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Abstract:  

In part I of this study it was shown that, to model synthetic fiber ropes, two scale transition models can 
be used in sequence. The first model (continuum model) has been presented in the part I and the 
present paper examines the behavior of a fibrous structure consisting of 6 helicoidal strands around a 
central core (1 + 6 structure). An analytical model will be presented which enables the global elastic 
behavior of such a cable under tension–torsion loading to be predicted. In this model, first, the core 
and the strands are described as Kirchhoff–Love beams and then the traction–torsion coupling 
behavior is taken into account for both of them. By modeling the contact conditions between the 
strands and the core, with certain assumptions, it is possible to describe the behavior of the cable 
section as a function of the degrees of freedom of the core. The behavior of the cable can thus be 
deduced from the tension–torsion coupling behavior of its constituents. Tensile tests have been 
performed on the core, the strands and then on a full scale 205 ton failure load cable. Finally, 
predicted stiffness from the analytical models is compared to the test results.  
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1. Introduction 
 

As presented in the part I (Ghoreishi et al., submitted to International Journal of Solids 

and Structures)  of this work, large synthetic fiber ropes are characterized by a very complex 

architecture, and a hierarchical structure in which the base components (fiber or yarn) are 

transformed by a twisting operation. The resulting structure is then a base component for the 

next higher structure. Its hierarchical structure leads to the hierarchical approach where the 

top is the fiber rope and the bottom is the base components, with several different types of 

elements between the base component and the fiber rope. As indicated in part I of this work 

the fiber rope consists of two different types of structure: multilayered and 1+6 structures. It 

has been also shown that to go from fiber to rope, two scale transition models are necessary 

that are used in sequence. An analytical closed-form formulation (continuum model) of a 

multilayered structure has been developed in part I. The objective of the present paper is the 

modeling of the static behavior of a 1+6 fibrous structure subjected to axial loads, using the 

mechanical behavior of the core and strands, and the geometric description of the structure. 

 

In section 2, the global behavior of the cable will be described and then, in section 3, 

an overview of the existing models for such structures will be given. In section 4, an 

extension of Labrosse’s model to predict global response of a 1+6 fibrous rope structure, is 

developed. The analytical models are compared in section 5. Tensile tests, on two different 

fiber ropes, have been performed and  provide the experimental data that are described in 

section 6. In section 7, results of analytical models are compared to experimental data. 

 

2. Cable global behavior 
 

Let us consider a 1+6 fiber rope made of six helical strands (wires) wrapped around a 
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straight core as illustrated in figure 1. Due to the hierarchical structure of large synthetic fiber 

ropes, the core and strands are not homogeneous, and are themselves formed from constitutive 

elements, see Part I. However, at the rope level, the strands and core may be considered as 

homogeneous, provided that their behavior takes into account their components (constitutive 

element). It is in this sense that, in this work, we use the wire for the strand. 

The axial behavior of such a structure exhibits coupling between tension and torsion 

due to the helical design of the wires. Thus, the overall behavior can be expressed as: 
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where denotes the overall axial strain, zzu , zz,θ  the twist angle per unit length,  the axial 

force and  the torque. The four stiffness matrix components , ,  and  are 

pure tensile, torsion and coupling terms respectively. Moreover, the stiffness matrix should be 

symmetric, as can be shown from Betti’s reciprocal theorem. 

zF

zM εεk θθk θεk εθk

 

3. Earlier models 
 

This work is concentrated on 1+6 structures in which, in contrast to multilayered 

structures, the bending moments and torque in individual components should be considered. 

Several analytical models are available to predict the mechanical behavior of 1+6 metallic 

structures subjected to axial loads, based on a knowledge of the component material behavior 

and geometry of the structure. The first approaches only incorporate effects associated with 

tension, the bending and torsion stiffness of the wires being neglected. Such analyses have 

been performed by Hruska (1951; 1952; 1953) and by Knapp (1975) for a rigid core. More 

recent and complex analytical models are based on beam theory assumptions: the behavior of 

wires is described using Love’s curved beam equations. Following this approach, Machida 

and Durelli (1973) have studied the effects of the bending and torsion stiffness of individual 
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wires on the cable stiffness matrix. Knapp (1979) studied the effect of variations in core 

radius. This approach, primarily devoted to soft core cables, can also be applied to more rigid 

core structures. Costello and Philips (1976) presented a general non-linear theory for a layer 

of helical wound wires without core, which included the effects of radius and helix angle 

variations (Poisson’s ratio effect). This formulation leads to a set of non-linear equations. A 

more recent paper by Philips and Costello (1985) presents a solution of the same theory 

applied to wire rope with internal wire rope cores. Kumar and Cochran (1987) have developed 

a linearized form of this theory, leading to a closed-form expression for axial stiffness 

coefficients. This model, was later extended by Kumar and Botsis (2001) to obtain the 

analytical expression for the maximum contact stresses induced in the multilayered strands 

with metallic wire core. Huang (1978) studied the contact mode conditions (radial or lateral) 

for 1+6 cable. Local contact deformation is neglected whilst the Poisson’s ratio effect is 

included. It is found that radial contact seems to be prevailing case, even when no initial gap 

exists between wires in the layers. Utting and Jones (1987a, 1987b) have extended the model 

of Costello et al. to include wire flattening (contact deformation) and friction effects. The 

results show that friction and wire flattening have very little effect on estimates of the global 

cable response. 

