Journal of Food Science Volume 72 Issue 6 Page C313-C316, August 2007 http://dx.doi.org/10.1111/j.1750-3841.2007.00410.x © 2007 Blackwell Publishing, Inc.

The definitive version is available at www.blackwell-synergy.com

# Effect of High Pressure on the Calpain–Calpastatin System in Fish Muscle

Romuald Chéret<sup>1,2</sup>, Christine Delbarre-Ladrat<sup>2</sup>, Véronique Verrez-Bagnis<sup>2</sup>, Marie de Lamballerie<sup>1</sup>

1 UMR CNRS 6144 GEnie des Procédés Environnement et Agroalimentaire, École Nationale d'Ingénieurs des Techniques des Industries Agricoles et Alimentaires, BP 82225, 44322, Nantes Cedex 3, France 2 IFREMER, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 3, France

\*corresponding author: anton@enitiaa-nantes.fr:

#### Abstract:

Calpains (calcium-activated neutral proteases) of sea bass (Dicentrarchus labrax L.) muscle may participate in the degradation of muscle tissue during postmortem storage. These enzymes are regulated by calpastatin, their endogenous specific inhibitor. The objective of this study was to evaluate the changes encountered by the calpain system during the postmortem storage of fish muscle after high-pressure treatment. From 100 MPa, high-pressure treatment of purified calpains results in a loss of their activity as well as in the dissociation of the heterodimeric form. In muscle, the high-pressure processing decreases the initial activity of calpain. This loss in activity may be due to an inactivation by a change of structure. Initial calpastatin activity is not modified by the high-pressure treatment, but it decreases during the storage from the beginning for a treatment at 300 MPa after which calpastatin is stable during 2 d. Therefore, this study also suggests that high-pressure treatment could be a useful way to improve fish flesh quality.

Keywords: high pressure; postmortem denaturation; calpain system

#### 28 Introduction

29 During *postmortem* storage, fish muscle undergoes degradation and the flesh quality 30 decreases rapidly depending on the fish species. Loss of freshness, one of the most important 31 aspects of raw fish, is often caused by a combination of physical, biochemical (enzymatic 32 degradation), and microbiological reactions. Calpains are the enzymes often described to be 33 involved in *postmortem* tenderization (Jiang 2000). The calpains (EC 3.4.22.17) are intracellular 34 endopeptidases requiring calcium for their enzymatic activity. These proteases are ubiquitously 35 distributed in cells of various organisms (insects, plants, etc), but some isoforms are tissuespecific. Two isoforms are widely present in muscle:  $\mu$ -calpain (requiring 5-50  $\mu$ M Ca<sup>2+</sup> to be 36 activated) and m-calpain (150-1000 µM Ca<sup>2+</sup>). In sea bass muscle (Dicentrarchus labrax L.), 3 37 38 different isoforms have been identified and are differently expressed according to the season 39 (Ladrat and others 2000). The calpains are heterodimers composed of a large subunit and a small 40 subunit with a molecular weight of about 80 kDa and 28 kDa, respectively. The large subunit has 41 a catalytic role and the small subunit a regulatory role. In the presence of calcium ions, the heterodimer is dissociated and also autolyzed (self-digested). Calpain is active as the dissociated 42 43 form (Saido and others 1994; Goll and others 2003), although this is a controversial subject 44 (Saido and others 1994; Bessière and others 1999b; Goll and others 2003). Moreover, these 45 enzymes are regulated by an endogenous specific inhibitor, calpastatin.

High-pressure treatment is an innovative food preservation technology. High-pressure is an alternative to thermal or chemical treatment. This new technology causes inactivation of pathogenic and spoilage micro-organisms in foods (Yuste and others 2001). It also exhibits other numerous advantages; among them are no vitamin C loss, fresher taste, and better appearance, as well as better textural and nutritional qualities compared to other classical processing. High-pressure processing responds to the consumer demands for safer products. On 52 top of that, consumers do not have negative feeling about this process compared to irradiation 53 treatment (Deliza and others 2005). Generally, the products are treated in the range of 100 to 54 1000 MPa, for 5 to 20 min. High-pressure processing affects chemical bonds of molecules, and 55 therefore may also induce modifications in water, proteins, polysaccharides and lipids. This 56 treatment can modify the hydrostatic and electrostatic molecular interactions with important 57 consequences for the secondary, tertiary, and quaternary structures of proteins. In fish muscle, 58 this processing affects enzymatic activities (Angsupanich and Ledward 1998; Ashie and 59 Simpson 1996), as well as structural proteins (Ohshima and others 1993).

