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Abstract – We analysed the patterns of variation that characterize 33 catch time series of large pelagic fishes exploited
by the Japanese and Taiwanese longline fisheries in the Indian Ocean from 1968 to 2003. We selected four species, the
yellowfin (Thunnus albacares), the bigeye (T. obesus), the albacore (T. alalunga), and the swordfish (Xiphias gladius)
and aggregated data into five biogeographic provinces of Longhurst (2001). We carried out wavelet analyses, an efficient
method to study non-stationary time series, in order to get the time-scale patterns of each signals. We then compared
and grouped the different wavelet spectra using a multivariate analysis to identify the factors (species, province or fleet)
that may influence their clustering. We also investigated the associations between catch time series and a large-scale
climatic index, the Dipole Mode Index (DMI), using cross wavelet analyses. Our results evidenced that the geographical
province is more important than the species level when analyzing the 33 catch time series in the tropical Indian Ocean.
The DMI further impacted the variability of tuna and swordfish catch time series at several periodic bands and at
different temporal locations, and we demonstrated that the geographic locations modulated its impact. We discussed the
consistency of time series fluctuations that reflect embedded information and complex interactions between biological
processes, fishing strategies and environmental variability at different scales.

Key words: Pelagic fishes / Time series analysis /Wavelet analysis / Longline fisheries / Dipole Mode Index /
Indian Ocean

Résumé – Analyse de séries de captures de thons et d’espadon et variabilité climatique dans l’océan Indien
(1968-2003). Nous avons analysé les patrons de variabilité qui caractérisent 33 séries temporelles de captures de grands
poissons pélagiques exploités par les flottilles palangrières japonaise et taiwanaise dans l’océan Indien de 1968 à 2003.
Nous avons sélectionné 4 espèces, l’albacore (Thunnus albacares), le patudo (T. obesus), le germon (T. alalunga) et
l’espadon (Xiphias gladius). Les captures ont été agrégées dans cinq provinces biogéographiques définies par Longhurst
(2001) et les séries temporelles résultantes ont été analysées par la méthode des ondelettes, une méthode « temps-
fréquence » adaptée à l’étude de séries non-stationnaires. Les spectres d’ondelettes ont fait apparaître les fréquences
caractéristiques contenues dans les signaux temporels. Ces spectres ont ensuite été comparés et groupés à l’aide d’une
analyse multivariée permettant d’identifier les facteurs influant le plus la classification (espèce, province ou flottille).
Les relations entre les séries de captures et un indice climatique global, le Dipole Mode Index (DMI), ont été étudiées
par des analyses d’ondelettes bivariées et les co-spectres ont été comparés en utilisant la même approche. Nos résultats
montrent que le facteur « province géographique » structure davantage les patrons de variations des 33 séries temporelles
que le facteur « espèce ». L’impact du DMI sur la variabilité des séries de captures de thons et d’espadon a fait apparaître
des bandes de fréquences caractéristiques (hautes et basses fréquences) à différentes périodes de temps. Là encore, la
province géographique module l’impact de la variabilité climatique sur les séries de captures de thons et d’espadon. Les
fluctuations de séries temporelles issues des statistiques de pêche reflètent donc un mélange d’informations caractérisé
par des interactions complexes entre les processus biologiques, les stratégies de pêche et la variabilité environnementale
à différentes échelles spatiales et temporelles.
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1 Introduction