Sathikh et al. (1996) presented a closed form symmetric linear elastic model for a 

cable with a rigid core, using discrete thin rod theory. In this model only core-to-wire contact, 

the wire tension, twist and bending together have been taken into account. Recently, Costello 

(1997) presented a linearized theory including the effects of curvature and twist variations. 

Finally, Labrosse (1998) presented a new analytical approach to predict the overall behavior 

of 1+6 cables subjected to bending, tension and torsion. In this model, Poisson’s ratio effect is 

neglected while relative motions between core and wires are considered. 

Elata et al. (2004) presented a new model for simulating the mechanical behavior of a 
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wire rope with an independent wire rope core under axial loads. In contrast with previous 

models that consider the effective response of wound strands, this model considers the 

complete double-helix configuration of individual wires within the wound strand and directly 

relates the wire level stress to the overall load applied at the rope level. Bending and torsion 

stiffness of the individual wires are neglected. Therefore, the accuracy of this model increases 

when the number of wires in the wire rope increases. 

Another approach for multi-layered structures consists in modeling each layer as an 

equivalent orthotropic sheet developed by Hobbs and Raoof (1982), Raoof and Hobbs (1988). 

The same approach also consists of replacing each layer with a cylinder of orthotropic, 

transversely isotropic material (Blouin and Cardou (1989), Jolicoeur and Cardou (1994; 

1996), Crossley et al. (2003a ; 2003b)). Such homogenization approaches can be applied 

when the number of wires in the layer is important, but this is not the case for 1+6 structures. 

For all the models mentioned above, the material is considered isotropic, 

homogeneous and the local behavior of wires and core doesn’t exhibit coupling between 

tension and torsion phenomena. 

As indicated in Part I of this paper (see section 3), different models are available for 

the analysis of fiber ropes ((Leech et al., 1993); (Rungamornrat et al., 2002); (Beltran et al., 

2003); (Beltran and Williamson, 2004)) and are implemented in a computer program. 

 

4. Present 1+6 model 
 

Several closed-form formulations have been presented to predict the behavior of 1+6 

metallic cables while there are few models for synthetic fiber ropes.  In addition, all fiber rope 

models available are implemented in computer programs (not closed-form model). So we 

decided to develop a closed-form formulation for synthetic fiber ropes as an extension of an 

existing model of metallic cables. The comparison of different existing models (1+6 metallic 
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cables: (Hruska (1951; 1952; 1953); Machida and Durelli (1973); McConnell and Zemeke 

(1982); Kumar and Cochran (1987); Sathikh et al. (1996); Costello (1997); Labrosse (1998)) 

with the results of a 3D finite element model has been performed elsewhere by Ghoreishi 

(2005). The results demonstrated that, generally, the models selected, except Hruska’s model 

(Hruska, 1953), yield very similar results for the usual practical values of lay angle ( °≤15α ). 

In this paper, Labrosse’s model has been chosen as a base model because it has a closed-form 

and symmetric stiffness matrix and the relative motions between core and the wires are 

considered. Also, this model has the potential to study the friction phenomena between the 

core and wires, (even if this is not considered in this work due to simplifying assumptions). 

The initial Labrosse’s model (Labrosse, 1998) which is based on the following 

hypotheses is developed : 

Only the static behavior of structure is addressed; 

Displacement and strain are assumed to be small. For a metallic cable, Velinsky (1985) has 

shown that the results from linear and nonlinear theories are very close in the usual practical 

load range; 

The wires are made of a homogeneous, isotropic and linearly elastic material; 

For each wire, a section initially normal to the wire centerline remains plane and normal after 

deformation; 

Poisson’s ratio effect and contact deformation are neglected. Utting and Jones (1987a; 1987b) 

demonstrated that in axial loading, the results are nearly unchanged when the Poisson’s ratio 

and wire flattening are taken into account. This approximation is well established for metallic 

ropes, and is supposed to be valid also for fiber ropes, even if change in cross sectional area 

due to contact stresses may arise for such structures which are transversely soft;  

Outside wires do not touch each other, which is often a design criterion so as to minimize the 

friction effect. Moreover, Huang (1978) has shown that core-wires contact seems to be the 
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prevailing case, even when no initial gap exists between wires in the layers; 

Friction effects are neglected. Several authors Utting and Jones (1987a), Leech et al. (1993), 

Nawrocki (1997) and Ghoreishi et al. (2004) have noted that friction has very little effect on 

the global cable behavior under axial loads. 

 In addition, to extend this model to apply to the fiber ropes, the following modification 

assumptions are made: 

Only the axial loading is addressed. The transverse displacements of the cable axis are zero; 

Bending stiffness for the core and wires are neglected. This assumption is felt to be 

reasonable for synthetic fiber components; 

The wires are supposed homogeneous at the rope level that are made of an elastic material 

with a coupling behavior between traction and torsion. This anisotropy appears from the 

construction effect (no material effect). Indeed, it is the results of twisting various components 

(yarn, assembled yarn) into a further component.  

 

4.1 Geometry description 
 

Let us consider a 1+6 structure, as indicated in figure 2, in which core and wires are 

homogenous with a circular cross section. It should be noted that this geometry, usually 

represents the 1+6 metallic cables. We suppose that the real geometry of fiber ropes, as 

illustrated in figure 1, can be approximated by this geometry (figure 2) at the rope level. 

