Sur l'écoulement turbulent au voisinage d'un filet de pêche

On the turbulent flow around a fishing net

Roger Lewandowski^a and Géraldine Pichot^b

^a IRMAR, campus Beaulieu, université de Rennes I, 35000 Rennes, France ^b IFREMER, technopôle Brest Iroise, 29280 Plouzane, France

*: Corresponding author : Roger.Lewandowski@univ-rennes1.fr

Abstract

We consider the flow around a rigid fishing net. We describe the model and show an existence result. Numerical results are shown and compared with experimental data. *To cite this article: R. Lewandowski, G. Pichot, C. R. Acad. Sci. Paris, Ser. I* 344 (2007).

Résumé

L'objet de cette Note est la modélisation et la simulation d'un écoulement turbulent au voisinage d'un filet de pêche rigide. Nous décrivons la modélisation, un résultat d'existence au système d'équations puis quelques résultats numériques comparés avec des résultats expérimentaux pour valider le code. *Pour citer cet article : R. Lewandowski, G. Pichot, C. R. Acad. Sci. Paris, Ser. I 344 (2007).*

Projet de note CRAS, calcul scientifique, soumise à O. Pironneau

Sur l'écoulement turbulent au voisinage d'un filet de pêche

R. Lewandowski 1 et G. ${\rm Pichot}^2$

Résumé

L'objet de ce travail est la modélisation et la simulation d'un écoulement turbulent au voisinage d'un filet de pêche rigide. Nous décrivons la modélisation, un résultat d'existence au système d'équations puis quelques résultats numériques comparés avec des résultats expérimentaux pour valider le code.

Abstract

We consider the flow around a rigid fishing net. We describe the model and show an existence result. Numerical results are shown and compared with experimental datas.

Abridged English version

Recent experimental works [1] show that there is less and less fishes in the ocean because of the intensive industrial fishing. It is essential to make the fishing nets more selective. Unfortunatly, it is difficult to get experimental data *in situ*. Therefore, a numerical tool needs to be developed in order to seek for new solutions.

In this problem, there are four features: the elastic deformations of the net, the understanding of the flow, the fluid/structure coupling and the catches. Elastic models for a net in a given fixed flow does exist already ([6], [10]). Hydrodynamic has been studied in [11] in an axisymmetric case. For several reasons, this work does not allow a future coupling of the flow with the structure.

Our study starts from experiments carried at *Boulogne sur Mer* in the IFREMER's tank. A net model rigidified by a resin has been constructed. We have been able to measure components of the velocity of the water outside and inside the net thanks to a LDV measurement technique ([3] and [8]).

Our work aims to give a mathematical model describing the flow around and inside this net, by taking into account the turbulent feature of the flow. Then we wrote a numerical code to simulate this turbulent flow.

Our model is made of three features. First, the net is considered to be a porous membrane so as to simplify the geometry of the fluid domain. Then we take the net and fishes into account directly in the equations by a penalization technique, leading to Navier-Stokes/Brinkman equations, and finally, we use a first order turbulent closure model with an eddy viscosity $\nu_t = \nu_t(k)$ where k is the turbulent kinetic energy. The function ν_t is a truncature of the function $\nu_0 + \ell \sqrt{k}$, ℓ being locally equal to the size of the numerical mesh.

The geometry is described by (2.1). The equations are (2.3) below and the boundary conditions (2.4), (2.5), (2.6). We prove an existence result in the two dimensional case.

 $^{^1\}mathrm{IRMAR},$ Campus Beaulieu, Université de Rennes I, 35000 RENNES, France, Roger.Lewandowski@univ-rennes1.fr, http://perso.univ-rennes1.fr/roger.lewandowski/

 $^{^2\}mathrm{IFREMER},$ Technopôle Brest Iroise, 29280 PLOUZANE , France, Geraldine. Pichot@ifremer.fr

Theorem 0.1 Let T > 0. assume that ν_t , μ_t are C^1 bounded functions, bounded below by a strictly positive constant and K and ℓ are peacewise C^1 functions also strictly positive. Moreover, assume that $u_I \in H_{00}^{3/2}(\Gamma_i)$ et $(\mathbf{u}_0, k_0) \in L^2(\Omega) \times L^1(\Omega)$, $\nabla \cdot \mathbf{u}_0 = 0$, $\mathbf{u}_0.\mathbf{n}|_{\Gamma_i} = u_I$, $\mathbf{u}_0.\mathbf{n}|_{\Gamma_\ell} = 0$. Then the system [2.3, 2.4, 2.5, 2.6] has a weak solution (\mathbf{u}, p, k) on $[0, T] \times \Omega$ where $\mathbf{u} \in L^2([0, T], H^1(\Omega)) \cap L^{\infty}([0, T], L^2(\Omega))$, $k \in \bigcap_{p < 4/3} L^p([0, T], W^{1,p}(\Omega)) \times L^{\infty}([0, T], L^1(\Omega))$, $p \in \mathcal{D}'([0, T], L^2(\Omega))$.

