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Abstract  

A probabilistic approach of the current thermal fatigue design of nuclear components is set up. It aims 
at incorporating all kinds of uncertainties that affect the thermal fatigue behaviour. This approach is 
based on the theory of structural reliability. Two dual approaches of reliability analysis for the thermal 
fatigue are defined, respectively, in the time domain and in the frequency domain. Beside the 
probability of failure calculation, the sensitivity of the reliability index to each random variable is 
estimated. The proposed method is applied to a pipe submitted to thermal loading due to water flow. 
Both high cycles fatigue (HCF) and low cycles fatigue (LCF) regimes are investigated. The results 
show that it is possible to perform a complete reliability analysis to compute the failure probability. It is 
observed that the scatter of fatigue data and the heat transfer coefficient are the most important 
variables in thermal fatigue reliability.  
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1 INTRODUCTION 

The behaviour of structures submitted to thermal fatigue is affected by numerous 

uncertainties due to the statistical variability of thermal loading, the large scatter 

observed in fatigue test data, the random nature of the thermo-mechanical parameters (e. 

g. the material properties, the dimensional variations, the surface smoothness, etc.) and 

the lack of knowledge on the physical phenomenon. The phenomenon of thermal 

fatigue concerns in particular the nuclear industry, where structural components, such as 

pipes or turbine blades, are subject to thermal loading. Two nuclear design codes are 

usually used to assess fatigue life time: the American ASME code, in section III [1], and 

the French RCC-M code [2]. Both of them take into account the uncertainties in the 

design process by applying empirical safety margin factors in order to make the design 

conservative. They do not allow for a quantification of the associated risk yet. Noting 

that a safe design in random context concerns structural reliability analysis, it is 

therefore interesting to introduce a global probabilistic framework as an alternative to 

the current thermal fatigue design code. This requires: 

• To set up realistic probability density functions of the random variables involved 

in the thermal fatigue model, 

• To incorporate these random variables in the design procedure to compute the 

random life-time of the structure under consideration. 

In this way, it is possible to estimate the risk associated to the retained design and the 

effects of each uncertainty onto the reliability of the structure. 

The aim of the present paper is to propose a probabilistic approach of the current 

thermal fatigue design of nuclear components including all kinds of uncertainties that 

affect the thermal fatigue behaviour. 



First of all, we recall the main steps of the actual thermal fatigue design. Then the 

principal sources of uncertainties arising in this design are identified and a choice for 

their probabilistic modelling is suggested. Two formulations of the resulting random 

damage are derived. Then, the method for thermal fatigue reliability analysis is 

presented. Finally, an application example of a pipe submitted to variable thermal 

loading is given. 

 

2 CLASSICAL THERMAL FATIGUE DESIGN 

The current thermal fatigue design of nuclear components contains the following main 

items as shown in Figure 1 (e. g. RCC-M [2]): 

• The definition of a deterministic thermal loading history θ(t) which describes 

the loading scenario. It is given by a periodic temperature sequence, which may 

be either representative of the real loading (best-estimate calculation) or 

penalized (conservative design). 

• The calculation of the evolution in time of the stress tensor Sij(t) assuming a 

linear elastic material behaviour even for low cycles fatigue regime. In the next 

items, one will notice that the fatigue curve is always compatible with this 

assumption. Note that the stress tensor is evaluated at the points where the crack 

initiation is likely to occur. 

• The use of the Tresca criterion to reduce the stress tensor Sij(t) to an equivalent 

scalar stress S(t) is the recommended approach in the French standard for 

fatigue analysis in nuclear engineering (i.e. RCC-M [2]). This criterion has been 

chosen in the probabilistic approach for the sake of consistency with the 

deterministic design. 



• The extraction of stress cycles from the equivalent stress S(t) using the Rainflow 

counting method (e. g. Amzallag et al. [3]). 

• The choice of a fatigue design curve known as S-N curve. This curve gives the 

number-of-cycles-to-failure N(S) for a given stress amplitude S and represents 

the fatigue strength of the material. It is initially based on strain-controlled fully 

reversed fatigue tests of small, polished specimens at room temperature in air. 

Then the strain amplitude is multiplied by the Young’s modulus to obtain a 

pseudo-stress amplitude S. In this way, the obtained stress amplitude is 

compatible with the elastic material behaviour assumption in the stress 

calculation. The best-fit-curve to the experimental data is then lowered by a 

factor of 2 on stress amplitude S or 20 on cycles number N, whichever was more 

conservative, to obtain the fatigue design curve (e. g. ASME [1]). The factors 

are intended to account for the differences and uncertainties in relating the 

fatigue lifetime of laboratory test specimens to those of the actual reactor 

components. The best-fit curve is expressed in terms of the Langer’s equation of 

the form [4]: 

BSSAN D +−= )ln(ln  (1)

where A, B and SD are parameters of the model. In particular, SD is the material 

endurance limit. 

• The correction of the applied stress amplitude S to account for the maximum 

mean stress effect using the following formula derived from the Goodman 

diagram: 
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In this equation, S is the applied stress amplitude, S’ is the corrected value, Su is 

the ultimate tensile strength and Sy is the yield strength. Both the fatigue design 

curve and the result from the Goodman correction are shown in Figure 2. 