Large predatory fishes such as tunas and swordfish are top
predators of oceanic pelagic ecosystems, and constitute the
targets of industrial pelagic fisheries operating at the oceanic
basin scale. Such a removal of top predators alters very likely
the food web structure through top-down effects (Essington
et al. 2002). Concomitantly, bottom-up effects, via environ-
mental and climatic changes, are also controlling abundance
and spatial dynamics of top predators that depend on food
availability (Frank et al. 2006). Therefore, pelagic fish pop-
ulation variability, fisheries activities and climate variability
are closely linked (Stenseth et al. 2004; Lehodey et al. 2006).
Many studies based on fisheries statistics have investigated
the relationships between the variability of a fish abundance
proxy and different environmental signals. For instance, large-
scale movements of tuna in the western central Pacific Ocean
have been correlated with the position of an oceanic conver-
gence (Lehodey et al. 1997). A more recent study (Ravier
and Fromentin 2004) indicated that long-term fluctuations in
bluefin tuna trap catches were related to trends in tempera-
ture. Another example provides evidence of complex dynam-
ics in the association between yellowfin tuna catch rates and a
global climate index in the Indian Ocean (Ménard et al. 2007).
Catch and catch per unit of effort (CPUE) time series of large
pelagic fish fluctuate on a variety of time scales from short
(month) to long term (decades) (e.g., Ravier and Fromentin
2001; Lehodey et al. 2006). These noisy biological time series
integrate mixed information on exploitation (targeting, strat-
egy, fishing power), on biological mechanisms (recruitment,
growth, mortality, migration. . . ), and on environmental forcing
(local conditions or dominant climate patterns). All these fac-
tors are not additives but interact in a complex way. Studying
and identifying the patterns of the variability of fish abundance
is then an important challenge.

In this work, we performed a descriptive analysis of the
temporal variations of catches of several large predatory fishes
in contrasting biogeographic provinces of the tropical In-
dian Ocean. We selected three tuna species (yellowfin, big-
eye and albacore tunas) and the swordfish that exhibit diverse
life history traits and different fishing pressure. We worked
with the catch data of the two main industrial longline fleets
(Japanese and Taiwanese longline fisheries), allowing us to
analyse 36 yrs of data. We performed wavelet analyses on
the yearly time series by province, in order to determine the
time-scale patterns of each signals (Torrence and Campo 1998;
Cazelles et al. 2008). We then compared the different wavelet
spectra in order to determine the main factors shaping the pat-
terns of variation, and we analysed the dependencies between
tuna time series and the Indian Ocean Dipole Mode Index (Saji
et al. 1999) based on sea surface temperatures anomalies.

2 Material and methods

2.1 Catch data

Japanese and Taiwanese longliner catch and effort data
were available on a 5◦ × 5◦ grid and by month from the Indian
Ocean Tuna Commission (Japanese from 1952 to 2004, and

20°E               60°E              100°E 

 20°E                60°E              100°E 

20°N

0

20°S

40°S

20°N

0

20°S

40°S

Fig. 1. The biogeographic provinces in the Indian Ocean (adapted
from Longhurst 2001). ARAB: Northwestern Arabian Upwelling
Province. MONSW: West Indian Monsoon Gyres Province. MONSE:
East Indian Monsoon Gyres Province. EAFR: Eastern Africa Coastal
Province. ISSG: Indian South Subtropical Gyre Province.

Taiwanese from 1968 to 2003; IOTC, http://www.iotc.org).
Catch and effort data have been extracted with respect to
the same time period (from 1968 to 2003), and within the
Longhurst provinces (Longhurst 2001; Fig. 1). Nominal CPUE
were computed by averaging ratios of catch in number to the
number of hooks. We adopted the Longhurst’s division in bio-
geographic provinces because they are based on biogeochem-
ical properties according to primary production, nutrients dy-
namics and mixed layer depth. In this study, we selected the
four main provinces exploited by Japanese and Taiwanese
longline fisheries in the Indian Ocean: the Indian Monsoon
Gyres province (MONS), the Indian South Subtropical Gyre
province (ISSG), the Eastern Africa Coastal province (EAFR),
and the Northwest Arabian Upwelling province (ARAB). For
convenience, we divided the MONS province in East and West
sub-provinces (border at 80◦E, see Fig. 1) according to the spa-
tial patterns of environmental variables characterizing the In-
dian Ocean Dipole (Saji et al. 1999; Marsac comm. pers.). In
each of the five provinces considered here, we have extracted
yearly catch and CPUE time series for the two fleets and for
four species: yellowfin tuna (Thunnus albacares), bigeye tuna
(T. obesus), albacore tuna (T. alalunga) and swordfish (Xiphias
gladius). However, some time series exhibited few picks in an
overall rather “flat” signal. The analysis of such time series
were strongly impacted by these picks and their interpretations
were tricky. Such non-informative time series were therefore
removed from our analyses. Finally, we obtained 33 catch time
series characterized by three factors: the species (4 modali-
ties), the provinces (5 modalities) and the fleet (2 modalities).
Therefore, some provinces did not display the same number of
species, leading to an unbalanced data set that has constrained
the methodological approach.