The objectives of this study were to identify the effects of the pressure treatment on the calpain system of sea bass (*Dicentrarchus labrax* L.) muscle upon refrigerated *postmortem* storage, as well as to gain an insight into the behavior of the calpain system in fish flesh treated by high pressure.

64

#### 65 Materials and Methods

66 Materials

67 Unless specified, chemicals were purchased from Sigma-Aldrich (Saint-Quentin Fallavier,
68 France). The chromatographic gels were from Amersham Biosciences (Uppsala, Sweden).

69

### 70 **Preparation of the fish samples**

Alive sea bass (*Dicentrarchus labrax* L.), 4 years old, with an average weight of 325 g and total length of 30 cm were collected from a local aquaculture farm ("Les Viviers du Gois", Beauvoir-sur-Mer, France) and brought back alive to the laboratory. Fish were killed by decapitation. Dorsal white muscle was excised and skinned in *prerigor* conditions.

#### 76 **Preparation of sarcoplasmic proteins from sea bass muscle**

Frozen minced muscle (25 g) was homogenized twice for 30 s with an Ultra Turrax T25 (IKA Labortechnik, Staufen, Germany) equipped with an 18-mm-diameter head (S 25- 18 G) in 75 mL of buffer A containing 50 mM Tris–HCl (pH 7.5), 10 mM  $\beta$ -mercaptoethanol, and 1 mM 80 ethylenediaminetetraacetic acid (EDTA). After centrifugation at 10000 x g (Model GR 20.22; 81 Jouan, France) at 10000xg for 40 min at 10 °C, the supernatant was filtered through a 0.45- $\mu$ m 82 filter (Sartorius AG, Goettingen, Germany). Three sarcoplasmic extracts were realized for each 83 pressure treatment and for each *postmortem* storage day.

84

## 85 **Purification of calpains from muscle**

The entire procedure following a method previously decribed (Ladrat and others, 2000) was carried out at 4 °C and with an Akta basic (Amersham Biosciences, Uppsala, Sweden) chromatographic equipment. The first chromatographic column (Phenyl Sepharose, Ø 26 mm, L 10.5 cm) was balanced with equilibration buffer composed of 50% buffer A and 50% buffer B (buffer A with 1 M NaCl).

Sarcoplasmic extract (50-mL) with 0.5 M NaCl (final concentration) was directly applied
to the chromatographic column. The nonabsorbed proteins, including calpastatin, the endogenous
inhibitor of calpains, were washed with the equilibration buffer. The calpain active fraction was
then eluted in batch with 60 ml buffer A.

The calpain active fraction eluted during the purification by hydrophobic interaction chromatography was run to the DEAE Sepharose (16 mm diameter, 16 cm long, 1.5 mL/min) in buffer A. The elution was carried out with a 500-mL 0-400 mM NaCl gradient in buffer A. Only one peak containing active calpain was observed. The calpain active fractions recoved at 300 mM NaCl elution were collected (5 ml).

## 101 High-Pressure Processing

102 Two sample types were submitted to high-pressure treatment: muscle fillets at fish death before 103 *postmortem* storage at 4 °C and calpain extract. To reduce the effect of individual fish variation, 104 both dorsal fillets of each fish (a number of 12 fish in total) were divided into portions and mixed 105 to finally obtain 12 homogenous samples, each about 100g. Prior to pressure processing, muscle 106 portions and calpain extracts were individually packed under vacuum in polyethylene bags (La 107 Bovida, Le Subdray, France). High-pressure processing was carried out in a 3.5-L reactor unit 108 (ACB Pressure Systems, Nantes, France) equipped with temperature and pressure regulatory 109 devices. The samples were subsequently subjected to high-pressure treatment: the levels of 110 pressurization ranged from 0.1 to 500 MPa ( $\pm$  7 MPa) for 5 min. The expected high-pressure was reached at 3 MPa.s<sup>-1</sup>, and after 5 min of treatment it was then released at 250 MPa.s<sup>-1</sup>. 111 112 Temperature of transmitting medium in the vessel was settled at 10 °C (± 5 °C). Temperature of 113 the cooling jacket which surrounded the pressure vessel was also maintained at 10 °C during the 114 pressure treatment. One thermocouple, K-type (0.3 mm diameter; Omega, Stamford, Connecticut, 115 USA), positioned close to the sample allowed to follow temperature variation during treatment.