• The computation of the cumulative fatigue damage D (also known as the usage 

factor) in a given period using the Miner’s rule [5], which asserts that D is given 

by: 
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where ni is the number of cycles of stress amplitude Si operating on the 

component and N(Si) is the number-of-cycles-to-failure at this stress amplitude. 

The nuclear design code requires that the usage factor D remains less than 1. In practice, 

the thermal load history is supposed to be periodical in time and the usage factor Dseq is 

computed on a single period. Then, the fatigue life-time of the component, expressed in 

terms of number of sequences, is given by Td = 1/Dseq. 

 

3 UNCERTAINTIES CHARACTERIZATION 

Two groups of uncertainties are identified in the description of the material thermal 

fatigue behaviour: those corresponding to the random nature of the input variables and 

those associated to the model error (e. g. Tovo [6]). The random input variables include 

the thermal loading variations, the thermo-mechanical parameters, the fatigue strength 

of laboratory test specimens and the factors relating the number-of-cycles-to-failure of 

laboratory test specimens to that of the actual component. The possible sources of 

model error are associated to the theoretical assumptions of the modelling and the 

parameter estimations. 

 



3.1 Thermal loading variations 

The fluid temperature in pipes is usually fluctuating and is hardly predictable with 

accuracy. It involves for example thermo-hydraulic phenomenon including turbulence 

that are still not well known and modelled. The temperature time history can be 

represented by a random process ),( ωθ t  where t is the time and ω is associated to 

randomness. This notation means that for a constant 0ωω = , ),( 0ωθ t is a deterministic 

load history and for a constant t 0t= , ),( ωθ t  is a random variable (Figure 3). In this 

study, the load process is assumed to be Gaussian, stationary and ergodic since the 

considered service life-time is large enough. The choice of a stationary and ergodic 

random process is compatible with the little information available, but remains an 

essential assumption, even if it can be judged too strong. 

 

3.2 Thermo-mechanical parameters 

These parameters include geometrical dimensions, material properties and 

fluid/structure boundary conditions. The geometrical dimensions of a structure are not 

fixed but vary within the allowed manufacturing tolerance limits. Their probabilistic 

distribution is assumed to be lognormal so that they remain strictly positive. Their mean 

values are assumed to be equal to their respective nominal value. Their coefficients of 

variation may be obtained using the fact that the dimension under consideration falls 

within its tolerance limits with a probability of 95% (e. g. Rusk and Hoffmann [7]).  

The material properties (e.g. Young’s modulus, Poisson’s ratio and thermal expansion 

coefficients) are also random in nature due to the material heterogeneity at the 

microscopic scale.  Their probabilistic characterisation may require introducing random 

fields. However, the spatial variability of these properties is neglected in this study and 



they are consequently treated here as random variables with a lognormal distribution 

(which is common practice in literature). Their mean values are also assumed to be 

equal to their respective nominal value. Missing specific information on the problem 

under consideration, we assign to their coefficients of variation the value of 10% 

usually observed for steel (e. g. JCSS [8]). The dependence of these properties with 

respect to temperature is included in this modelling. 

The fluid/structure boundary condition is characterised by the heat transfer coefficient. 

This coefficient, which depends on the fluid temperature and the flowing rate, is not 

well known. For this reason, it is treated as a random variable, whose distribution is 

assumed to be lognormal with a mean value fixed to its nominal value and a large 

coefficient of variation of 30% to take into account the big scatter on this parameter 

usually observed in model testing. 

 

3.3 Fatigue strength of laboratory test specimen 

Because of the large scatter observed in fatigue data at any given stress level, the 

number of cycles to failure at a given stress level is considered as a random variable. 

Many authors show that, for any stress level not closer to the endurance limit, the 

probabilistic distribution of the number of cycles to failure at that stress level can be 

regarded as lognormal, whose parameters depend on that stress level (e. g. Zhao et al. 

[9]). In this study we extend this assumption to the whole domain of stress amplitudes.  

The characteristics of this distribution are estimated by a statistical analysis carried out 

on a database provided by Electricité de France (e. g. Sudret and Guédé [10]). This 

database consists on strain-controlled fully reversed fatigue tests of small polished 304 



and 316 austenitic steel specimens at room temperature in air. Only those tests which 

produce failure are considered, leading to a set of Q = 99 values. 

The lognormally distributed number of cycles to failure N(S,ω) at any stress level S may 

be written as: 

),()(),(ln ωεηω SSSN +=  (4)

where η(S) is the mean value of the logarithm of N and ε(S,ω) is a zero mean Gaussian 

random variable. Moreover, it is assumed that these variables (representing the scatter 

of lnN around its mean-value) are perfectly correlated. This assumption means that a 

given sample is good or bad with respect to fatigue life whatever the stress level 

applied. This assumption appears reasonable, although it is practically impossible to 

check, since each fatigue test is conducted up to the failure of the specimen. Thus Eq. 

(4) simplifies into: 

)()()(),(ln ωξσηω SSSN +=  (5)

where ξ(ω) is a standard normal variable and σ(S) is the standard deviation of lnN. It is 

further assumed that η(S) is expressed in terms of Langer’s equation (Eq. (1)) and σ(S) 

is proportional to η(S) (i.e. the coefficient of variation δ of lnN(S,ω) is constant). 