The geometry is characterized by the core radius , the wires radius , and the lay angle cR wR α  

measured with respect to the cable z-axis. The wires centerline is then a helical curve of 

radius : hR

wch RRR +=      (2) 

It can be noted that the wire cross-sections are elliptical in the plane perpendicular to 
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the structure z-axis (see figure 2). Therefore, the pitch length denoted by P can be calculated 

using the following expression:  

α

π

tan

2 hR
P =      (3) 

 

4.2 Displacement field  
 

As shown in figure 3, the centerline of a helical wire forms a helix of radius  and 

lay angle 

hR

α . Let  be a point of a centerline of wire i (i runs from 1 to 6 for the wires),  its 

coordinates in the global Cartesian coordinate system 

iG

),,,(0 ZYXOR  are defined as follows:  
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where  is the polar angle, see figure 3 a). The vectors iφ it , in  and ib  are tangent, normal and 

binormal unit vectors along the helix and their components in  are 0R
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that define the local coordinate system ),,,( iiii
i bntGR , see figure 3 b). 

Let us consider a wire section of center , the displacement field of an arbitrary point iG

iM , see figure 3 c), according to the classical curved beam theory, can be expressed as 

follows: 

iii
GM

MGuu ii ×+= θ   ( 6 ) 

where iG
u  and iθ represent the displacement vector at  and the rotation vector of the cross iG
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section i, respectively, and their components in  are 0R
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where l is the length of the component. 

To transform the displacement vector iG
u  and the rotation vector iθ from global coordinate 

system  into the local coordinate system , the following relations are used 0R iR
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where  denote the direction cosines given by: jka
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performing the matrix multiplication, displacement components of arbitrary point 

, in the local coordinate system ),,0( iiiM ηξ ),, , can be defined as: ,i tG( iii
i bnR
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The straight core can be considered as a particular case of a helical wire ( 0=α ) and for axial 

loading, its centerline displacement vector can be given by: 
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where superscript 6+1 is referred to the core.  

For the moment, the wires and core are modeled independently and displacement field 

of the whole section of the structure are described by 2)66( +× , i.e. 38 parameters.  

 

4.3 Contact conditions 
 

In order to reduce the kinematics parameters and to simplify the general form of the 

displacement field above, core-wires contact (relative motions between core and wires) will 

be studied. 

As shown in figure 4, the contact line between core and wires is also an helical curve 

of radius  and lay angle  where cR 'α )tantan(' αα
h

c

R

R
Arc= . The relative motions on the contact 

line, in the contact point C which is relating to the helical contact line, will be expressed as 
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  where wire i  and core        ( 12 ) ∈iC ∈+16C

where iR
cu and 

iRθ  are the relative translation vector at C and the relative rotation vector 

between core and wire, respectively. 

A new local coordinate system ),,,( ''' iii
C bntCR  is defined at the contact point C, see 

figure 4 a). We note that ii nn =' , 'i
w

ii nRCG =  and '1616 i
C nRCG −=++ . 

The relative translations in the plane (b’,t’), 'iR
c tu

i
⋅  and 'iR

c bu
i
⋅ , represent the sliding, and the 

relative translation in the direction n’ describes relative normal displacement. Rolling and 
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pivoting are the relative rotations along t’ and n’, respectively. The relative motion along b’ 

describes relative binormal rotation. 

As indicated in figure 4 c), the permanent contact between core and wires leads to the 

following conditions: 
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The real behavior is bounded by two extreme cases; sliding without friction or no-sliding. As 

indicated by several authors, Utting and Jones (1987a), Leech et al. (1993), Nawrocki (1997) 

and Ghoreishi et al. (2004) and Cartraud et Messager (2006), the friction effects on the global 

cable behavior, subjected to axial loads, are negligible, so, the no-sliding case is considered 

here or: 
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Nawrocki and Labrosse (2000), using numerical examples, have shown that rolling plays no 

significant role in the global cable behavior under axial loads. Therefore, it can be supposed to 

be null, 

0' =⋅ iR t
i

θ     ( 15 ) 

consequently the driving interwire motion under axial loads appears to be only pivoting, 

')( iRi
n nl

i
⋅=θθ . 

 

Using of contact condition hypotheses written previously and making certain 

mathematical simplifications, allow to reduce the initial number of parameters. The details of 

these simplifications are available elsewhere (Ghoreishi, 2005) and will not be presented here. 

Finally, it turns out that the displacement vector of the helical wire centerline can be 
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expressed as a function of global cable displacement, , and pivoting, . One obtains : ),( zzu θ i
nθ

    ( 16 ) 
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substituting ( 16 ) into the expression ( 10 ), the displacement field of an arbitrary point, iM , 

on the helical wire section i can be expressed in the local coordinate system, ),,,( iiii
i bntGR , as 
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we obtain that in a given section i, the kinematics of the section are now described by the 2 

degrees of freedom of the structure axis (global displacement) and the 6 relative rotations 

(pivoting) between the core and wires. 

It’s recalled that for the core, the kinematics involve only the 2 degrees of freedom of the 

structure axis, see (10), (11). 