116

## 117 **Storage of fillet**

In our experiment, samples (portion of 100g) treated at 0.1, 100 and 300 MPa were stored at 4 °C from 0 to 7 days. At the end of the appropriate storage period, triplicates of 30 g each were minced, vacuum-packed and frozen at -80 °C until use for enzymatic analysis.

121

## **Determination of protein amounts**

123 The amount of proteins were evaluated by the biuret method according to Gornall and 124 others (1949) with bovine serum albumin solution as the standard. The values were the means of 125 3 measurements for each sample.

126

127

# Calpain activity measurement

128 Calpain activity was determined at 30 °C in a 303-µL reaction mixture containing 3 µL of 129 0.5 M CaCl<sub>2</sub>, 6 µL of 5 % CHAPS {3-[3-(cholamidopropyl)-dimethyl-ammonio]-1-130 propanesulfonate} and 5 µl of 20 mM synthetic fluorogenic substrate SucLT (N-succinyl-Leu-131 Tyr-7-amido-4-methylcoumarin) prepared in methanol. The reaction was initiated by adding 255 132 µL of calpain active fraction. During a 40-min reaction, fluorescence was monitored in 133 microplate wells using the spectrophotofluorometer Fluostar Optima reader (BMG Labtech, 134 Champigny sur Marne, France) with an excitation wavelength set at 355 nm and emission 135 wavelength set at 460 nm. A control in which 3  $\mu$ L of 0.5 M CaCl<sub>2</sub> was replaced by 3  $\mu$ L of 0.5 136 M EDTA was also performed. Enzymatic assays were performed in triplicates and activity was 137 expressed as mean  $\pm$  standard deviation. Calpain activity was expressed as fluorescence units per 138 min per g of muscle (Cheret and others, 2005).

139

#### 140 **Quantification of calpastatin inhibitory activity**

141 Calpastatin inhibitory activity was measured with a calpain-active sample produced 142 separately from a whole fish white muscle (the nonabsorbed proteins, including calpastatin), as 143 described above. Exactly 55  $\mu$ L of calpastatin sample (or buffer for the control) was mixed with 144 200 µL of a calpain solution purified separately from a whole fish (*Dicentrarchus labrax* L.) 145 muscle as described above and the resulting calpain activity was measured on SucLT fluorogenic 146 substrate as previously described. One unit of calpastatin activity was defined as the amount which inhibits one unit of calpain activity. The values were the means of 3 measurements foreach sample (Cheret and others, 2007).

149

### 150 Electrophoresis

Denaturating gel electrophoresis was performed according to method of Laemmli (1970) using Mini-Protean dual slab cell (Bio-Rad, Richmond, CA, USA) using 10 % (w/v) polyacrylamide as the separating gel and 5% (w/v) polyacrylamide as the stacking gel. Sample was treated at 100°C for 5 min in <sup>1</sup>/<sub>4</sub> volume of denatured buffer (10 mM Tris-HCl pH 8, 2% SDS, 0.1 M DTT, 0.01% bromophenol blue and 1 mM EDTA).

Gel electrophoresis under native conditions (PAGE) was carried out on calpain extracts.
Samples (30 µL) were prepared with 10 µL buffer composed of 10 mM Tris-HCl pH 8, 0.1 M
DTT, 0.01% bromophenol blue, and 1 mM EDTA, before putting them on the gel.

Both denaturated and native electrophoresis gels were silver-stained according to Blumand others (1987).