)()( SS ηδσ =  (6)

Then the four parameters A, B, SD and δ are determined in a single shot using the 

method of maximum likelihood. Note that other assumptions on σ(S) have been 

investigated in Sudret and Guédé [10], the most accurate being the one presented above. 

The method of maximum likelihood consists in maximizing the following function: 
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or equivalently minimize the log-likelihood function: 
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In this equation, Q is the number of data values (Sj,Nj). The minimization problem is 

solved using MathCad routines [11]. The results are given in Table 1.  

To complete the statistical analysis the assumption of normality of ξ(ω) is  validated 

using the Kolmogorov test. This test consists in computing the maximal discrepancy DK 

between the empirical cumulative distribution  and the hypothesis cumulative 

distribution 

)(ˆ ξF

)(ξF : 

)()(ˆmax ξξ FFDK −=  (9)

The hypothesis regarding the theoretical distribution form is rejected if DK is greater 

than the critical value  obtained from a table (e. g. Bain and Engelhardt, [12]) for a 

given confidence level. Applied to our database, the Kolmogorov test accepts the 

normality hypothesis with a confidence level of 95% (Table 1). 

c
KD

 

3.4 Specimens-to-structure passage factors 

The fatigue life tests are performed in idealized conditions in laboratory. However the 

actual structures are subject to varying environment and sometimes hard conditions. In 

the existing nuclear design code, the factors  and , which are introduced 

to relate the number-of-cycles-to-failure of laboratory test specimens to those of actual 

reactor components, can be interpreted as the product of two sub-factors: 

20=Nγ 2=Sγ

SNjj
passage
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scatter

j ,; =⋅= γγγ  (10)



where the subfactors cover the scatter of the experimental data and the sub-factors 

 account for the effects of the size, the surface finish and the industrial 

environment of the actual structure (e. g. Chopra and Shack [13]). Having noted that the 

scatter of the experimental data is already included in the probabilistic characterisation 

of the number-of-cycles-to-failure, the subfactors  appear as conversion factors 

that must be applied to the fatigue lives of specimens to estimate the lives of actual 

reactor structures. However, the literature shows that these subfactors, which are more 

or less empirical, are still not well known (e.g. Framatome [14]). For this reason, they 

are regarded in this paper as random variables. Since it is possible to bound these 

factors, they are supposed to follow a Bêta distribution. The parameters of this Bêta 

distribution are yet to be determined from experiments carried out both on laboratory 

test specimen and operating structures and comparison thereof. 

j
scatterγ

j
passageγ

j
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3.5 Model parameter estimations 

Uncertainties in the estimates of model parameters are inherent to the use of 

mathematical functions to fit the available data. The estimators of these parameters are 

random variables. Thus, they must be accurately calculated and for each of them a 

confidence interval has to be computed. 

 

3.6 Theoretical assumptions of the modelling 

Simple models based on many hypotheses are used to describe the complex thermal 

fatigue process. These mathematical models can not account for all the possible factors 

that have an effect on the thermal fatigue behaviour of the structures and introduce 

therefore uncertainties in the modelling. As an example, the Miner’s rule based on 



linear cumulated damage is not rigorously exact and the methods to deal with multi-

axial fatigue cycles are still subject to discussion (e. g. You and Lee [15]). Moreover, in 

the nuclear design code the stress tensor is computed under the assumption of linear 

elastic material behaviour, whereas crack initiation is governed by plastic strain in the 

critical regions of the structure. 

Yet, no model uncertainty is introduced in this study. Indeed, the objective of the 

present paper is to set up a reasonable probabilistic design against fatigue and not to 

find the idealized design. 

 

4 RANDOM FATIGUE DAMAGE   

Due to all the uncertainties in the model described in section 3, the fatigue damage is a 

random variable. In this section, let us consider that only the fatigue strength of the 

material ),( mSN ω  and the thermal loading ),( St ωθ  are random, where Sω  and mω  

denote the randomness associated to the thermal loading and the material fatigue 

strength respectively, the other variables being considered as deterministic. 

The thermal loading ),( St ωθ  is supposed to be Gaussian stationary process throughout 

the component service life. It is also assumed that the mechanical model relating the 

loading to the equivalent scalar stress ),( StS ω  keeps the normality and the stationary 

state of the random process. This is the case when elastic material behaviour is imposed. 

Under this hypothesis, )S,(tS ω  is likewise a Gaussian stationary process. Let us 

consider  the set of stress amplitudes extracted from the equivalent stress by 

the Rainflow counting, where , which is presumably random, denotes the total 

number of cycles throughout the actual component service life. Under the assumption of 

{ cN
iSiS 1)( =ω }

cN



stationarity of ),( StS ω  and for a large number of cycles,  can be regarded as a 

constant (e. g. Tovo [6]). Finally, 

cN

{ } cN
iSiS 1)( =ω  is assumed to be a set of independent and 

identically distributed random variables with probability density function . The 

resulting random fatigue damage is expressed in two ways, namely by a continuous 

formulation and a discrete formulation. 