http://{www.iotc.org}
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2.2 Climate index

The Dipole Mode Index (DMI) that characterizes the In-
dian Ocean Dipole (IOD) can depict the growth and mainte-
nance of positive and negative environmental anomalies (Saji
et al. 1999; Behera and Yamagata 2003). The DMI time series
is constructed on a monthly basis by calculating the difference
of sea surface temperature (SST) anomaly between the western
(50◦E – 70◦E and 10˚S – 10◦N) and the eastern (90◦E – 110◦
and 10◦S – 0) Indian Ocean (Saji et al. 1999). We used here a
yearly time series of a standard DMI index that averaged SST
anomalies from June till November (http://www.jamstec.go.jp/
frcgc/research/d1/iod/). The informative signal occurs indeed
during this time window of 6 months (Saji et al. 1999). Warm
(cold) events in the West (East) are associated with positive
DMI values (i.e., a positive IOD event), with a reverse config-
uration for negative IOD events.

2.3 Time series analyses

The usual spectral or correlation approaches assume that
the statistical properties of the time series do not vary with
time (stationary assumption). Wavelet analysis overcomes this
problem and performs a time-scale decomposition of the sig-
nal, which permits the estimation of its spectral characteris-
tics as a function of time, and then the identification of differ-
ent periodic components and their time evolution all along the
time series (Torrence and Campo 1998). In other words, tran-
sient dynamics or gradual changes of the periodic components
of the signal can be detected allowing the analysis of non-
stationary signals (Cazelles et al. 2008). The wavelet power
spectrum (WPS) of a time series provides local information on
the periodic components of the time series, by tracking how
the periodic components of the signal change over time. The
WPS is represented on a 2D plot (called a scalogram) with
time as the x-axis and periods or frequencies as the y-axis (see
Appendix). Furthermore, cross-wavelets generalise these pos-
sibilities to the analyses of dependencies between two signals.
The wavelet cross spectrum (WCS) provides local information
about where the two time series co-vary at a particular fre-
quency and at a temporal location in the time-frequency plane
(i.e., the scalogram). Because of the finite length of the series,
zero padding is required in order to increase artificially the
length of the series. Therefore, errors of interpretation can oc-
cur at the border of the power spectrum (Torrence and Compo
1998). The cone of influence on the scalograms indicates the
region not influenced by the edge effects. For the cross wavelet
analyses, time series have been normalized in order to have
unitary variances for quantifying the association between two
signals. To quantify the statistical significance of the patterns
we performed a resampling method based on a Markov process
(Cazelles and Stone 2003). All the computations used here are
fully described in Ménard et al. (2007).

A multivariate analysis of the 33 WPS (excluding spec-
tral information below the cone of influence) was performed
based on the covariance of each pair of WPS, allowing
us to quantify a dissimilarity index between two time se-
ries (Rouyer et al. 2008a; Fig. 2). We then carried out a
clustering analysis using the “flexible method” (Legendre and

Fig. 2. Successive steps in the approach used to calculate the dis-
tance matrix for a set of wavelet power spectra (WPS). The method
allows us to construct a covariance matrix (Rsp) between each pair of
WPS (S and P), and then to perform a Singular Value Decomposition,
a technique also referred as Maximum Covariance Analysis (MCA)
(Bretherton et al. 1992). The leading patterns and singular vectors
obtained from this decomposition (the number of axes retained cor-
responds to a covariance threshold of 0.99) are compared in terms of
distance according to the method developed by Rouyer et al. (2008a).
The distances (*) based on the differences between each pair of lead-
ing pattern and singular vector, are ranked in a distance matrix and
a cluster analysis is carried out in order to represent a dendrogram.
WPS: Wavelet Power Spectrum with N the time period and M the
frequency range. The dimensions of both WPS (Ms×N) and (Mp×N)
must have the same number of time steps N (i.e. 36 years). Rsp: cross-
covariance matrix; U, Γ and Vt are the resulting matrices from the
singular value decomposition.