161

#### 162 **Results and Discussion**

## 163 Effect of high-pressure treatment on the calpain activity

164 Calpain and its specific inhibitor, the calpastatin, were separated by hydrophobic 165 interaction chromatography before measuring calpain activity. Regarding the study on the whole 166 muscle, the purification was performed after the pressurization of the muscle. For the extracted 167 calpain study, the pressurization was done after its purification. In both cases, the activity of 168 calpains decreased significantly when the level of pressure increased (Figure 1). The activity of 169 calpain decrease for pressures higher than 100 MPa; and above 350 MPa, the high-pressure 170 treatment induced a total loss of activity. Bessière and others (1999a, 1999b) reported that the 171 high-pressure treatment led to a dissociation of the two subunits of calpains. The corresponding 172 dissociation curve according to the pressure level was similar to our experimental curves. The 173 decrease in activity could therefore be due to the dissociation that is responsible for the instability 174 of the dissociated form (Saido and others 1994). A slight alteration of the calpain structure could 175 also lead to the loss of activity.

176

177 Effect of high pressure on the structure of calpain

178 The calpain was purified by hydrophobic interaction chromatography followed by ion 179 exchange-chromatography. The calpain active fractions were recovered, mixed, and subsequently 180 pressurized at different intensities between 0.1 and 400 MPa. The treated samples were studied 181 by native and denatured electrophoresis. Figure 2 shows the effect of high-pressure treatment on 182 the calpain native structure. For the control (0.1 MPa), only one band was observed, must likely 183 the heterodimeric form. In the pressurized samples, the presence of 2 bands were observed, 184 probably corresponding to the catalytic and regulatory subunits. This indicates that the calpains 185 were dissociated above 100 MPa. The SDS-PAGE analysis (Figure 3), showed that the 2 186 observed bands have a molecular weight similar to each calpain subunit, confirming the proposed 187 identification of bands.

188

# 189 Effect of high-pressure treatment on the calpain system during the storage

Calpain activities after high-pressure treatment were followed during the *postmortem* storage (the pressures were 0.1, 100, and 300 MPa and the durations of storage were 0, 2, 4, and 7 days) (Figure 4). For the control (0.1 MPa), the calpain activity did not show any evolution during the 7 days of *postmortem* storage. After pressurization at 100 MPa, the initial calpain activity is not affected, but the activity increased between the day 0 and the day 4 and then decreased at the end of storage. After a pressure treatment at 300 MPa, the initial calpain activity was very low and continued to be stable during storage. This latter treatment was apparently too drastic for the calpain molecules and might lead to degradation of the ternary structure.

198 The evolution of calpastatin activity was studied during refrigerated storage after high-pressure 199 treatment of the whole muscle (Figure 5). Initial activity was not affected by pressure treatment 200 but other previous studies have also established that this protein is stable and is resistant to 201 denaturing agents such as urea, SDS, and trichloroacetic acid (Goll and others 2003). Our data 202 confirmed that the protein could also be stable after a high-pressure treatment. The calpastatin 203 activity decreased during *postmortem* storage. The observed decreased could be due to a 204 degradation of calpastatin (Mellgren and others 1986); therefore calpains could be responsible 205 for the loss of calpastatin activity since the high-pressure treatment has not effect on calpastatin 206 activity.

207

### 208 Conclusion

209 In summary, we have shown that a high-pressure treatment at 100 MPa is able to 210 dissociate the calpain molecule and to activate it in the first days of storage following the 211 pressurization. After a 300-MPa treatment, calpain is denaturated and in no longer active. 212 Calpastatin initial activity is not affected whatever the intensity of pressure applied and its 213 subsequent decrease upon storage does not depend on the pressure level either. The decrease in 214 activity during storage may be explained by a proteolytic action of the calpains on their own 215 inhibitor. If the calpain system is responsible for fish flesh *postmortem* degradation as proposed 216 by several authors, such as Jiang (2000), high-pressure treatment at 300 MPa could therefore be a 217 useful way to keep fish flesh at high quality. From a practical and economical point of view, this

- 218 technique would be preferentially possible for high value fish fillets. It may be also a good 219 technique for the conservation of a ready to eat.
- 220