)(SfS

 

4.1 Continuous formulation 

Let dSSn S ),( ω  be the number of cycles of stress amplitudes in the elementary interval 

 throughout the component service life. Since  takes large values, the law 

of large numbers states that 

[ ]dSS +S ; cN

Sn ,( dSS )  is given by: ω

dSdSSn S )),( SfN Sc (=ω  (11)

Based on Miner’s rule, the elementary damage associated to the cycles of stress 

amplitudes between S and S + dS is given by: 
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The total damage is written as: 
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where  is the mathematical expectation operator with respect to [ ]⋅SE Sω . Note that in 

this formulation, the random damage contains no uncertainty related to the stress 

variations, since  is removed by application of the expectation operator  [ ]⋅SE .Sω

 

 



4.2 Discrete formulation 

According to Miner’s rule, the cumulative damage also reads: 
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Having noted that { } cN
iSiS 1)( =ω

iY (ω

 is a set of independent and identically distributed random 

variables, it is clear that {  is, likewise, a set of independent and identically 

distributed random variables. Let 

} cN
imS 1), =ω

[ ]),(E)( mSiSmY Y ωωωμ =  and 

 be the mean and the variance of the Yi’s with respect to ωS. 

Since  is large enough, the central limit theorem states that the cumulative damage 

tends to be normally distributed with mean value 

[ ), mS ωω ](var)(2
iSmY Yωσ =

cN

)( mYcN ωμ  and standard 

deviation cmY N)(ωσ . Thus, for a sufficiently large value of Nc, the cumulative 

random damage is approximated by: 
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where )( Sωξ  is a standard Gaussian variable. When  tends to infinity, the factor cN

cmmY N)(ωσ Y () ωμ  vanishes, and the damage becomes: 
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As a consequence, Eq. (16) appears identical to Eq. (13) in this limit. As a conclusion, 

under the assumption of large and constant total number of cycles, the two formulations 

are equivalent. However, the discrete formulation explicitly contains the discrepancy to 

the limit for medium Nc. 

 



5 IMPLEMENTATION OF THE THERMAL FATIGUE ASSESSMENT IN 

STRUCTURAL RELIABILITY 

The general method used here to assess reliability of a structure submitted to thermal 

fatigue consists in incorporating in the modelling of the thermal fatigue behaviour all 

kinds of uncertainties described in section 3. The objective of the analysis is to compute 

the failure probability for a given service life-time. The proposed probabilistic approach 

of thermal fatigue design is based on the theory and methods of structural reliability, 

which are briefly recalled below. 

 

5.1 Review of structural reliability methods 

Structural reliability analysis is based on (e. g. Ditlesven and Madsen [16]): 

• The choice of a stochastic model for the set X(ω) of input random variables (i.e. 

marginal densities and correlation matrix, or better, the joint density function 

fX(x)); 

• The definition of a failure scenario through the determination of a limit state 

function G(X) which splits the safe domain (defined by G(X) > 0) from the 

failure domain (defined by  G(X) ≤ 0). The boundary defined by 

}0)( =X  is called the limit state surface. {   X Gsuch that

The failure probability reads: 
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This probability may be evaluated using the First Order Reliability Method (FORM), 

whose main steps are: 



1. A probability preserving transformation of the set of variables X(ω) in the 

physical space to a set of uncorrelated standard normal variables U(ω) in the so-

called standardized normal space (Figure 4). In general, the Rosenblatt 

transformation or the Nataf transformation are used (e. g. Melchers [17]). Note 

that in the standardized normal space, the limit state function is denoted by 

H(U). 

2. The determination, in the standardized space, of the design point u* (i.e. the 

point on the limit-state surface with maximum value of the probability density 

function) solving the optimization problem using mathematical programming 

methods: 

            ║u*║ = minu ║u║  under the constraint H(U) ≤ 0 (18)

The distance from the origin of the standardized space to the design point is the 

reliability index, denoted by β. 

3. The estimation of the failure probability using a linear approximation of the 

limit-state surface at the design point. Due to the rotational symmetry of the 

standardized space,  the failure probability approximation is analytic:  

)( β−Φ≈fP  (19)

 where  is the standard normal integral. )(⋅Φ

In addition to the failure probability, the FORM method gives the importance factors, 

which make it possible to classify the variables according to their weight in the 

reliability. These factors reads  for each random input variable , where the 2
iα iU iα ’s 

are the direction cosines of the unit normal vector α
r  at the design point to the limit-

state surface (Figure 5).  



When the limit state function is strongly non-linear, the FORM method becomes less 

accurate. In this case, the second order reliability method (SORM) is an alternative to 

improve the accuracy of FORM. It consists in fitting a quadratic surface centered at the 

design point. Then the failure reliability is estimated by the probabilistic content of the 

quadratic domain approximating the failure region and depends mainly on the 

curvatures at the design point. In particular, the asymptotic Breitung’s formula [18] may 

be used: 
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where n is the number of random input variables and κi is the ith principal curvature of 

the limit-state surface at the design point. 

