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ABSTRACT

In this study we discuss various methods to assess the
statistics of extreme response of a floating structure subjected
to random waves. This issue is of great importance in the case
of low frequency motion of floating bodies in shallow water.
Those methods are based on the evaluation of the level cross-
ing rate, which is easily related to the extreme value statistics
for stationary random processes and large levels. Four main
methods are considered, namely the Rice formula with either
a Gaussian assumption or an approximation of the joint distri-
bution of the response and its first derivative by a projection
method; the Breitung’s formula; the Hagberg’s approaches
using either an asymptotic expansion or a Monte-Carlo inte-
gration and finally the time domain simulation which serves as
the reference solution. All these methods are applied to the
surge motion of a floating body subjected to unidirectional
waves. In that case, the Rice formula under the Gaussian as-
sumption strongly underestimates the level crossing rate. The
other methods are more or less accurate compared to the time
domain simulation, but Hagberg’s Monte-Carlo integration is
shown to give the best approximation.

KEY WORDS: extreme response; crossing rate; second-
order wave loading; shallow water; low frequency motion.

INTRODUCTION

In the context of mooring design and analysis of offshore
operations in shallow water, an accurate prediction of the mo-
tions of the floating bodies is of great importance. For that
purpose a dynamic structural analysis is necessary to com-
pute the wave-induced structural response. The traditional
approach to perform dynamic analysis of a structure is to work
in the time domain and solve the motion’s equations. How-
ever, in the offshore environment where the waves have ran-
dom properties, that solution scheme becomes limited since
only a single instance of the motion is generated. Of course
the time-domain solution scheme can be repeated for various
random instances of the loading and the statistics of the re-
sponse can be estimated. Unfortunately, such an approach is
often very time consuming and thus impractical. It is there-
fore interesting to look at various alternative methods to as-

sess the statistical distribution of the structural response to
the random waves.

In this paper we are interested in the low frequency load-
ings, which generate the largest amplitudes of the structural
resonant behaviour. Low frequency loading is recognized to
originate from the second order approximation of the wave
forces (Pinkster, 1960). In this study, the sea state condition is
represented by a stationary Gaussian random process. Then,
the second-order approximation of the structural response is
extracted using a quadratic filter. The resulting structural
motion is a stochastic process, the properties of which are to
be determined, namely the probability density function of the
extreme values.

In practice, the assessment of the extreme value distribu-
tion is based on the evaluation of the level crossing rate which
is simply related to the extreme value statistics for stationary
random process and large level:

Pr (MT > β) ∼= Tµ+(β) (1)

where T is the time duration, µ+(β) is the up-crossing rate
of level β and MT = sup0≤t≤T ν(t) (ν(t) denotes a stationary

random process). Moreover, the up-crossing rate µ+(β) is half
µ(β), the crossing rate of the level β by the stationarity of the
response process. Therefore, the distribution of the extreme
response can be easily derived from the computation of the
level crossing rate µ(β).

Four main methods are considered to estimate the level
crossing rate:

• the Rice formula for the level crossing rate of a random
process under the Gaussian assumption (Rice, 1945)
or a projection method which uses an approximation
of the joint distribution of the response and its first
derivative (Monbet et al., 1996);

• the Breitung’s method (Breitung, 1988);

• Hagberd’s method (Hagberg, 2004);

• and the time-domain simulation, which is accurate,
provided the number of simulation is large enough, and
is considered as the reference solution.

Let us mention also the existence of the saddle point method
to compute the extreme statistics. This methods was already
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well investigated by Naess et al. (2006) and by Machado
(2002), therefore it is no more discussed in the present study.

The aim of the present study is to investigate the methods
under consideration through a comparison of their accuracy on
an application example. First of all, the statistical description
of the response process is given. Then, the methods for cross-
ing rate approximation are successively presented. Finally,
those methods are applied on a case study for comparison.

STATISTICAL ANALYSIS OF THE RESPONSE PRO-

CESS

Although the extreme values of the response process are of
more interest in this study, this values can only be predicted if
a more complete statistical description of the response is avail-
able. The critical response of concern is the large amplitudes
low frequency motions. It is known that these motions are the
resonant response to low frequency second-order wave forces.
As it is shown in the sequel, these responses can be computed
using frequency domain analysis technics if the structural dy-
namic behaviour is assumed linear.