The proof is based on the energy equalities (3.1) and (3.2) and uses an adaptation to the present case of the scheme introduced at the origin in [7]. It has to be notice that usually one uses $\boldsymbol{\sigma}.\mathbf{n} = 0$ on the outside boundary of the computational box. In this case and with no information on the sign of $\mathbf{u}.\mathbf{n}$ there is no à priori estimate. In the laminar case $\mathbf{u}.\mathbf{n}^- = 0$ on Γ_o in (2.5) up to the additional term $(\mathbf{u}.\mathbf{n})\mathbf{u}_{\mathrm{I}}$. However, this force term looks natural out. Without it, one needs a smallness assumption on \mathbf{u}_{I} to prove an existence result which excludes the turbulent cases.

Numerical simulations have been performed using the finite elements technique in the axisymetric case. Following [9], one uses an implicit scheme for the Navier-Stokes/Brinkman equations with eddy vicosity and a half-implicit scheme for the turbulent closure equation. The solving process is iterative: once the turbulent kinetic energy is computed, the Navier-Stokes/Brinkman equations are solved numerically, then the turbulent kinetic energy is computed again and so on, until the final computation time is reached.

Our program has been written using the free software Freefem++ [4]. Experimental LDV profiles for the main component of the velocity have been compared with the corresponding profiles obtained numerically. One notices a really good agreement between both (Figure 4.2). Moreover a stationary state is reached after about 50 iterations, which is correct since we are studying mean quantities.

1 Introduction

Des récentes analyses [1] montrent que les océans sont de moins en moins poissonneux en raison de la pêche industrielle massive. Il est indispensable de rendre les filets plus sélectifs pour éviter de capturer les poissons trop petits et impropres à la consommation. Les difficultés pour l'obtention de mesures *in situ* sont la principale motivation du développement d'un outil numérique fiable pour tester la sélectivité des filets et l'améliorer.

Le développement d'un tel outil présente quatre aspects : les déformations élastiques du filet, l'écoulement hydrodynamique, le couplage fluide/structure et la prise en compte des captures de poissons. De nombreux travaux ont déjà été entrepris (par ex. [6], [10]) pour traiter la question de modèles élastiques dans des flots uniformes. On trouve dans [11] une étude intéressante de la partie hydrodynamique mais qui ne permet pas semble-t'il d'envisager le couplage fluide/structure. Notre travail est une approche de la partie hydrodynamique pour obtenir un modèle approprié qui permettra le couplage fluide/structure ultérieur, la prise en compte des captures et qui tient compte de la turbulence de l'écoulement.

Notre étude a pour point de départ une série de campagnes expérimentales au bassin d'essai de l'IFREMER de Boulogne sur Mer. Grâce à des techniques de mesure LDV, on a pu collecter des valeurs des vitesses de l'eau sur des sections d'une maquette de filet rigide (voir [3] et [8]). Nous avons ensuite mis au point un modèle mathématique simulant l'écoulement turbulent au voisinage de cette maquette. L'objet de cette note est la présentation de ce modèle et des résultats obtenus, théoriques et numériques, dans le cas axisymétrique.

Dans la suite, nous présentons le modèle, nous énonçons un résultat d'existence d'une solution faible dans le cas 2D. Enfin, nous donnons des indications sur l'algorithme de programmation et quelques résultats numériques comparés aux résultats expérimentaux.

2 Modélisation

Notre modèle présente trois aspects :

- Une modélisation du filet par une membrane poreuse, de perméabilité à définir, de sorte de s'affranchir d'un maillage coûteux qui reposerait sur les fils et les noeuds,

- Suivant [5], une prise en compte des obstacles (solides et poreux) dans l'écoulement continûment dans les équations de Navier-Stokes incompressibles par l'ajout d'un terme de pénalisation de la vitesse,

- L'utilisation d'un modèle classique de fermeture à une équation (voir [9]), avec viscosité turbulente ν_t où $\nu_t = \nu_t(k)$, k étant l'énergie cinétique turbulente. Nous utilisons une troncature de la fonction $\nu_t = \nu + \ell \sqrt{k}$ où ℓ est prise égale en chaque point à la taille locale du maillage; k est solution de l'équation standard.