The failure probability may also be calculated using simulation methods, in particular 

the importance sampling method, which is a Monte-Carlo simulation targeted at the 

design point. This method allows to obtain accurate values of the failure probability for 

a relatively low number of simulations (e.g. 1000 simulations). Let us write the 

probability integral in Eq. (17) using the indicator function of the failure domain in the 

standard normal space I[H(U) ≤ 0]: 
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In this expression, ϕn is the multinormal density function and ψ is termed the 

“importance sampling” distribution (e.g. the multinormal density function centered at 

the design point with a unit standard deviation). From Eq. (21), the failure probability is 

regarded as the expectation of a function of u with respect to the importance sampling 

distribution: 
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Then, Eq. (22) can be estimated by Monte-Carlo simulation using K samples: 
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Since the importance sampling method approaches the exact failure probability for large 

values of K, it can be used to check the FORM and SORM approximations. These three 

methods are illustrated in Figure 5. 

In practice, the computation of the failure probability using the above methods is carried 

out by coupling the stochastic model, which is the probabilistic characterisation of the 

input random variables, and a mechanical model, defined as the procedure to compute 

the limit state function (e. g. Lemaire [19]). The structural reliability methods are 

implemented in the software PHIMECA Soft ® [20] which is used in the present 

analysis. 

 

5.2 Thermal fatigue reliability assessment 

Let us denote by x a sample of X, the vector of the random input variables. Given N0, 

the target number-of-cycles in service of the structure under consideration, the failure 

occurs when the random number-of-cycles-to-failure N(x) is less than N0. The limit state 

function associated with this problem therefore reads: 

0)()( NNG −= xx  (24)

An alternative and equivalent expression is given by: 

),(1)( 0 xx TDG −=  (25)



where  is the total fatigue damage produced during the target life-time T0. Let 

us assume that the joint PDF  of X is known. In practice, only the knowledge of 

the marginal distributions of each input variables and the correlation matrix is needed. 

Two dual approaches of the reliability analysis are defined, respectively in the time 

domain and in the frequency domain. 
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5.2.1 Reliability analysis in the time domain 

Let x be a sample of the input random variables of the problem under consideration. In 

particular, a sample of the thermal loading process is given by a time history on the 

target service life-time T0. The thermal stress tensor Sij(x,t) is evaluated at a probable 

critical location on the structure. Then, Tresca’s criterion is used to reduce the stress 

tensor to an equivalent scalar stress S(x,t) on which the Rainflow counting method is 

applied to find the cycles amplitudes {Sk(x), k=1, …, Nc}, where Nc is the total number-

of-stress-cycles. From the fatigue strength model, the admissible number of cycles 

Nstruct(Sk(x),x) associated to each cycle amplitude Sk(x) is determined. Finally, the total 

fatigue damage for the target service life-time in T0 is computed as follows: 
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Note that the total fatigue damage expression in Eq. (26) corresponds to its discrete 

formulation (section 4.2). 

If the thermal load was considered as a Gaussian random process, it is noted that it will 

be discretized, i.e. represented by a finite set of random variables. See for example 

Shinozuka and G. Deodatis [21] or Zhang and Der Kiureghian [22]. Then, these random 

variables can be considered as input data of the problem. Each realization of these 



variables produces a trajectory of the temperature process that is included in the whole 

procedure. 

In conclusion, when the probability distributions of all random variables are defined, it 

is possible to compute the limit state function from a sample of the random input 

variables using the scheme described above (Figure 6) which is the probabilistic 

assessment in the time domain of the deterministic model (Figure 2). It is therefore 

possible to link the stochastic model to the mechanical model, then to assess reliability 

of the structure submitted to thermal fatigue. This approach seems natural since the 

limit state function is computed with the currently codified design procedure [2]. 

 

5.2.2 Reliability analysis in the frequency domain 

This approach is based on spectral methods of fatigue life-time prediction for 

mechanical components submitted to a stationary load random process. These methods 

aim at evaluating the fatigue life-time directly from the spectral properties of the stress 

random process resulting from the load random process. Let )(λθW  be the power 

spectral density function (PSD) of the thermal load process ( λ  is the frequency in 

radians per second). We successively compute the PSD of the stress random process, 

the PDF of the stress amplitudes and the total fatigue damage. 

 

a/ Power spectral density function of the stress random process 

The stresses in the structure are computed under the assumption of a linear material 

behaviour, as is common practice in the nuclear design code. The problem is therefore 

described as a linear physical system with a single input, given by the random thermal 

load ),( ωθ t , and a single output, given by the stress ),( ωtS  in the structure under 



consideration. When the random thermal load is assumed to be stationary, the random 

stress process is also stationary due to linearity of the system and the PSD of the stress 

process )(λSW , is obtained by (e. g. Preumont [23]): 

)()()( 2 λλλ θWTFWS =  (27)

)(λTFwhere  denotes the transfer function of the system, given by the Fourier 

transform of the impulse response : )(tz

∫
∞

∞−

−= ττλ τλ dezTF j)()(  (28)

In the case of a multi-axial state of stress, the transfer function becomes a matrix and the 

multi-axial fatigue criteria formulated in the frequency domain can be used to compute 

the PSD of the scalar equivalent stress. The literature gives the spectral formulation of 

some multi-axial fatigue criteria, in particular those based on stress invariants or those 

using the critical plane approach (e. g. Pitoiset and Preumont, [24]). 