Second-order wave forces model

We consider a Gaussian sea-state, which is modelized in
the first order by a sum of elementary waves wn(t, x) =
exp [i(ωnt − χnx)], where ωn and χn satisfy the dispersion re-
lation: ω2

n = gχntanh (dχn) (d is the water depth and g is the
gravity acceleration).

η(t, x) =
n=N
∑

n=−N

An

2
wn(t, x) (2)

The amplitudes An are independent and identically dis-
tributed complex random variables. Their distributions are
gaussian with zero mean value and their respective variances
depend on the power spectral density of η(t, x). In order to
make η(t, x) real, it is assumed that A−n = A∗

n, ω−n = ωn

and χ−n = χn, where ∗ denote the complex conjugate. Note
that we can assume x = 0 without loss of generality. In
the frequency domain, the power spectral density of η(t) is
Sη(ω) = |Hη(ω)|2, where Hη(ω) is a linear transfer function.
This way, the Gaussian sea considered appears as a linear
transform of a Gaussian white noise b(ω).

The second order approximation of wave-induced loading
can be expressed as F (t) = F (1)(t) + F (2)(t), where the first
and the second order terms reads:

F (1)(t) =

n=N
∑

n=−N

An

2
Hn(ωn)eiωnt (3)

F (2)(t) =
m=N
∑

m=−N

n=N
∑

n=−N

Am

2

An

2
Qm,neiωmteiωnt

HF = {Hn}n∈{−N,...,N} and Q = {Qm,n}(m,n)∈{−N,...,N} are
respectively a linear and a quadratic transform, which com-
ponents depend on the structural properties. In the second
order term, the elementary waves interaction produces waves
which frequencies are 2ωm, 2ωn, ωm +ωn or ωn−ωm. Thus, it
is of practical interest to decompose the second order loading
into a sum mode F (+)(t) and a difference mode F (−)(t):

F (−)(t) = 2
m=N
∑

m=1

n=N
∑

n=1

A∗
m

2

An

2
Qm,ne−iωmteiωnt (4)

F (+)(t) = 2Re

[

m=N
∑

m=1

n=N
∑

n=1

Am

2

An

2
Qm,neiωmteiωnt

]

One can see that the low frequency motions, that produce the
resonant behaviour of the structure, come from the difference
mode of the quadratic approximation of the wave loading.
The quadratic transfer function associated to that mode can
be written Q(−)(ωn,−ωm).

Structural motion

Assuming a linear dynamic behaviour, the structural mo-
tion is governed by a linear mechanical system:

(M + Ma)ẍ(t) + αẋ(t) + Kx(t) = F (t) (5)

where M is the mass of the structure, Ma the added mass
at zero pulsation, α is the damping coefficient and K is the
stiffness of the mooring line. Let denote Hx(ω) the linear
transfer function associated to this dynamical system:

SX(ω) = |Hx(ω)|2 SF (ω) (6)

Hx(ω) =
[

−(M + Ma)ω2 + K + jαω
]−1

Note that the response spectral density is all the higher as the
frequency is closed to the structural resonant frequency ω0.

ω2
0 =

K

M + Ma
(7)

In summary, the structural response can be derived from
a Gaussian white noise using a filter system which is the as-
sociation of the linear filter to get the free sea elevation from
a white noise, the quadratic filter to obtain the second order
wave forces from the sea elevation and the linear filter associ-
ated to the dynamic behaviour of the structure to derive the
structural motion. An overview of the filter system to get the
structural motion from a Gaussian white noise is depicted in
Figure 1. In this study, we assume that the low frequency mo-
tion is produced by the difference mode of the load quadratic
transfer function Q(−) applied to the high frequency wave.
We do not take into account the linear response of the low
frequency waves. Thus, the total quadratic transfer function
QT (ω1, ω2) of the system of interest reads:

QT (ω1, ω2) =H−1
x (ω1 − ω2)Q

(−)(ω1,−ω2) × (8)

Hhf
η (ω1)H

hf
η (−ω2)

Using this total quadratic transfer function, we can now
assess the statistical properties of the response process. Note
that, in the sequel, we use the abreviation QTF to denote the
total quadratic transfer function.

Statistical properties

Let us express the response process in a form suitable for
statistical analysis. Thanks to its Hermitian property, the
eigen decomposition of QT is:

QT (ω1,−ω2) =

N
∑

j=1

λiφi(ω1)φ
∗
i (ω2) (9)
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Fig. 1 Filter system for low frequency motions.

