriMap software + QTL express

61 cM, p 0.05

17 cM, p 0.01
• Good concordance between multistage strategy, genetic mapping, QTL mapping

• Several QTLs found (resistance, susceptibility), of relatively good effect

Results from fitting a single QTL for the parent 410_7. Threshold p 0.05 and threshold p 0.01 correspond to chromosome-wide significance thresholds at $\alpha=5\%$ and 1% after performing 1000 permutations.

<table>
<thead>
<tr>
<th>Linkage group</th>
<th>F ratios</th>
<th>Location (cM)</th>
<th>Paternal estimate (standard error)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Threshold p 0.05</td>
<td>Threshold p 0.01</td>
<td>Observed</td>
</tr>
<tr>
<td>G2_410_7</td>
<td>6.78</td>
<td>9.87</td>
<td>83.65</td>
</tr>
<tr>
<td>G3_410_7</td>
<td>7.97</td>
<td>12.14</td>
<td>5.57</td>
</tr>
<tr>
<td>G4_410_7</td>
<td>6.63</td>
<td>11.72</td>
<td>6.73</td>
</tr>
<tr>
<td>G6_410_7</td>
<td>6.65</td>
<td>10.65</td>
<td>6.65</td>
</tr>
</tbody>
</table>

Results from fitting a single QTL for the parent 410_8. Threshold p 0.05 and threshold p 0.01 correspond to chromosome-wide significance thresholds at $\alpha=5\%$ and 1% after performing 1000 permutations.

<table>
<thead>
<tr>
<th>Linkage group</th>
<th>F ratios</th>
<th>Location (cM)</th>
<th>Maternal estimate (standard error)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Threshold p 0.05</td>
<td>Threshold p 0.01</td>
<td>Observed</td>
</tr>
<tr>
<td>G3_410_8</td>
<td>7.22</td>
<td>12.08</td>
<td>8.17</td>
</tr>
<tr>
<td>G6_410_8</td>
<td>7.96</td>
<td>12.14</td>
<td>22.19</td>
</tr>
</tbody>
</table>
Coming work

• Adding codominant markers (microsatellites, SNPs): anchor loci to integrate both maps
• Adding candidate genes from SSH (Benjamin Morga)
Acknowledgements

Financial support: Atlantic Arc Aquaculture group (Interreg IIIB), Network of Excellence « Marine Genomics Europe »

Bonamia challenge and diagnosis: Isabelle Arzul, Maeva Robert, Sylvie Ferrand, Bruno Chollet and Benjamin Morga

Technical assistance: Ifremer (La Tremblade), University of Wales (Bangor)