b/ Probability distribution of stress amplitudes 

The probability density function of the stress amplitudes is computed using the spectral 

moments of the scalar equivalent stress. The spectral moment  of order i is defined as 

follows: 

im

∫
∞

∞−

= λλλ dWm S
i

i )(  (30)

In this analysis, the empirical Dirlik’s formula is used [25]. It is based on four spectral 

moments of the equivalent stress, namely , ,  and . By this formula, the 

number of Rainflow cycles with range in the interval [

0m 1m 2m

S

4m

Δ ; SS d Δ+Δ ] is given by: 

[ ] )()( 0 SpTMSn T Δ=Δ E  (31)



where  is the service life of the structure, 0T [ ]TME  is the mean number of peaks per 

unit time and reads: 
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and  is the probability to extract one cycle with range in the interval 

[ ; ]. This probability is given by: 
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Figure 7 shows the goodness of fit of the Dirlik’s formula to the Rainflow cycles for 

two uniformly distributed PSD, respectively with narrow and large bandwidth. 

 

c/ Total fatigue damage 

From the Dirlik’s formula in Eq. (33), it is easy to show that the PDF of the stress 

amplitudes 2SS Δ=  reads: 

)2(
2
1)(

2
1)( SpSpSfS =Δ=  (35)

Thus, the number of Rainflow cycles, whose amplitudes belong to the interval 

[ ; ] is given by: S SdS +



[ ] SdSfTMSdSn ST ),(),( 0 xEx =  (36)

In the latter equation, x denotes the realization of the input random variables describing 

the mechanical model. The value of all parameters entering Eq. (34) (see Eq. (33)) 

depend indeed implicitly on these input parameters x. 

Using Miner’s rule, the elementary damage caused by the stress cycles with 

amplitudes in the interval [ ; ] reads: 
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where  represents the fatigue strength of the structure under consideration 

and is defined as the number-of-cycles-to-failure under cyclic stress with constant 

amplitude . The total fatigue damage is obtained by integrating Eq.(32) on the 

variation domain of : 
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Note that, the fatigue damage is computed by means of its continuous formulation 

(section 4.1) in this case. 

In conclusion, when a sample of the input random variables is generated, it is possible 

to compute the associated value of the limit state function using the procedure described 

above (Figure 8) which is the probabilistic assessment in the frequency domain of the 

deterministic model (Figure 2). Therefore, this procedure can serve as a mechanical 

model to be coupled to the stochastic model to assess the failure probability against 

thermal fatigue.  

 

 



6. APPLICATION 

6.1 Problem statement 

Consider a free end pipe subjected to variable temperature due to water flow (Figure 9). 

We want to perform a complete reliability analysis of this structure including all the 

uncertainties in the fatigue behaviour and in the mechanical model. The statistical 

properties of the input random variables are given in the Table 2. The objective is to 

compute the failure reliability and the associated reliability index for a given service 

life-time. Beside the failure reliability, the sensitivity of the result to each random 

variable is estimated. In this analysis we want to compare the results given by the time 

domain and the frequency domain approach respectively. Both high cycle fatigue (HCF) 

and low cycle fatigue (LCF) regimes are investigated. 

 

6.2 Thermal loading model 

The thermal load is assumed to be random and represented by a random Gaussian 

stationary process. In this example two random thermal loading are considered. They 

are represented as Gaussian pseudo-white noise random processes with zero central 

frequency and different cut-off frequencies. The first one is denoted ( )ωθ ,1 t  and its cut-

off frequency is equal to . The second one, Hz201 =f ( )ωθ ,2 t , has a cut-off 

frequency . Their respective mean value is 130°C and their standard deviation 

is equal to 20°C. Both thermal loading models are illustrated respectively in Figures 10 

and 11. 

Hz52 =f

For the analysis in the frequency domain, the random loading is represented by its 

power spectral density, denoted by )(1 λW and )(2 λW  respectively. For the analysis in 

the time domain, the loading is given by a deterministic temperature sequence, since the 



damage is not affected by the loading variability for high number of cycles (see section 

4). In order to compare both approaches, the temperature sequences used in the time 

domain analysis are simulated from their respective PSD. For cost reduction issues, 

these time-histories are considered periodical with periodicity equal 360 s. Thus, we 

implicitly assume that the time-history of the thermal loading calculated on that period 

is representative of the real thermal load. Practically, the temperatures trajectory is 

discretized into 214 = 16384 points. 

Under the thermal loads ( )ωθ ,1 t  and ( )ωθ ,2 t  described above, the pipe operates in the 

HCF regime. In order to investigate the LCF regime, the stress amplitudes are raised by 

a factor k in the second part of the study. This factor k may be interpreted as a stress 

concentration factor to account for the presence a welded joint or a geometrical 

irregularity. In this numerical application, the factor k is artificially given a value of 4, 

intentionally exaggerated to emphasize the required phenomenon (i.e. being in the LCF 

domain). 

 

6.4 Mechanical model 

The pipe is assumed to be thin (e << Ri) and uniformly loaded onto its inner surface. 