 

4.4 Strain field 
 

Then, the strains can be expressed in terms of the displacement components at point 

iM . In the same theoretical framework, the linearized Green strain tensor at point iM  is given 

by: 

)(
2
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,, jkMkjM
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jk ii uu +=ε   ( 18 ) 

finally, strain tensor components of wire i, in the local coordinate system ),,,( iiii
i bntGR , 

become 
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where  and 'k τ  represent the curvature and the twist in each wire that, for a circular helix, are 

given by 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=

=

h

h

R

R
k

αατ

α

cossin

sin'
2

  ( 20 ) 

 

For a given circular cross section under axial loads, in the local coordinate system, 

twist angle per unit length, tt ,θ , is constant (independent of  and ) and the torsional 

strains  and  assumed to increase linearly from zero at the center to a maximum at the 

external surface of the wire (vary linearly with 

iη iξ

nt
iγ bt
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tt ,θ ). Consequently, torsional strains at an 

arbitrary point iM are expressed by 
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while knowing that tt ,θ  is constant we obtain 

0=+ i

i
bt

i

i
nt

ξ

γ

η

γ
   ( 22 ) 

then, using equations ( 19 )3-4, the pivoting, , is found to be: i
nθ

zzhzz
i
n Ru ,

2
, cossincos θαααθ +−=   (  23  ) 
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substituting ( 23 ) and ( 20 ) into the expression ( 19 ), we obtain the axial strains of the wire i 

centerline ( ) as follows 0== ii ξη
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R
u
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  ( 24 ) 

It should be noted that the equation (24) was established previously by Sathikh et al. (1996), 

using Ramsey’s theory (1988, 1990) and by Labrosse (1998) using the free pivoting condition 

between core and the wires, confirming the correctness of the strain field solution. 

 

4.5 Global behavior of the 1+6 structure 
 

At this stage, each component is considered as a structure with a coupling behavior 

between traction and torsion. It means that the bending moments (  and  in the 

directions 

i
nM i

bM

in  et ib ) and shear forces of each individual component are ignored. 

The behavior of component i can be expressed in the following matrix form: 
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substituting ( 24 ) into the expression ( 25 ), axial force and torque (in the tangential direction 

it ) carried by component i, are given as follows: 

[ ] [ ]
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for the core, tangential direction it  is the cable Z-axis, therefore, core behavior is expressed 

by: 
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the stiffness coefficients  and   represent the stiffness matrix components of wire and 

core respectively. It should be noted that these coefficients can be determined either by test on 

the components or by the use of a model at a lower scale (continuum model, FRM, …), see 

part I of this paper. 

w
ijk c

ijk

The force and torque applied to the structure are the resultants of all the forces and 

torques carried by the central core and wires. The behavior of each component is expressed in 

the local coordinate system, ),,,( iiii
i bntGR . Therefore, by projecting on the cable axis, and 

summing for all the components (wires and core), global force and torque of structure, in the 

direction of Z-axis, can be found as follows: 
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( 28 ) 

finally the global behavior of a 1+6 fibrous structure can be given by following matrix form: 
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where , ,  and  represent the global stiffness matrix components that are 

expressed directly in terms of components stiffness matrix and the geometrical parameters of 

the structure: 
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5. Comparison between models 
 

In this section, the present 1+6 model is used, and the objective is to compare its 

results to those of Leech’s model. 

To apply these models, geometrical and mechanical input data are necessary. To 

compare the stiffness matrix coefficients, calculated by present model and the Leech 

approach, two fiber ropes are considered, with 25 Ton and 205 Ton failure loads. The 

construction details for both of them are presented in Appendix A. The geometrical input 

parameters at the rope level, which are necessary for the present model, are presented in Table 

1. 

The mechanical input data required, are the core and wire stiffness matrices. They are 

obtained form Leech’s model, starting at the yarn level (the yarn axial stiffness was obtained 

from experiments, see part I). FRM software is used in two steps to pass successively to 

assembled yarn and rope. The results are presented in Table 2. 

Then, these core and wires stiffness matrices are considered as input data at the next 

step (rope level). The 1+6 model presented in the previous section is applied. Leech’s model 

is also used with FRM software and wedge geometry option (see figure 6(b) of part 1 of this 

paper). It should be noted that in FRM software, a layered packing geometry option can be 

used only for a structure with identical components, but this is not the case here (core and 

wires are not identical). 

Finally, Table 3 provides the results to compare ropes stiffness matrices, as calculated by the 

theory presented in section 4 above and Leech’s model, for the two 25 ton and 205 ton ropes. 

Table 3 shows that, as for the multilayered models presented in Part I, both models for 

1+6 structure, yield very similar results for the axial stiffness, . There is a small difference 

for the coupling terms. Only the torsion term results, , are significantly different for two 

models. This is easily explained by the fact that, for a given outer diameter, the helix radius 

εεk

θθk
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considered by Leech’s model is greater than those of 1+6 model (in the wedge geometry, the 

equivalent helix radius is the radius of the center of area of the wedge), see figure 5. An 

increase in helix radius does not influence the axial stiffness, , but the coupling terms and 

the torsion term are related to the helix radius in a linear and quadratic form, respectively. 

εεk

 

To show which model gives more reliable results (particularly for the torsion term, 

), it is necessary to be able to compare them to experimental results. However, as will be 

discussed in the next section torsion tests on fiber ropes are very difficult to perform. 

θθk

 

6. Experiments 
 

The principal tests which have been performed to produce data to compare with the 

predictions presented above are tensile tests. These enabled values of  and  to be 

determined, as will be described below. It would also have been very interesting to have been 

able to obtain a value of  but this proved impossible. Two approaches can be used, either 

introducing a swivel in the tensile loading system and applying a moment, or loading a 

sample directly on a torsion test frame. Some preliminary trials on small ropes with swivels 

produced variable results due to friction of the swivel under load. Torsional stiffness of these 

materials is quite low and great care is needed with measurements. Tests on a torsion test 

frame were hampered by difficulty in introducing the load through end fittings without 

affecting the sample stiffness.  

εεk θεk

θθk

Tension tests were performed on 25 and 205 ton break load samples. The former were 

performed on a 100 ton capacity test frame at IFREMER in Brest, 8 meter long samples were 

loaded to 50% of the break load. Figure 6 shows the test frame. 