Considérons une poche de chalut remplie de poissons, prise dans une configuration axisymétrique et immergée dans une boîte cylindrique. Moyennant une hypothèse d'axisymétrie de l'écoulement, raisonnable pour l'étude de l'écoulement moyen, notre problème se réduit à un problème dans le plan $(O, \mathbf{r}, \mathbf{z})$. Notons $(\mathbf{u} = (u_z, u_r), p)$ les inconnues (vitesse moyenne, pression modifiée).

Soit Ω le domaine de calcul, bordé par $\Gamma_i \cup \Gamma_l \cup \Gamma_0$ (Figure 2.1) :

Le domaine fluide est noté Ω_w , la prise G_f , le filet est décrit par le domaine G_n , G_c étant le support de l'entrée du filet (voir [3]).

Figure 2.1: Géométrie et notations

La perméabilité des domaines est défini comme suit:

(2.2)
$$K(\mathbf{x}) = \begin{cases} K_w(\mathbf{x}) \text{ si } \mathbf{x} \in \Omega_w, \text{ avec } K_w(\mathbf{x}) \gg 1, \\ K_s(\mathbf{x}) \text{ si } \mathbf{x} \in G_f \cup G_c, \text{ avec } K_s(\mathbf{x}) \ll 1, \\ K_n(\mathbf{x}) \text{ si } \mathbf{x} \in G_n. \end{cases}$$

Le système final posé dans Ω est, (2.3)

$$\begin{split} \partial_{t}\mathbf{u} + (\mathbf{u}\nabla)\mathbf{u} - \nabla\cdot\boldsymbol{\sigma}(\mathbf{u}, p, k) + \left(\frac{1}{K_{s}(\mathbf{x})}(\mathbb{I}_{G_{f}\cup G_{c}}) + \frac{1}{K_{n}(\mathbf{x})}\mathbb{I}_{G_{n}} + \frac{1}{K_{w}(\mathbf{x})}\mathbb{I}_{\Omega_{w}}\right)\mathbf{u} &= \mathbf{0}, \\ \nabla\cdot\mathbf{u} &= 0, \quad \boldsymbol{\varepsilon}(\mathbf{u}) = \frac{\nabla\mathbf{u} + \nabla\mathbf{u}^{T}}{2}, \quad \boldsymbol{\sigma}(\mathbf{u}, p, k) = 2(\nu_{0} + \nu_{t}(k, \mathbf{x}))\boldsymbol{\varepsilon}(\mathbf{u}) - p\,\mathbf{Id} \\ \partial_{t}k + \mathbf{u} \cdot\nabla k - \nabla\cdot(\mu_{t}(k, \mathbf{x})\nabla k) = 2\nu_{t}(k, \mathbf{x})|\boldsymbol{\varepsilon}(\mathbf{u})|^{2} - \frac{k\sqrt{k}}{\ell}, \end{split}$$

Pour les conditions aux limites : le flot d'entrée est pris constant. Sur les bord $\mathbf{u} = \mathbf{0}$. Pour éviter les reflexions numériques de tourbillons sur Γ_o et s'assurer d'avoir une solution dissipative, on généralise la méthode de [2] au cas turbulent.

(2.4) sur
$$\Gamma_i$$
: $\mathbf{u} = \mathbf{u}_{\mathrm{I}} = (u_{\mathrm{I}}, 0), \quad k = 0, \quad \text{sur } \Gamma_l$: $\mathbf{u} = \mathbf{0}, \quad k = 0,$
(2.5) sur Γ_o : $\boldsymbol{\sigma}(\mathbf{u}, p, k) \cdot \mathbf{n} = -\frac{1}{2}(\mathbf{u} \cdot \mathbf{n})^{-}(\mathbf{u} - \mathbf{u}_{\mathrm{I}}) + (\mathbf{u} \cdot \mathbf{n})\mathbf{u}_{\mathrm{I}}, \quad \mu_t \frac{\partial k}{\partial \mathbf{n}} = -(\mathbf{u} \cdot \mathbf{n})^{-}k$