Denoting B(ω) the frequency representation of a Gaussian
white noise, the process x(t) can be written:

x(t) = 2

∫ ∞

0

∫ ∞

0

N
∑

j=1

λiφi(ω1)φ
∗
i (ω2) × (10)

B(ω1)e
ω1tB∗(ω2)e

−ω2tdω1dω2

Eq.(10) turns out to be:

x(t) =
1

2

N
∑

j=1

λi

(

zi(t)
2 + z̃i(t)

2) (11)

where z̃i(t) is the Hilbert transform of zi(t) and:

zi(t) =

∫ ∞

−∞

φi(ω1)B(ω1)e
ω1tdω1 (12)

Another expression of the process x(t) is useful for the
computation of its statistical properties. Let us denote ∆ =
diag(λ1, ..., λN ) and:

Z(t) =

[

z(t)
z̃(t)

]

and D =

[

∆ 0
0 ∆

]

(13)

Then, our process can be written:

x(t) =
1

2
Z(t)T DZ(t) (14)

From this expression it is easy to get the mean and the vari-
ance of the process:

E[x(t)] =
1

2
E

[

Z(t)T DZ(t)
]

=
n=N
∑

n=1

λn (15)

V[x(t)] =
1

4
V

[

Z(t)T DZ(t)
]

=
n=N
∑

n=1

λ2
n

For the prediction of the extreme value statistics, it is useful
to compute the joint characteristic function of the process and
its first derivative. It is shown (Naess, 2001) that for the
second order approximation of the response process that joint
characteristic function can be given in closed form. To achieve

this, consider the vector
(

Z(t)T Ż(t)T
)T

, where Ż(t) is the

first derivative of Z(t). One can obtain the covariance matrix

of
(

Z(t)T Ż(t)T
)T

by the following expression:

Σ =

[

I Σ12

Σ21 Σ22

]

(16)

where I is the 2N × 2N identity matrix, Σ12 = E
[

ZŻT
]

,

Σ21 = E
[

ŻZT
]

and Σ22 = E
[

ŻŻT
]

. Now let us compute the

moment generating function of the process (x(t), ẋ(t)) given
by:

M(u, v) = E
[

eux+vẋ
]

=

∫

R2

fXẊ(x1, x2)e
ux1+vx2dx1dx2

(17)

When we report in Eq.(17) the expression of x(t) in Eq.(14)
and we use the fact that fŻZ(ż, z) = fZ(z)fŻ|Z(ż|z), the mo-
ment generating function reads:

M(u, v) =

∫

R4N

fZ(z)fŻ|Z(ż|z)e
1

2
uzT Dz+vżT Dzdżdz (18)

It has been shown that the random variable Ż|Z = z is nor-
mally distributed with a mean value Σ12z and a covariance
matrix V = Σ22 − Σ21Σ12 (Anderson, 1958). One deduces
that the variable Zw = ŻT DZ|Z = z is also normally dis-
tributed with a mean value Z̄w and a covariance matrix Vw

given by:

Z̄w = zT Σ12Dz (19)

Vw = zT DV Dz

Invoking the expression of the characteristic function of a

Gaussian variable: E
[

evZw
]

= eZ̄wv+ 1

2
Vwv2

, Eq.(18) reads:

M(u, v) =

∫

ℜ2N

eZ̄wv+ 1

2
Vwv2

e
1

2
uzT DzfZ(z)dz (20)

M(u, v) =
1

(2π)N

∫

ℜ2N

ezT [Σ12Dv+ 1

2
DV Dv2+Du−I]zdz

Finally, the derivation of the formula for the characteristic
function is based on an integral equality cited by (Cramer,
1946), which states that:

∫

Rn

e−
1

2
zT Γzdz =

(2π)n/2

√

det(Γ)
(21)

Denoting Γ = I − 2Σ12Dv −DV Dv2 −Du, the characteristic
function of the process X(t) given by:

M(u, v) =
1

√

det(Γ)
(22)

From the expression of the moment generating function given
in Eq.(22) one can derive the cross moment of (x, ẋ):

E[xiẋj ] =
∂i+jM(u, v)

∂ui∂vj
(23)

STATISTICAL ANALYSIS OF EXTREME VALUES

The statistics of the extreme values of a random process
are in general derived from the crossings of the process thanks
to the relation given in Eq.(1) for stationary random process.
Moreover, instead of the up-crossing it is convenient to com-
pute the crossing rate, which makes no difference since by
stationariry the first is half the second.
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Time-domain simulation

From the QTF, it is possible to generate time series of that
process with a proper simulation methods. The general pro-
cedure for the simulation of x(t) is based on the expression
of x(t) given in Eq.(11). An overview of this procedure is
shown on Figure 2. Note that for cost reduction issues one
have to reduce the number of eigen values to the sufficently
larger ones.