In the second, performed on a specially adapted 500 ton test facility at LCPC 
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(Laboratoire Centrale des Ponts des Chaussées) in Nantes, a 46 meter long sample of a 205 

ton break load rope was blocked at one end and loaded in tension by a hydraulic piston at the 

other. The tensile response as well as the induced moment were measured at loads up to 100 

tons. Figure 7 illustrates the 500 ton test facility at LCPC in Nantes. 

In both cases the specimens have been loaded using hydraulic pistons and loads were 

introduced via splices, see figure 7. All the ropes were made with the same aramid fiber grade 

(Twaron 1000). Construction details for both fiber ropes are given in appendix A, tables A.1 

and A.2. 

In order to provide reliable results great care is needed during testing, particularly 

concerning the following points: 

- extensometry 

- load measurements 

- test procedure. 

 

6.1 Extensometry  
 

 

 The extensions were obtained by three independent measuring systems: 

- wire transducers clamped to the central section of the cable,  

- two digital cameras measuring the movements of markers in the central part of the 

cable, and 

- an LVDT measuring piston displacement. 

The first two measure the true strain in the central part of the rope (away from the splices) and 

give similar results, as shown in Figure 8. The analysis of the digital images is performed 

using in-house image analysis software. These values allowed the stiffness measurements to 

be checked using two independent strain values. The piston displacement was recorded but 
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not used in stiffness determination as it includes splice, end loop and rope displacements.  

 

6.2 Load measurements 
 

For the 25 Ton rope tests at the IFREMER center in Brest a single load cell at the end 

of the piston was used. This is calibrated annually. For the tests at LCPC tensile loads were 

measured using two independent load cells, a 300 Ton capacity cell at the end of the piston 

and a second 100 ton cell at the fixed end. Both were calibrated before and after the test 

series. The induced moment was measured using a strain gauged torque meter, calibrated 

before testing. 

 

6.3 Test procedure  
 

The test procedure includes a preliminary bedding-in loading of 5 cycles to 50% of the 

nominal break load, followed by either loading to failure or  cycling. This initial stabilization 

of the rope removes bedding-in strain but also results in an internal molecular realignment of 

the fibers. Figure 9 shows examples of strains measured during the bedding-in cycles of a 25 

ton and 205 ton break load ropes. It is clear that without a consistent bedding-in procedure 

significant variations in stiffness can be measured. 

All force, moment and extension data were recorded on a PC acquisition system for 

post-treatment. 

6.4 Test results 
 

The global response of ropes can be expressed by equation (1) and all the tests 

described above were performed in tension with fixed ends loading conditions ( 0, =zzθ ). This 

enabled the axial stiffness  and coupling term , to be determined using following 

equation ( 31 ). 

εεk εθk
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In the load range of interest, the behavior of aramid fiber ropes exhibits a quasi-linear 

behavior, as shown in figure 9. Thus, the stiffness matrix components can be considered to be 

constant, and are obtained from a linear curve fitting. 

Results for the 25 Ton rope are summarized in Table 4 below. 

As shown in table 4 there is some scatter in the results for different samples, due to 

variations of material properties and splicing. It should be mentioned that several authors have 

studied the variability effect on the global response of the fibrous structures (Amaniampong 

and Burgoyne (1995), Chudoba et al. (2006) and Vorechovsky and Chudoba (2006)), but 

usually there are different sources of variability.  

Table 5 shows the results from the tests on the 205 Ton rope, the coupling term being 

obtained from the torque meter measurements. 

 

7. Test / models comparison 
 

In this section the experimental results will be compared to model predictions. In both 

ropes studied here, the base component is the yarn, whose mechanical properties are given as 

input. For predicting the global behavior of ropes, the presented models are applied in 3 steps, 

see figure 3 of part I of this paper.  

For modeling the 25 ton break load rope, first, to pass from yarn to assembled yarns 

structure, the yarn axial stiffness and the geometrical parameters enable a prediction to be 

made of the stiffness coefficients of the assembled yarns using the continuum model 

presented in the part I of this paper; in the second step, the assembled yarns stiffness matrix 

(determined in the first step) and the geometrical parameters, can be used to determine the 
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stiffness matrix coefficients of the strands and core using the present 1+6 model (Eq. (30)). 

Finally, the strands and core stiffness matrix (determined in the second step) and the 

geometrical parameters, can be used to predict the global behavior of the 25 ton break load 

fiber rope using again the present 1+6 model (Eq. (30)), and this gives an axial stiffness value 

of 11.9 103 kN. 

To model the 205 ton break load rope, in the same way, the continuum model is 

applied to pass from yarn to assembled yarns as well as from assembled yarns to core and 

strands. At the rope level, the 1+6 model is applied to pass from core and strands to 205 ton 

break load rope.   

The strands and core stiffness matrices (determined at the previous step) and the 

geometrical parameters then enable a prediction to be made of the rope global response using 

the 1+6 model (Eq. (30)), and this gives axial stiffness, , and coupling term, , values of 

99.1 103 kN and 205 kN.m respectively. 

εεk θεk

Therefore, the overall rope behavior is obtained using in sequence the two models 

(continuum and 1+6) presented in the part I and II of this paper.  