Legendre 1998) based on the matrix which contained the dis-
tances between all pairs of WPS, and then constructed a clus-
ter dendrogram. The relative influence of the factors (species,
province and fleet) and of the modalities of each factor was as-
sessed through boxplots of the ad hoc dissimilarity values ex-
tracted from the distance matrix. We performed the same mul-
tivariate analysis to compare the wavelet cross spectra (WCS)
between each of the 33 time series and the DMI.

The Population Variability (PV) is a simple metric intro-
duced by Heath (2006). Contrary to coefficient of variation, PV
is not seriously influenced by rare events and zero counts. PV
quantifies the temporal variability in a given tuna time series

http://www.jamstec.go.jp/frcgc/research/d1/iod/
http://www.jamstec.go.jp/frcgc/research/d1/iod/
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Fig. 3. Left: Cluster dendrogram of the wavelet power spectra (WPS) of the 33 catch time series. Right: Cluster dendrogram of the wavelet
cross-spectra (WCS) between the 33 catch time series and the DMI. Time period: 1968 to 2003. The dashed line discriminates the groups (G1

to G6). YFT = yellowfin tuna, BET = bigeye tuna, ALB = albacore, SWO = swordfish. JA = Japan, TW = Taiwan. MONSW, MONSE, ISSG,
ARAB, EAFR are the biogeographic provinces (see Fig. 1).

as the average percent absolute difference between all combi-
nations of observed data. Let C be the number of all possible
combinations of catch or CPUE data in a given time series of
length n, and z a pair of catches or CPUEs zi and z j observed
at two given time steps. Each z are compared by the difference
function D(z):

D(z) =
ABS (zi − z j)

MAX(zi, z j)
if zi � z j and D(z) = 0 otherwise,

PV =

C∑
z=1

D(z)

C
, with C =

n(n − 1)
2

.

PV is [0, 1], with zero representing a complete stability among
years.

3 Results

3.1 Patterns of variation of catch time series

Population variability indices (PV) are displayed in
Table 1. For the Japanese time series, the PV averaged by

Table 1. Population variability indices for the 33 catch time series
of Japanese and Taiwanese longline fisheries; YFT = yellowfin tuna,
BET = bigeye tuna, ALB = albacore, SWO = swordfish. MONSW,
MONSE, ISSG, ARAB, EAFR are the biogeographic provinces (see
Fig. 1).

Species Geographic Provinces Mean
MONSW MONSE ISSG ARAB EAFR

JAPAN
YFT ** 0.50 0.52 ** 0.51 0.51
BET 0.49 0.44 0.58 0.71 0.50 0.55
ALB 0.70 0.54 ** * 0.53 0.59
SWO 0.49 0.40 0.49 0.68 0.48 0.51
Mean 0.57 0.47 0.53 0.70 0.51

TAIWAN
YFT 0.63 0.38 0.49 0.80 0.70 0.60
BET ** 0.37 ** ** 0.75 0.57
ALB 0.69 0.61 0.39 * 0.52 0.56
SWO 0.73 ** 0.62 0.79 0.78 0.73
Mean 0.69 0.46 0.50 0.80 0.69

* missing value.
** values not shown as time series were removed from the analyses.
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Fig. 4. Catch time series and wavelet analysis (WPS); a) Japanese bigeye catch series in the ARAB province and its WPS; b) Taiwanese
yellowfin catch series in the ARAB province and its WPS; c) Japanese bigeye catch series in the MONSE province and its WPS; d) Taiwanese
yellowfin catch series in the ISSG province and its WPS; e) Taiwanese albacore catch series in the ISSG province and its WPS; f) Taiwanese
bigeye catch series in the MONSE province and its WPS. Time series have been selected for illustrative purpose and typify the groups. The
thin solid lines in the WPS show the 5% significance level. The dotted lines delimit the cone of influence, i.e. the region where the edge effects
are present. Low power values are represented in blue and high power values in red.

species were very close (from 0.51 for swordfish and yellowfin
tuna to 0.59 for albacore tuna), while PV averaged by province
displayed a greater variability (from 0.47 for MONSE to 0.70
for ARAB). The PV indices of the Taiwanese time series
showed a similar pattern by province but with higher mean
values. However, among species and contrary to Japanese time
series, albacore tuna had the smallest mean PV (0.56) and the
swordfish had the greatest one (0.73).

