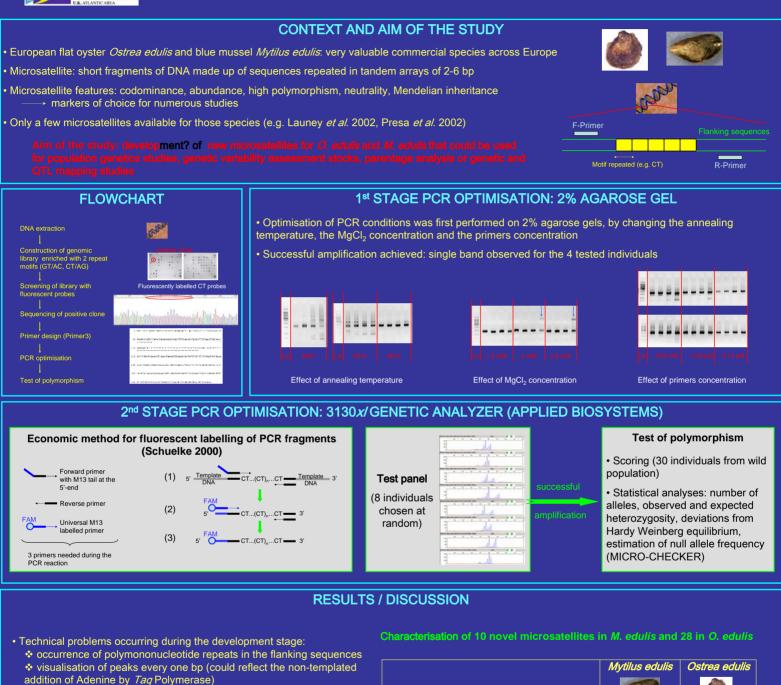
Microsatellites development in Ostrea edulis and Mytilus edulis


D. Lallias¹, R. Stockdale¹, S. Lapègue², P. Boudry^{2,*} and A.R. Beaumont¹

¹ School of Ocean Sciences, University of Wales, Bangor, UK
² Ifremer, Laboratoire de Génétique et Pathologie, La Tremblade, France
* Present address: Ifremer, UMR M100, Plouzané, France

Ifremer

- amplification of aspecific bands
- ✤ stuttering
- * large allele dropout
- General features of newly developed microsatellites:

high polymorphism

 significant deviations from Hardy Weinberg equilibrium suggesting occurrence of null alleles

Null alleles have commonly been reported for various bivalve species and represent major limitations

	Mytilus edulis	Ostrea edulis
No. recombinant colonies screened	750	758
Positive signal after hybridization	157	179
No. clones sequenced	157	133
No. primers designed	62	94
Successful amplification (2% agarose gel)	40	76
Test of polymorphism	11	28

REFERENCES

Launey S., Ledu C., Boudry P., Bonhomme F. and Naciri-Graven Y. (2002) Geographic structure in the European flat oyster (*Ostrea edulis* L.) as revealed by microsatellite polymorphism. The Journal of Heredity 93: 40-47

Presa P., Pérez M. and Diz A. (2002) Polymorphic microsatellite markers for the blue mussels (*Mytilus* spp.). Conservation genetics 3: 441-443 Schuelke M. (2000) An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology 18: 233-235