Fig. 2 Simulation procedure of process x(t).

The empirical estimation of the up-crossing rate of the level
β consits in counting how many times each sample of x(t) cross
the level β and divide that number with the time duration
of the sample. Denoting δt the sample path, the empirical
estimation of the up-crossing rate of the level β reads:

µ+(β) =
1

T

n
∑

j=1

1{x((j−1)δt)≤β}∩{x(jδt)>β} (24)

where 1 is the indicator function. The time-domain simula-
tion, which is accurate provided the number of simulation is
large enough, is considered as the reference solution.

Rice formula and Projection method

The general formula of Rice for any level up-crossing rate
is expressed as follows:

µ+(β) =

∫ ∞

0

żfZŻ(β, ż)dż (25)

If x(t) is supposed to be a Gaussian process, denoting m2

its second order spectral moment, the up-crossing rate of any
level β is given by:

µ+(β) =

√
m2

2π
e−

β2

2 (26)

Some other methods use an approximation of the joint dis-
tribution of the response and its first derivative. Among them
is the projection method (Monbet et al., 1996). Let us assume

that the couple
(

X(t), Ẋ(t)
)

has the same joint distribution

for any t and that distribution can be written as follows:

fX,Ẋ(x, ẋ) = s(x, ẋ)p1(x)p2(ẋ) (27)

where p1 and p2 are parametric density functions that have
to fit the marginal distributions of x and ẋ. Some rules for a
good choice of p1 and p2 will be explained in the sequel. The
main idea behind the projection method is to approximate

the function s(x, ẋ) by a polynomial function s̃(x, ẋ) which

preserve the value of the cross-moments mij = E
[

XiẊj
]

for

any 0 ≤ i + j ≤ L for a given power degree L. To achieve
this, consider PL the space of two dimensional polynomial
functions which degrees are less or equal to L. Consider also
{ϕi,j(x, ẋ)}0≤i+j≤L a given base of polynomial on this space.
The approximation function s̃(x, ẋ) can be written in the form:

s̃(x, ẋ) =

L
∑

k=0

k
∑

j=0

dj,k−jϕj,k−j(x, ẋ) (28)

where dj,k−j are unknown coefficients to be determined. Re-
calling that this approximation must preserve the value of the
cross-moments, the coefficients di,j for any 0 ≤ i + j ≤ L are
obtained solving the system of equations:

∫

ϕj,k−j(x, ẋ)s̃(x, ẋ)p1(x)p2(ẋ)dxdẋ = E [ϕj,k−j(x, ẋ)]

(29)

It appears from the Eq.(29) that s̃(x, ẋ) is the projection of
s(x, ẋ) on the space PL for a scalar product defined by:

< a, b >=

∫

a(x, ẋ)b(x, ẋ)p1(x)p2(ẋ)dxdẋ (30)

In practice, we have some observed time series of X(t). We
can also have some observed time series of Ẋ(t), if not they
can be computed by finite difference with the time series of
X(t). Using those observations it is possible to get empirical
estimations of E [ϕj,k−j(x, ẋ)] for any 0 ≤ i + j ≤ L. One
can therefore solve the system of Eqs.(29) to obtain the coef-
ficients di,j . At this stage, it is important to notice that the
density functions p1 and p2 should be chosen as parametric
distributions that fit the best the observations of X(t) and
Ẋ(t). Moreover, the form of those parametric distributions
should be chosen such that the moments of order less or equal
to L exist. Once an approximation of the joint density of X, Ẋ
is computed, the Rice formula in Eq.(25) is applied to get any
level up-crossing rate.