The cluster dendrogram displayed six groups according to
their WPS similarities (Fig. 3 left). The first group (G1) put
together all the Japanese time series of the ARAB province.
These time series showed a 3 year periodic mode from the
beginning of the series till the end of the 70ies without
any information/catch after the mid-1980s (e.g. the WPS of
the Japanese bigeye time series of the ARAB province in
Fig. 4a) The Taiwanese albacore tuna time series of the north-
ern provinces (ARAB, MONSE and MONSW) were grouped
in G2. These series are dominated by an erratic signal, i.e. a
strong peak in the early nineties generating a short-term cycle

of 2–3 years (Fig. 4b). Ten times series were classified in G3:
Japanese time series dominated, including all the series of the
MONSE province, and low frequencies (12 to 16 year) were
evidenced in their corresponding WPS (Fig. 4c). Taiwanese
series of the southern provinces (EAFR and ISSG) prevailed
in G4, where patterns of variability were dominated by a 6–
8 year periodic band in the late nineties (Fig. 4d). This group
thus displays an opposite pattern to G1. Varied Taiwanese time
series dominated G5, with WPS characterized by a 4–6 year
band during the 80ies and the 90ies (Fig. 4e). Two Japanese al-
bacore time series and two Taiwanese bigeye time series com-
posed G6 with similar periodicity of 2–4 year from 1995 to
2000 (Fig. 4f). Finally, grouping was due to two main factors:
(i) the frequency bands (from short term variation, 2–3 year,
to long term, 12–16 year), and (ii) the location along the time
series (e.g. the seventies in G1). At first sight, the fleet and sec-
ondarily the province factors structured the dendrogram, while
no clear grouping by species was apparent. These results were
confirmed by the boxplots of the dissimilarities performed
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Fig. 5. Boxplots of the dissimilarities of sub-sets extracted from the distance matrix. Boxplots by factor and by modality – from the wavelet
power spectra of the catch time series (a and b) – from the wavelet cross-spectra between the catch time series and the DMI signal (c and
d). The dotted line represents the general median. JA = Japan; TW = Taiwan; YFT = yellowfin tuna; BET = bigeye tuna; SWO = swordfish;
ALB = albacore tuna. ARAB, MONSW, MONSE, EAFR and ISSG (see Fig. 1).

by factor (Fig. 5a): the intra-species dissimilarities showed a
median slightly larger than the inter-species distances, while
the intra-province and intra-fleet medians were a little smaller
than the respective inter distances. More interesting are, how-
ever, the boxplots performed by modality (Fig. 5b). Among
the provinces, the ISSG explained mostly the province ef-
fect (the third quartile was below the global median distance),
and the ARAB time series exhibited the largest dissimilarities.
Among species, albacore tuna time series exhibited the largest
dissimilarities but no clear pattern emerged among the species
modalities compared to the province modalities.

3.2 Catch time series and climate variability

We first performed a wavelet analysis of the DMI signal
(Fig. 6). The WPS exhibited a pattern of decreasing period-
icities from 5 to 3 years that occurred from 1972 till 1999,
revealing a progressive acceleration of the climate oscillations
since the middle of the eighties.

We then investigated the association between tuna catches
and the DMI time series. The amplitude of the cross power
values (WCS, Fig. 7) is similar to the power values (WPS,