The ropes were also treated using Leech’s model with the FRM software. This has 

been used in many previous large fibre rope studies and is commercially available. It was 

therefore taken as a reference here for comparison purposes, rather than comparing results to 

all the 1+6 models available in the literature, primarily developed for metallic ropes. This 

model gives results very close to those of the presented models (11.8 103 kN, 98.8 103 kN and 

215 kN.m for axial stiffness of 25 ton rope, axial stiffness and coupling term of 205 ton rope, 

respectively). The comparison is shown graphically below in Figures 10 and 11 for 25 ton and 

205 ton break load fiber ropes, respectively. 

The results show that FRM software (Leech’s model) and the presented models give 

results which are within 1 and 5 percent of each other for axial stiffness,  , and coupling εεk
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term,  , respectively. However, the comparison between predictions and test results are not 

as close, being 17.5% and 15.8% for the tensile stiffness and coupling terms. This difference 

appears to be small since the ropes are modeled by taking yarn stiffness and then using three 

models in sequence. At each step there are errors and these accumulate in the final prediction. 

If we assume that errors at each step are similar the difference between model and test results 

at each level may only be around 5%. A larger test database would be useful to examine this 

in more detail. Moreover, both continuum and 1+6 models neglected the diametral 

contractions, which therefore contribute to overestimate the rope stiffness. 

θεk

 

8. Conclusion 
 

A linear elastic model has been developed for the computation of the elastic axial 

stiffness terms of a fibrous structure, made of six helical strands wrapped around a straight 

core (1+6 structure). The helical strands are described as Kirchhoff-Love beams, with 

constitutive material assumed to be homogeneous, anisotropic linear elastic. Considering 

static axial loads and small usual lay angles (less than 15°), the friction effects and the lateral 

contraction of the core have been neglected. The developed approach leads to analytical 

closed-form expressions. 

Due to lack of published experimental data, the model has first been compared with an 

existing model (Leech’s model implemented in FRM software) and is found to provide 

similar results, except with respect to the torsion term, for which there is a significant 

difference. Then, two transition models, referred to as a continuum model (see Part I) and the 

1+6 model, have been used together in sequence to analyze synthetic fiber ropes. The results 

of the model at each level have been used as  input data for the model at the next higher level. 

Use of this approach from the lowest level (yarn), at which mechanical properties are given as 

input, to the highest level of the rope determines the rope axial stiffness matrix. Based on this 
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strategy, the transition models thus developed can be used to analyze synthetic fiber ropes of 

various complex cross section. As examples, theoretical results, using the present approach, 

are determined for 25 ton and 205 ton break load fiber ropes. Tests have also been performed 

on both fiber ropes with 25 ton and 205 ton rupture force, to obtain experimentally the values 

of stiffness matrix components. Comparison between models and experimental data shows 

reasonable agreement, particularly given the low level (yarn) of the input material 

characteristics. 

Therefore, the developed model appear to be reliable and useful, requiring less input 

data than existing models of the literature. Moreover, the final analytical closed-form 

solutions allow parametric case studies to be run in order to demonstrate construction effects, 

at each level, on the global response of fiber ropes and can be used as an optimal design tool. 

Laboratory full scale testing of large ropes being expensive and time consuming, the 

development of such theoretical models has the potential to significantly reduce the cost and 

time needed for cable design. 
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Appendix A 

 

Construction details for two fiber ropes studied here, with 25 ton and 205 ton failure 

loads, are given in tables A.1 and A.2. It should be mentioned that all the ropes were made 

with the same aramid fiber grade (Twaron 1000). 

 

 

Table A.1: Construction details for new 25 ton synthetic fiber rope. 
25T cable 

Structure  Constitutive 
elements  

Number of 
constitutive 

elements 

Assumed 
arrangement 

Pitch length
(mm) 

Diameter 
(mm) 

Core  1 1 layer  25T cable Strand  6 1 layer 
6.555 
(RHL) 16.5 

Core 

Structure  Constitutive 
elements 

Number of 
constitutive 

elements 

Assumed 
arrangement 

Pitch length
(mm) 

Diameter 
(mm) 

Core  Assembled 
yarn 7 2 layers 

(1+6) 
18.868 
(RHL) 6 

Assembled yarn Yarn  16 3 layers 
(1+5+10) 

-17  
(LHL) 2.0 

Yarn 
(twaron1000) Fiber  2000 Parallel fibers 0 0.572 

Fiber ----- ------ ----- ---- 0.012 
Strand  

Structure  Constitutive 
elements 

Number of 
constitutive 

elements 

Assumed 
arrangement 

Pitch length
(mm) 

Diameter 
(mm) 

Strand   Assembled 
yarn 7 2 layers 

(1+6) 
-10.870 
(LHL) 5.25 

Assembled yarn Yarn  12 2 layers (3+9) 19 
 (RHL) 1.75 

Yarn 
(twaron1000) Fiber  2000 Parallel fibers 0 0.572 

Fiber ----- ------ ----- ---- 0.012 
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Table A.2: Construction details for new 205 ton synthetic fiber rope. 