Under these assumptions, the temperature field in the thickness is solution of a one 

dimension unsteady heat conduction equation: 

2
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where pCLC ρ= is the thermal diffusivity of the material, L is the conductivity and 

pCρ is the heat capacity. The boundary conditions, which account for a perfectly 



insulate outer surface and a standard heat transfer model with the fluid, read 

respectively:  
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where h is the heat transfer coefficient and θf is the fluid temperature. 

Once the temperature profile in the thickness is obtained, the stress tensor is given by 

the equilibrium equation: 

( ) 0=ijSdiv  (41)

under the following boundary conditions: 
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Due to the assumption of a free end thin pipe, the generalized plane strain conditions are 

applied (i.e. strain component εzz is regarded as a constant throughout the pipe thickness 

and is an unknown parameter of the problem). 

When time domain analysis is considered, the stress field in the thickness of the pipe is 

computed numerically using the finite difference code OSTAND developed by EDF 

R&D, while it is obtained by an analytical transfer function in the frequency domain 

analysis (e. g. Musi and Beaud [26]). In both analyses, the two stress components σθθ 

and σzz are equal at the inner wall, all other components being zero. Thus, the equivalent 

scalar stress (based on Tresca criterion), from which the stress cycles amplitudes are 

obtained, is ZZσσθθ = . 



 

6.5 Results 

The reliability analysis is carried out for 8 case studies. Indeed, for both thermal loads 

( )ωθ ,1 t  and ( )ωθ ,2 t , HCF and LCF (using the stress factor k) modes are investigated, 

each of them being treated in the time and the frequency domain. Note that in the HCF 

domain the reliability is computed on a target service-life-time N0 = 10000 temperature 

sequences of 360 s (i.e. 107 stress cycles), while in the LCF domain it is performed on a 

target service-life-time N0 = 10 temperature sequences (i.e. 104 stress cycles). 

For each case, the failure reliability is calculated using FORM, SORM and importance 

sampling methods. The generalized reliability indices  given by these 

three methods are reported in Table 3. Concerning the importance factors, their values 

in both time and frequency domain, which are very closed, are shown in Figure 12 and 

13. The complete results of this analysis are reported in Guédé [27]. 

)(1
fP−Φ−=β

In each case, the reliability indices provided by the various methods are very close. The 

relative differences between FORM approximations and importance sampling results 

vary between 0% and 5%. Method FORM thus provides a very good approximation of 

the index of reliability. 

From the reliability index values shown in Table 3, one can see that the frequency 

domain approach is always more conservative than time domain one (i.e. β is always 

smaller). This is due to the fact that the frequency domain approach, which, unlike the 

time domain approach, incorporates the loading randomness and this includes more 

uncertainties. A larger difference between the respective reliability indices of both 

approaches (i.e. approximately 20%) is observed for the first temperature model θ1, 

while a negligible difference appears for the second loading model θ2. The large 



difference in the first case does not question the equivalence of both approaches yet. It 

comes from the fact that both discrete and continuous formulations of the random 

damage are no longer equivalent because of a too low number of damaging stress cycles 

(i.e. 2 – 4 damaging stress cycles for a number of 4000 extracted cycles) extracted from 

the loading time history θ1(t) throughout the chosen time duration of the temperatures 

sequence (i.e. 360 s). The observed difference should decrease for a higher period, 

which was not checked is the present work for reasons of computing time. 

The importance factors shown in Figures 12 and 13 reveal that the scatter in fatigue 

strength and the heat transfer coefficient are the most significant variables in the thermal 

fatigue reliability. On the other hand, the effect of the heat transfer coefficient decreases 

in the LCF regime, since it acts directly on the variations of the stress cycles number, 

which is not that significant for the fatigue damage in the LCF domain. 

The stress amplitude assessment via the passage factor  is significant for the 

reliability only in the HCF domain where it is applied. On the other hand, the effect of 

the life-time reduction factor  remains negligible in the LCF where it is applied. 

Indeed, even with the majoration of the stress amplitude by a high k factor, the pipe 

does not operate exclusively in the LCF regime, but there are still many stress 

amplitudes in the HCF domain. The effect of  should be risen in the case that 

only LCF regime is considered. 

S
passageγ

N
passageγ

N
passageγ

The Young’s modulus and the thermal expansion coefficient are the most important 

thermal parameters for the fatigue reliability, due to the assumption of material linear 

elastic behaviour. Moreover, because of their symmetrical role in the mechanical model, 

their respective weights are equal. They may therefore be grouped into a single random 

variable, namely the product Eα. 



7 CONCLUSIONS 

In the present work, a probabilistic approach for the assessment of nuclear components 

submitted to thermal fatigue is set up, making it possible to take account for all the 

uncertainties that affect the thermal fatigue behaviour. The procedure is applied to a 

pipe subjected to a random thermal loading. It is shown that it is possible to perform a 

complete reliability analysis against thermal fatigue, and to compute the reliability 

indices and the sensitivity factors with respect to any variation in each input variable. It 

is important to note that the proposed approach does not depend on the models used to 

describe thermal fatigue behaviour of the structure, and it could be adjusted for any 

other more accurate modelling. 