(2.6)
$$\mathbf{u}_{t=0} = \mathbf{u}_0, \quad k_{t=0} = k_0.$$

3 Résultat d'existence

Théorème 3.1 Soit T > 0 et on se place dans le cas 2D. On suppose les fonction ν_t , μ_t , bornées de classe C^1 minorées par une constante strictement positive et K et ℓC^1 par morceaux et strictement positives. On suppose que $u_I \in H_{00}^{3/2}(\Gamma_i)$ et $(\mathbf{u}_0, k_0) \in L^2(\Omega) \times$ $L^1(\Omega), \nabla \cdot \mathbf{u}_0 = 0, \mathbf{u}_0.\mathbf{n}|_{\Gamma_i} = u_I, \mathbf{u}_0.\mathbf{n}|_{\Gamma_\ell} = 0$. Alors le système [2.3, 2.4, 2.5, 2.6] admet une solution faible (\mathbf{u}, p, k) sur $[0, T] \times \Omega$ avec $\mathbf{u} \in L^2([0, T], H^1(\Omega)) \cap L^{\infty}([0, T], L^2(\Omega)),$ $k \in \bigcap_{p < 4/3} L^p([0, T], W^{1,p}(\Omega)) \times L^{\infty}([0, T], L^1(\Omega)), p \in \mathcal{D}'([0, T], L^2(\Omega)).$

La démonstration est détaillée dans [8]. On commence par faire un relèvement de la condition aux limites sur Γ_i en notant $\tilde{\mathbf{u}} = \mathbf{u} - \mathbf{v}_0$ où $\mathbf{v}_0 = 0$ sur $\Gamma_i \cup \Gamma_l$, vaut \mathbf{u}_{I} sur $\Gamma_i \cup \Gamma_o$ et est solution d'un problème de Stokes, nulle sur le domaine filet. La condition $u_{\mathrm{I}} \in H_{00}^{3/2}(\Gamma_i)$ est cruciale. On a les égalités, où $\mathcal{P}(\mathbf{u})$ est le terme de perméabilité,

(3.1)
$$\frac{d}{dt} ||\mathbf{\tilde{u}}||_{L^{2}(\Omega)}^{2} + \int_{\Omega} \nu_{t}(k) |\boldsymbol{\varepsilon}(\mathbf{\tilde{u}})|^{2} + \int_{\Omega} \nu_{t}(k) \boldsymbol{\varepsilon}(\mathbf{\tilde{u}}) \boldsymbol{\varepsilon}(\mathbf{v}_{0}) + \int_{\Omega} \mathcal{P}(\mathbf{\tilde{u}}).\mathbf{\tilde{u}} - \int_{\Omega} \mathbf{v}_{0} \otimes (\mathbf{\tilde{u}} + \mathbf{v}_{0}) : \nabla \mathbf{\tilde{u}} + \frac{1}{2} \int_{\Gamma_{0}} ((\mathbf{\tilde{u}} + \mathbf{v}_{0}).\mathbf{n})^{+} |\mathbf{\tilde{u}}|^{2} = 0,$$

(3.2)
$$\frac{d}{dt}G(k) + \int_{\Omega} \mu_t(k)|g'(k)|\nabla k|^2 + \int_{\Gamma_o} (\mathbf{u}.\mathbf{n})^+ G(k) + \int_{\Gamma_o} (\mathbf{u}.\mathbf{n})^- (kg(k) - G(k)) = \int_{\Omega} g(k)[\nu_t(k)|\boldsymbol{\varepsilon}(\mathbf{u})|^2 - \frac{k\sqrt{k}}{\ell}]$$

pour chaque g, C^1 par morceaux positive sur \mathbb{R}^+ , impaire et croissante $(kg(k) - G(k) \ge 0)$, bornée. On en déduit les bornes habituelles comme dans [7] par exemple. On construit des approximations par la méthode de Galerkin et on passe à la limite dans les équations. Il faut noter qu'en général, on choisit $\sigma.\mathbf{n} = 0$ sur le bord de sortie de la boîte de calcul. Dans ce cas, sans information sur le signe de $\mathbf{u}.\mathbf{n}$ on n'a pas d'estimation à priori. Noter que dans le cas laminaire $\mathbf{u}.\mathbf{n}^- = 0$ en sortie on retrouve le cas habituel dans (2.5) au terme additionnel $(\mathbf{u}.\mathbf{n})\mathbf{u}_{\mathrm{I}}$ près. Ce terme de forçage semble cependant naturel. Sans ce dernier, on est conduit à imposer une condition de petitesse sur \mathbf{u}_{I} pour prouver un résultat d'existence, ce qui exclut les cas turbulents.