205T cable 

Structure  Constitutive 
elements 

Number of 
constitutive 

elements 

Assumed 
arrangement 

Pitch length
(mm) 

Diameter 
(mm) 

Core  1 1 layer  205T cable Strand  6 1 layer 
2  

(RHL) 50 

Core  

Structure Constitutive 
elements 

Number of 
constitutive 

elements 

Assumed 
arrangement 

Pitch length
(mm) 

Diameter 
(mm) 

Core  Assembled 
yarn 42 4 layers 

(1+6+14+21)
6.329 

(RHL) 18.2 

Assembled yarn Yarn  24 3 layers 
(3+7+14) 

14  
(RHL) 3.0 

Yarn 
(twaron1000) Fiber  2000 Parallel fibers 0 0.572 

Fiber ----- ------ ----- ---- 0.012 
Strand  

Structure  Constitutive 
elements 

Number of 
constitutive 

elements 

Assumed 
arrangement 

Pitch length
(mm) 

Diameter 
(mm) 

Strand   Assembled 
yarn 42 4 layers 

(1+6+14+21)
-3.636 
(LHL) 15.9 

Assembled yarn Yarn  18 3 layers 
(1+6+11) 

16  
(RHL) 2.65 

Yarn 
(twaron1000) Fiber  2000 Parallel fibers 0 0.572 

Fiber ----- ------ ----- ---- 0.012 
 

 
 

 

 

 

 

 

 

 

 
 

25 



 
References 

 
 
Amaniampong, G., and Burgoyne, C. J., 1995. Analysis of the tensile strength of parallel-lay 
ropes and bundles of parallel elements by probability theory. International Journal of Solids 
and Structures 32 (24), 3573-3588. 
 
Beltran, J. F., Rungamornrat, J., and Williamson, E. B., 2003. Computational model for the 
analysis of damage ropes. In: Proceedings of The thirteenth  International Offshore and Polar 
Engineering Conference, Honolulu, Hawai, USA. 
 
Beltran, J. F., and Williamson, E. B., 2004. Investigation of the Damage-Dependent Response 
of Mooring Ropes. In: Proceedings of The Fourteenth  International Offshore and Polar 
Engineering Conference Toulon, France. 
 
Blouin, F., and Cardou, A., 1989. A study of helically reinforced cylinders under axially 
symmetric loads mathematical modelling. International Journal of Solids and Structures 25 
(2), 189-200. 
  
Cartraud, P., and Messager T., 2006. Computational homogenization of periodic beam-like 
structures. International Journal of Solids and Structures43 (4), 686-696. 
 
Chudoba, R., Vorechovsky, M., and Konrad, M., 2006. Stochastic modeling of multi-filament 
yarns: I. Random properties within the cross-section and size effect. International Journal of 
Solids and Structures 43 (3), 413-434. 
 
Costello, G.A., and Philips, JW., 1976. Effective Modulus of twisted wire cables. Journal of 
the Engineering Mechanics Division, ASCE, 102, 171-181, 1976. 
 
Costello, G.A., 1997. “ Theory of wire rope,”. 2nd edition, Springer: New York, N.Y. 
 
Crossley, J. A., Spencer A. J. M., and England A. H., 2003. Analytical solutions for bending 
and flexure of helically reinforced cylinders. International Journal of Solids and Structures 40 
(4), 777-806. 
 
Crossley, J. A., England A. H., and Spencer A. J. M., 2003. Bending and flexure of 
cylindrically monoclinic elastic cylinders. International Journal of Solids and Structures 40 
(25), 6999-7013. 
 
 Elata, D., Eshkenazy R., and Weiss M. P., 2004. The mechanical behavior of a wire rope 
with an independent wire rope core. International Journal of Solids and Structures 41 (5), 
1157-1172, 2004. 
 
Foster G.P., 2002 "Advantages of fiber rope over wire rope," Journal of industrial textiles 32 
(1), 67-75. 
 
FRM, Fibre Rope Modeller, version 1.1.5, 2003. Software development for Tension 
Technology International Ltd.(TTI). 
 

26 



Ghoreishi, S. R., Messager, T., Cartraud, P., and Davies, P., 2004. Assessment of Cable 
Models for Synthetic Mooring Lines. In: Proceedings of The Fourteenth  International 
Offshore and Polar Engineering Conference, Toulon, France. 
 
Ghoreishi S. R., 2005. Modélisation analytique et caractérisation  expérimentale du 
comportement de câbles synthétiques. Ph.D. thesis, Ecole Centrale de Nantes, France. 
 
Ghoreishi, S. R., Cartraud, P., and Davies, P., 2006. Analytical modeling of synthetic fiber 
ropes subjected to axial loads. Part I : A new continuum model for multilayered fibrous 
structures. Submitted to International Journal of Solids and Structures 
 
Hobbs, R.E., and Raoof, M., 1982. Interwire slippage and fatigue prediction in stranded 
cables for TLP tethers. Behaviour of Offshore Structures, Hemisphere publishing/McGraw-
Hill, New York, Vol 2, 77-99. 
 
Hoppe, L.F.E., 1991. Modeling the static behavior of Dyneema in wire-rope construction. 
MTS RTM. 
 
Hruska, F. H., 1951. Calculation of stresses in wire ropes. Wire and wire products 26 (9), 766-
767. 
 
Hruska, F. H., 1952. Radial forces in wire ropes. Wire and wire products 27 (5), 459-463. 
 
Hruska, F. H., 1953. Tangential forces in wire ropes. Wire and wire products 28 (5), 455-460. 
 
Huang, N.C., 1978. Finite extension of an elastic strand with a core. Journal of Applied 
Mechanics 45, 852-858.  
 
Jolicoeur, C., and Cardou, A., 1994. An analytical solution for bending of coaxial orthotropic 
cylinders. Journal of Engineering Mechanics 120 (12), 2556-2574. 
 
Jolicoeur, C., and Cardou, A., 1996. Semicontinuous Mathematical Model For Bending of 
Multylayered Wire Strands. Journal of engineering Mechanics 122 (7), 643-650. 
 