It is also shown that the assessment of thermal fatigue reliability can be carried out 

equivalently in the time and frequency domain under the assumption of stationary 

Gaussian loading and large number of damaging stress cycles. However, it should be 

noted that the frequency domain approach can be used only for stationary random 

loading with an elastic material behaviour. On the other hand, the application of the 

time domain approach may be extended to non-stationary random loading, provided the 

non-stationary process is correctly discretized. 
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NOMENCLATURE 
 
ω, ωm, ωS variables associated with randomness 
t time 
λ frequency 

),( ωθ t  random thermal loading history 
Sij(t) stress tensor 

),( ωtS  random equivalent scalar stress by Tresca criterion 
S stress amplitude 
S’ corrected value of the stress amplitude by the Goodman diagram 
Su ultimate tensile strength 
Sy yield strength 
E Young’s modulus 
ν Poisson ratio 
α thermal expansion 
L thermal conductivity 
ρCp specific heat capacity 
h heat transfer coefficient 

N
scatterγ ,  N

passageγ subfactors for data scatter and for passage specimen to structure in 
the low cycles fatigue domain 



S
scatterγ ,  S

passageγ subfactors for data scatter and for passage specimen to structure in 
the high cycles fatigue domain 

SD endurance limit 
A, B parameters of the S-N curve model 
D cumulative fatigue damage 
N(S,ω) random number of cycles of a specimen under constant stress 

amplitude repeated loading 
N0 target number of cycles in service 
T0 target fatigue lifetime in service 
η(S) best-fit curve to the fatigue tests data 
σ(S) standard deviation of lnN 
δ coefficient of variation of lnN 
DK variable of the statistical Kolmogorov test  

c
KD  critical value of DK in the statistical Kolmogorov test 

)(SfS  probability density function of the stress amplitude 
)(λθW  power spectral density function of the thermal load process 
)(λSW  power spectral density function of the equivalent stress process 
)(λTF  transfer function 

fX(x) joint probability density function of the input variables 
G(x) limit-state function 
H(u) limit-state function in the standardized normal space 
u* design point in the standardized normal space 
Pf failure probability 
β reliability index 
 
Operators 
 
Φ(⋅) standard normal cumulative distribution function 
I[⋅] indicator function 
div(⋅) divergence operator 
 
Abbreviations 
 
HCF high cycles fatigue 
LCF low cycles fatigue 
FORM first order reliability method 
SORM second order reliability method 
IS importance sampling method 
 
 
 



 

 
 

Fig. 1. Overview of the deterministic thermal fatigue design of nuclear components. 
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Fig. 2. Fatigue design curve and mean stress correction. 
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Fig. 3. Representation of a random process. 
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Fig. 4. Probability preserving transformation from the physical space to the standardized 
space. 
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Fig. 5. Failure probability approximation: (a) by FORM ; (b) by SORM ; (c) by 
importance sampling. 
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Fig. 6. Computational model for the reliability analysis in the time domain. 
 
 

 
 
Fig. 7. Goodness of fit of the Dirlik formula to the Rainflow cycles for pseudo-white 
noise with (a) a narrow bandwidth and (b) a large bandwidth. 
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Fig. 8. Mechanical model for the reliability analysis in the frequency domain. 
 
 

 
Fig. 9. Straight free end pipe. 
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Fig. 10. Thermal loading model, θ1(t,ω). 
 
 

 
 

Fig. 11. Thermal loading model, θ2(t,ω).
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Fig. 12. Sensitivity factors for the thermal loading θ1 both in HCF and LCF regimes. 
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Fig. 13. Sensitivity factors for the thermal loading θ2 both in HCF and LCF regimes. 
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A B SD (MPa) δ DK DK
c 

- 2,28 24,06 185,80 0,09 0,11 0,14 
Table 1. Numerical results of the statistical treatment of fatigue test data. 

 
 

Variable name Distribution Mean Coef. of 
variation 

Inner radius, Ri log-normal 0.12827 m 5% 
Thickness, e log-normal 9.27 10-3 m 5% 

Young’s modulus, E log-normal 1.8908 105 MPa 10% 
Poisson ratio, ν Bêta [0.2, 0.4] 0.3 10% 

Thermal expansion, α log-normal 1.695 10-5 10% 
Thermal conductivity, L log-normal 16.645 W.K-1.m-1 10% 

Specific heat capacity, ρCp log-normal 4.024 106 W.K-1.m-3 10% 
Heat transfer coef., h log-normal 20,000 W.K-1.m-2 30% 

Yield strength, Sy log-normal 188 MPa 10% 
Ultimate tensile strength, Su log-normal 496 MPa 10% 

S
passageγ  Bêta [1,2] 1.68 10% 
N
passageγ  Bêta [7,11] 9.39 10% 

Fatigue strength scatter, ξ normal 0 std. dev. = 1 
Table 2. Statistical properties of the input random variables. 

 
 

θ1(t,ω) θ2(t,ω) Reliability analysis 
HCF LCF HCF LCF 

FORM 2.28 2.48 1.36 1.99 
SORM 2.35 2.50 1.44 2.01 Time domain 

IS 2.36 2.48 1.43 2.02 
FORM 1.88 2.07 1.35 1.99 
SORM 1.95 2.07 1.42 2.01 Frequency domain

IS 1.99 2.07 1.41 2.01 
Table 3. Reliability indices obtained by FORM, SORM and importance sampling (IS) 

methods. 
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