4 Résultats Numériques

La résolution repose sur la technique des éléments finis. S'inspirant de [9], un schéma implicite est choisi pour le problème régissant les inconnues (\mathbf{u}, p) (initialisées en résolvant un problème de Stokes auxiliaire) et un schéma semi-implicite pour k (initialisée à une constante). Le processus de résolution est itératif. On résoud alternativement les deux problèmes jusqu'à ce que le temps final de calcul soit atteint.

Le domaine G_n a été découpé en trois zones G_n^i (i = 1, 2, 3): $G_n = \bigcup_{i=1}^3 G_n^i$, et l'épaisseur de la membrane choisie en fonction de la couche limite observée sur les profils LDV (Figure 4.1).

Perméabilité du domaine filet:

$$K_n(\mathbf{x}) = \begin{cases} 1 \text{ si } \mathbf{x} \in G_n^1, \\ 5 \text{ si } \mathbf{x} \in G_n^2, \\ 6 \text{ si } \mathbf{x} \in G_n^3. \end{cases}$$

Perméabilité du domaine fluide Ω_w : $K_w = 10^5$ Perméabilité des domaines solides $G_f \cup G_c$: $K_s = 10^{-5}$

Figure 4.1: Découpage du domaine filet et profils de mesures

Notre code a été écrit sous le logiciel Freefem++ (voir [4]). Nous donnons ci-dessous quelques résultats numériques obtenus pour la composante u_z de la vitesse le long de deux des profils de mesures et les comparons avec les profils expérimentaux correspondants (Figure 4.2).

Figure 4.2: Comparaisons des profils LDV et numériques : profils 4 et 7.

Nous constatons que les résultats numériques coïncident parfaitement avec les données expérimentales. De plus, un état stationnaire est atteint au bout de 50 itérations, ce qui est en accord avec le fait d'étudier l'écoulement moyen.

Remerciements. Nous remercions l'IFREMER et la région Bretagne pour le financement de ces recherches. Nous remercions vivement F. Hecht avec qui nous avons eu des discus-

sions fructueuses sur la simulation numérique de notre problème, ainsi que G. Germain et son équipe de l'IFREMER de *Boulogne sur Mer* pour la donnée des profils expérimentaux, B. Vincent de l'IFREMER de Lorient pour ses remarques pertinentes et D. Priour de l'IFREMER de Brest.

References

- L. BOTSFORD, J. CASTILLA, AND C. PETERSON, The management of fisheries and marine ecosystems, Science, 277 (1997), pp. 509–515.
- [2] C. H. BRUNEAU AND P. FABRIE, New efficient boundary conditions for incompressible navier-stokes equations: a well-posedness result., RAIRO Modél. Math. Anal. Numér., 30 (1996), pp. 815–840.
- [3] G. GERMAIN, J. V. FACQ, AND D. PRIOUR, *Flow characterization around a cod-end*, IMAM congress, Portugal, (2005).
- [4] F. HECHT, O. PIRONNEAU, A. LE HYARIC, AND K. OHTSUA, *FreeFem++ Manual*, Laboratoire Jacques Louis Lions, Paris (http://freefem.org/ff++), 2006.
- [5] K. KHADRA, P. ANGOT, S. PARNEIX, AND J. CALTAGIRONE, Fictitious domain approach for numerical modelling of navier-stokes equations, International journal for numerical methods in fluids, 34 (2000), pp. 651–684.
- [6] H. LE DRET, R. LEWANDOWSKI, D. PRIOUR, AND F. CHAGNEAU, Numerical simulation of a cod end net. part 1: Equilibrium in a uniform flow, Journal of Elasticity, 76 (2004), pp. 139–162.
- [7] R. LEWANDOWSKI, The mathematical analysis of the coupling of a turbulent kinetic energy equation to the Navier-Stokes equation with an eddy viscosity, Nonlinear Analysis TMA, 28 (1997), pp. 393–417.
- [8] R. LEWANDOWSKI AND G. PICHOT, Numerical simulation of water flow around a rigid fishing net, En préparation, (2006).
- [9] B. MOHAMMADI AND O. PIRONNEAU, Analysis of the k-Epsilon model, Masson, 1994.
- [10] D. PRIOUR, Calculation of net shapes by the finite element method with triangular elements, Comm. in Num. Meth., 15 (1999), pp. 755–763.
- [11] B. VINCENT, Etude numérique et expérimentale des écoulements guidés par une paroi perméable axisymétrique. Application à la modélisation des chaluts pour en améliorer la sélectivité, Thèse Ecole Centrale Nantes, 1996.