Breitung’s method

The underlying results of Breitung’s method (Breitung,
1988) is an asymptotic approximation of the expected number
of crossings of a vector process through a hypersurface, when
that vector process is assumed Gaussian, stationary and differ-
entiable. Consider X(t) = (X1(t), ..., Xn(t)) a vector process.
Let S ∈ Rn be a region defined by the function g(x) such
that S = {x ∈ Rn; g(x) > 0}. When associated to a physical
system, the function g(x) describes whether the system fails
or not with the following conventions:

S = {x ∈ Rn; g(x) > 0} ≡ safe region (31)

F = {x ∈ Rn; g(x) < 0} ≡ failure region

G = {x ∈ Rn; g(x) = 0} ≡ limite-state surface

Then, the probability that the system does not fail during the
time [0, T ] is given by PS = Pr {g(X(t)) > 0 for all t ∈ [0, T ]}.
The basic idea under the approximation of PS is to study
the process not during the whole time duration [0, T ], but
only at the points where the process has an outcrossing. The
mean number of those points (i.e. points of out crossing)
for a differentiable stationary Gaussian process x(t) is under
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some regularity conditions given by a surface integral over the
surface G (Lindgren, 1980).

µ(β) =
βn−1

(2π)n/2
× (32)

∫

G

E
[
∣

∣

∣
n(x)T ẏ(t)

∣

∣

∣
; y(t) = βx

]

e

(

− β2

2
xT x

)

ds(x)

where β is the distance of G from the origin, n(x) is the unitary
normal vector on G and s(x) is the surface area mesure on G.

Now, we suppose that there are only m points y1, ..., ym

on G with |yi| = β = miny∈G|y|. Breitung’s derived from
the expression in Eq.(32) an asymptotic formula of the mean
number of outcrossings for large values of β in the form:

µ(β) = Φ(β)

m
∑

i=1

d
−1/2
i (33)

di =

n−1
∏

j=1

(1 − κi,j)

where κi,j are the main curvatures of G at yi. This solution
is also suitable for the evaluation of the level crossing rate of
a random process with the required properties. To this end,
one have to define the function g as follows:

g(Z) =
1

2
Z(t)T DZ(t) − β (34)

for the vector process Z(t) and any level β.

Asymptotic expansion of crossing rate and Monte-

Carlo integration

The method presented here stem from the PhD report of
Oskar Hagberg (2004). In his research work, Hagberg derived
a formula for the level crossing rate and proposed two different
approaches to approximate that formula. The first one is an
asymptotic expansion of the given formula of the level crossing
rate. The coefficients of that expansion depend on the joint
correlation structure of the process and its derivative. The
second one is a Monte-Carlo integration scheme to compute
the crossing rate by the given formula.

Let us consider a random process x(t) which is express as a
quadratic form of an n-dimensional stationary Gaussian vector
process z(t). We assume that the first derivative ż(t) exists.
As it was stated above, the joint distribution of the couple
(z(t), ż(t)) reads:

[

z(0)
ż(0)

]

∈ ℵ2n

(

0,

[

I −Σ21

Σ21 Σ22

])

(35)

Let us denote zj(t) the components of z(t). The process
x(t) can be written:

x(t) =

n
∑

j=1

λjz
2
j (t) (36)

where

λj 6= 0 for all j and λ1 ≤ λ2 ≤ · · · ≤ λn = 1 (37)

We define the number k as the largest integer such that λj < 1
when j ≤ k, and the matrix Γk = diag (λ1, . . . , λk). Using
the Lindgren’s formula Eq.(32) (1980) and the fact that the
variable ẏ(t)|y(t) = x is normally distributed with mean value
Σ21x and correlation matrix V , Hagberg derive the following
formula for the crossing rate of the level β2:

µ(β2) = A(β)

∫

t∈Sn−k−1

I(t, β)dsu(t) (38)

where Sn−k−1 is the unit sphere in Rn−k and su(t) is the
surface area mesure on Sn−k−1. I(t, β) is expressed as follows:

I(t, β) =

∫

sT Γks<β2

Q(s, t, β)exp

[

1

2
sT (I − Γk) s

]

ds (39)

The expression of A(β) and Q(s, t, β), which are complex are
not reported in this paper, but they can be found in Hagberg’s
PhD report.

In the first approach to approximate the crossing rate, Hag-
berg use the theory of asymptotic expansions to show that the
integral I(t, β) can be expanded in powers of 1/β2 for larger
values of β. Then, using this results, he states the existence
of an asymptotic expansion of the crossing rate µ(β2) in the
form:

µ(β2) → A(β)

∞
∑

j=0

cj
1

β2j
when β tends to ∞ (40)

In particular, he gives the complete expression of the first
coefficient c0 and the second one c1. It doesn’t worth report-
ing these expression in the present paper. The reader could
find them in Hagberg’s PhD report. However, it is impor-
tant to mention that the first order expansion coincides with
Breitung’s formula.