Knapp, R.H., 1975. Nonlinear Analysis of a Helically Armored Cable With Nonuniform 
Mechanical Properties in Tension and Torsion. In: proceeding of IEEE/MTS conference of 
Engineering in the ocean Environment, San Diego, 155-164. 
 
Knapp, R.H., 1979. Derivation of a new stiffness matrix for helically armoured cables 
considering tension and torsion. International Journal for Numerical Methods in Engineering 
14, 515-520. 
 
Kumar, K., and Cochran, Jr JE., 1987. Closed-Form Analysis for Elastic Deformations of 
Multilayered Strand,” ASME J. Applied Mechanics 54, 898-903. 
 
Kumar, K., and Botsis J., 2001. Contact Stresses in Multilayered Strands Under Tension and 
Torsion. Journal of applied Mechanics 68, 432-440. 
 
Labrosse, M., 1998. Contribution à l’étude du rôle du frottement sur le comportement et la 
durée de vie des câbles monocouches. PhD thesis, Ecole Centrale de Nantes, France. 

27 



 
Leech C. M., Hearle J. W. S., Overington M. S., and Banfield S. J., 1993. Modelling Tension 
and torque Properties of Fibre Ropes and Splices. In: Proceeding of the Third International 
Offshore and Polar Engineering Conference Singapore. 
 
Leech C. M., 2002. The modeling of friction in polymer fibre rope. International Journal of 
Mechanical Sciences 44, 621-643. 
 
Machida, S, and Durelli, AJ., 1973. Response of a Strand to Axial and Torsional 
Displacements. Journal of Mechanical Engineering science 15, 241-251. 
 
McConnell, K. G., et Zemeke, W. P., 1982. A Model to Predict the Coupled Axial Torsion 
Properties of ACSR Electrical Conductors. Journal of Experimental Mechanics 22, 237-244. 
 
Nawrocki, A., 1997. Contribution à la modélisation des câbles monotorons par éléments finis. 
PhD thesis, Ecole Centrale de Nantes, France. 
 
Nawrocki, A., et Labrosse M., 2000. A finite element model for simple straight wire rope 
strands. Computers and Structures 77, 345-359. 
 
Philips, J. W., et Costello, G. A., 1985. Analysis of Wire Rope With Internal-Wire-Rope 
Cores. ASME Journal of Applied Mechanics 52, 510-516. 
 
Ramsey H., 1988. A theory of thin rods with application to helical constituent wires in cables. 
International Journal of Mechanical Sciences 30 (8), 559-570. 
 
Ramsey H., 1990. Analysis of interwire friction in multilayered cables under uniform 
extension and twisting. International Journal of Mechanical Sciences 32 (8), 709-716. 
 
Raoof, M., and Hobbs R. E., 1988. Analysis of Multilayered Structural Strands. Journal of 
engineering Mechanics 114 (7), 1166-1182. 
 
Rungamornrat, J., Beltran, J. F., Williamson, E. B., 2002. Computational Model for 
Synthetic-Fiber Rope Response. In: Proceeding of fifteenth Engineering Mechanics 
Conference, ASCE, New York. 
 
Sathikh S., Moorthy M. B. K., et Krishnan M., 1996. A symmetric Linear Elastic Model for 
Helical Wire Strands under Axisymmetric Loads. Journal of Strain Analysis 31 (5), 389-399. 
 
Utting W. S., and Jones N., 1987. The Response of Wire Rope Strands To Axial Tensile 
Loads-Part I. Experimental Results and Theoretical Predictions. International Journal of 
Mechanical Sciences 29 (9), 605-619. 
 
Utting W. S., and Jones N., 1987. The Response of Wire Rope Strands To Axial Tensile 
Loads-Part II. Comparison of Experimental Results and Theoretical Predictions. International 
Journal of Mechanical Sciences 29 (9), 621-636. 
 
Velinsky S. A., 1985. General Nonlinear Theory for Complex Wire rope. International 
Journal of Mechanical Sciences 27, 497-507. 
 

28 



Vorechovsky, M., and Chudoba, R., 2006. Stochastic modeling of multi-filament yarns: II. 
Random properties over the length and size effect. International Journal of Solids and 
Structures 43 (3), 435-458. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

29 



 
Figure1: 1+6 fiber rope with 205 ton failure loads, a) cross-section, b) side view. 

 

 

Figure 2: Geometry of a “1+6” structure. 

 

30 



 

Figure 3: a) centerline of a helical wire, b) axial force and torque in the helical wire, c) local 
coordinate system. 
 

 

 

Figure 4: a) local coordinate system ),,,( ''' iii
C bntCR  , b) relation between the lay angle of a 

helical wire centerline and those of the contact line, c) linear contact core/wire. 
 

 

Figure 5: the geometry considered by models, a) present 1+6 model, b) Leech’s model (wedge 
geometry). 
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Figure 6: 100 ton capacity test frame, test on 25 ton fiber rope. 

 

 

Figure 7: 500 ton test facility at LCPC in Nantes. 
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Figure 8 : Comparison between measurements with wire transducer and image analysis 

system, test on 25 ton break load fiber rope. 

 

 

 

Figure 9: bedding-in cycles, synthetic fiber ropes  a) five bedding-in cycles, 25T rope, b) 1st  

and 5th  bedding-in cycles, 205T rope. 
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Figure 10: axial stiffness comparison between Leech’s model / presented approach / 

experimental data for 25 ton break load fiber rope. 

 

 

 

Figure 11: comparison between Leech’s model/presented approach/experimental data for 205 

ton break load fiber rope, a) axial force versus axial strain, b) induced torque versus axial 

strain. 
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