#### 221 References

- 222 Angsupanich K, Ledward DA. 1998. High pressure treatments effects on cod (Gadus morhua)
- 223 muscle. Food Chem 63(11):39-50.
- 224 Ashie INA, Simpson BK. 1996. Application of high hydrostatic pressure to control enzyme 225 related fresh seafood texture deterioration. Food Res Int 29(5-6):569-575.
- 226 Bessière P, Bancel F, Cottin P, Ducastaing A. 1999a. Pressure effects on proteolysis catalysed
- 227 by calpain. Biochem Mol Biophys 47 (1):25-35.
- 228 Bessière P, Cottin P, Balny C, Ducastaing A, Bancel F. 1999b. Hydrostatic pressure and 229 calcium-induced dissociation of calpains. Biochim et Biophys Acta 1430:254-261.
- 230 Blum H, Beier H, Gross HJ. 1987. Improved silver staining of plant proteins, RNA and DNA in
- 231 polyacrylamide gels. Electrophoresis 8:93-99
- 232 Chéret R, Delbarre-Ladrat C, de Lamballerie-Anton M, Verrez-Bagnis V. 2005. High-pressure
- 233 effects on the proteolytic enzymes of sea bass (Dicentrarchus labrax L.) fillets. J Agric Food 234 Chem, 53, 3969-3973.
- 235 Chéret R, Delbarre-Ladrat C, de Lamballerie-Anton M, Verrez-Bagnis V. 2007. Comparison of 236 proteolytic enzyme activities in fish and meat muscle. Food Chem, 101(4): 1474-1479.
- 237
- 238 Deliza R, Rosenthal A, Adabio FBD, Silva CHO, Castillo C. 2005. Application of high pressure 239
- technology in fruit juice processing: benefits perceived by consumers. J Food Eng 67(1-2):241-
- 240 246.

- Goll DE, Thompson VF, Li H, Wei W, Cong J. 2003. The calpain system. Physiol Rev 83:731801.
- Gornall AG, Bardawill CJ, David MM. 1949. Determination of serum proteins by means of the
  biuret test. J Biol Chem 177:751-766.
- Jiang ST. 2000. Effect of proteinases on meat texture and seafood quality. Food Sci Agri Chem
  2 (2): 55-74.
- Ladrat C, Chaplet M, Verrez-Bagnis V, Noelle J, Fleurence J. 2000. Neutral calcium-activated
- proteases from European sea bass (*Dicentrachus labrax* L.) muscle: polymorphism and
  biochemical studies. Comp Biochem Physiol 125 B: 83-95.
- Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227:680-685.
- 252 Mellgren RL, Mericle MT, Lane RD. 1986. Proteolysis of the calcium-dependent protease
- inhibitor by myocardial calcium-dependent protease. Arch Biochem Biophys 246(1):233-9.
- 254 Ohshima T, Ushio H, Koizumi C. 1993. High pressure processing of fish and fish products.
- 255 Trends Food Sci Technol 4:370-375.
- 256 Saido TC, Sorimachi H, Suzuki K. 1994. Calpain: new perspectives in molecular diversity and
- 257 physiological-pathological involvement. FASEB J 8:814-822.
- 258 Yuste J, Capellas M, Pla R, Fung DYC, Mor-Mur MM. 2001. High pressure processing for food
- safety and preservation: a review. J Rapid Meth Automation Microbiol 9:1-10.



Figure.1. Evolution of calpain activity according to the pressure applied on calpain extract and on fish white muscle. Results are means of 3 samples; the vertical bars represent the standard deviation. The activities are expressed in fluorescence units per minute per g of muscle.



- 270 Figure. 2. Native PAGE of calpains from fish (Dicentrarchus labrax L.) white muscle after high-
- 271 pressure treatment (0.1, 100, 300 and 400 MPa).



after purification.



Figure. 4. Changes of calpain activities after 0, 2, 4, and 7 days *post-mortem* for the different pressurized muscle samples: 0.1 MPa (control sample), 100 MPa, and 300 MPa. Results are means ( $\pm$  S.D.) of 3 measurements; the vertical bars represent the standard deviation. The activities are expressed in fluorescence units per minute per g of muscle.



Figure. 5. Changes of the calpastatin activities after 0, 2, 4 and 7 days *post-mortem* after pressurization of muscle samples at 0.1 MPa (control), 100 MPa, and 300 MPa. Results are means ( $\pm$  S.D.) of 3 measurements; the vertical bars represent the standard deviation. One unit is able to inhibit one unit (fluorescence unit per minute per g of muscle) of calpain.