In the second approach, one can see that the inner integral
I(t, β) can be considered as an expectation of a particular
function Q̃(s, t, β) for a normally distributed centered random
vector s with a covariance matrix (I − Γk)−1. Likewise, the
outer integral in Eq.(38) can be regarded as the expectation
of a particular function for t, a uniformly distributed random
vector on Sn−k−1. Note that s and t are independent. It is
therefore possible to compute the crossing rate µ(β2) using a
Monte-Carlo integration procedure with samples of variables
s and t. Hagberg’s scheme for Monte-Carlo integration of
Eq.(38) is explained in his PhD report.

APPLICATION

Now, let us consider a LNG carrier in shallow water with
ten mooring lines as shown on Figure 3. The QTF of the
surge motion is used to compute the low frequency structural
response. We suppose that the structure is subjected to uni-
directional random waves modelized as a Jonswap which pa-
rameters are: HS = 5m, TP = 12s and γ = 10. The resonant
period of the moored system is 125s.

In order to perform the extreme value analysis, except the
direct application of the Rice formula, the other methods re-
quires a diagonalization of the QTF. For CPU reason, one
have to reduce the number of eigenvalues to the sufficiently
largest ones. As a preliminary analysis, one checked the con-
vergence of the empirical moments of the response process
in terms of the number of largest eigenvalues retained. This
study revealed that from ten retained largest eigenvalues the
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Fig. 3 Surge motion of the LNG carrier.

convergence is achieved. In this study, we reduce the number
of eigenvalues to the 20 largest ones.

The given methods are then applied to compute the cross-
ing rate in terms of the motion levels. For the time-domain
method, we use 40000 simulations of a Gaussian sea state of
1.5 hours. Concerning the Projection method, the marginal
parametric density p1 and p2 are estimated in order to preserve
the statistical moments of x and ẋ using the maximum entropy
method (Guiasu & Shenitzer 1946). Note that those moments
are computed with their expression given in Eq.(23). The de-
gree of the polynomial function s̃(x, ẋ) is L = 3. As stated
above, the Breitung’s result coincides with the first order term
of Hagberg’s asymptotic expansion. Finally, note that Hag-
berg’s Monte-Carlo integration is performed with 5000 sam-
ples of random vector (sT tT )T .

The results are plotted in Figure 4. They show a large
divergence of the Rice formula under Gaussian assumption
for the larger motion level, while the other methods are closed
to the time-domain simulation. The Figure 5 is a zoom of the
previous for larger motion levels and the Figure 6 shows the
relative error of the methods with respect to the time-domain
simulation.

One can see that the Breitung’s method, the second order
asymptotic expansion and Hagberg’s Monte-Carlo integration
remain closed to the time-domain simulation results for larger
motion levels. The Projection method corrects the Rice for-
mula with the Gaussian hypothesis but still deviates from the
time-domain simulation for high levels (Fig.6). One can see
in Figure 6 that the second order asymptotic expansion im-
proves the first order (i.e. Breitung’s method) for higher levels.
But, Hagberg’s Monte-Carlo integration appears as the best
approximation.

CONCLUSIONS

In this study, we have discuss various alternative methods
for the statistical analysis of extreme motion of moored float-
ing bodies. The methods which were discuss are the Rice for-
mula with either a Gaussian assumption or an approximation
of the joint distribution of the response and its first deriva-
tive by a projection method; the Breitung’s formula; the Hag-
berg’s approaches using either an asymptotic expansion or a
Monte-Carlo integration and finally the time domain simu-

lation which serve as the reference method. Those methods
were applied to an industrial application given by the Bureau
Veritas and which consist in the estimation of the distibution
of extreme low frequency surge motion of a moored floating
body in shallow water. The results reveals a large deviation
from the reference solution of the Rice formula with a Gaus-
sian assumption. The other methods appears closed to the
reference solution, but the Hagberg’s Monte-Carlo integration
gives the best approximation. Finally, note that these meth-
ods can serve as interesting alternatives to the saddle point
method.
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Fig. 4 Level crossing rate with respect to surge motion level by the different methods.
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Fig. 5 Level crossing rate with respect to surge motion level for larger level.
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