Fig. 4). The clustering analysis of the WCS and the resulting
dendrogram (Fig. 3 right) exhibited five new groups compared
to Fig. 3 left. Interestingly, the dendrogram had more structure
than the previous one: the heights at which the closest pairs
joined were generally lower in Fig. 3 right than in Fig. 3 left.
The boxplots performed by factor (Fig. 5c) displayed the same
pattern than the one with the catch series only (Fig. 5a), but the
global median decreased by 6%, from about 5% for the Inter
Province distances till 8.5% for the Intra Fleet distances. The
boxplots among species modalities (Fig. 5d) were also quite
similar and their respectively medians were close to the global
median. However, the provinces did not display the same pat-
tern when compared to Fig. 5b. ARAB and MONSW dis-
played the largest medians, while MONSE and EAFR showed
the smallest ones. The median of ARAB and ISSG remained
stable, MONSW increased by 18%, while MONSE and EAFR
decreased by 20% and 36%, respectively. For illustrative pur-
pose, Fig. 7 shows the WCS between DMI and catches of
the four species in the EAFR province. All WCS displayed
the same pattern of co-variation in the 3 year band during the
90ies in this province. Contrary to EAFR, wavelet cross spec-
tra in MONSW (figure not shown) were not homogeneous and
displayed significant patterns either in the 5 year band during
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region where the edge effects are present.

the 1970ies (i.e., Japanese bigeye tuna) or in the 3 year band
during the 90ies (i.e., Japanese and Taiwanese swordfish and
albacore tuna).

3.3 Patterns of variation of CPUE time series

The same analysis was carried out with the WPS of the
CPUE time series, but no clear patterns emerged. The clus-
tering analysis performed on the WCS did not lead to a clear
grouping also, as the corresponding boxplots by factor (Fig-
ures not shown). However, the boxplots by modality showed
that the DMI influenced mainly the yellowfin tuna (the median
decreased about 25%), the bigeye tuna (decrease of 20%), and
all the Japanese time series (decreased of 21%).

4 Discussion

The tuna and tuna-like-species time series of catch and
CPUE reflect mixed information and complex interactions
between biological mechanisms, fishing strategies and envi-
ronmental variability at different scales. In addition, CPUEs
from fisheries statistics cannot be considered as proxies of the
true abundance since they are affected by many other processes
besides species abundance (e.g. Hilborn and Walters 1992).
The fact that CPUE time series lead to unclear patterns of vari-
ation is likely to result from the quantification of effort (i.e. the
total number of hooks per stratum) that is too crude and that
can not reflect the real fishing effort on the different species,
especially for the non-targeted species that change from one
fleet to another (Fonteneau and Richard 2003). Consequently,
the CPUE time series are probably more blurred than catch
ones. We thus focus the present discussion on the results dis-
played by the analyses performed on the catch time series.

The patterns of variation of the 33 time series of tunas
and swordfish catches from the longline fisheries operating in
the Indian Ocean appeared to be related to the geographical

locations as well as the fleet, but not to the species. Popula-
tion variability indices also demonstrated that the variation be-
tween geographical areas was more pronounced than variation
among species for both fleets. ARAB was the most heteroge-
neous province with respect to its PV and the boxplot of the
distances between the wavelet spectra of that province showed
a wide distribution with the greatest median compared to the
other provinces. Conversely, the lowest median was found for
ISSG (i.e., WPS were rather homogeneous in this province),
and the corresponding PV remained relatively low. However,
results based on the population variability indices reflected
the targeting practices of both fleets also. For instance, alba-
core tuna was a by-catch species for the Japanese longliners
(the greatest PV value among Japanese time series), while it
remained a target species for Taiwan (the smallest PV value
among the Taiwanese time series with bigeye tuna).

Our results evidenced that the temporal fluctuations of the
catches of the main longline fisheries are statistically linked to
climatic oscillations in the Indian Ocean, as depicted by the
Dipole Mode Index (DMI) (Saji et al. 1999). The DMI is a
global climate index that describes the Indian Ocean Dipole
(IOD) which represents the dominant climate pattern in the In-
dian Ocean (Behera and Yamagata 2003; Meyers et al. 2007).
The IOD events are related to changes in the environmen-
tal conditions of the eastern and western parts of the Indian
Ocean. When the DMI is positive (“warm” event and pos-
itive IOD phase), the SST is anomalously cool in the east
and warm in the west (especially in the MONSW and EAFR
provinces), with associated changes in the wind and precip-
itation regimes (strengthening of easterly winds in the equa-
tor). Those warm or cold events drive changes in the mixed
layer depth also (Feng and Meyers 2003; Rao and Behera
2005; Alory et al. 2007), with consequences on tuna’s habi-
tat and abundance (Marsac and Le Blanc 1998; Marsac 2001).
The dissimilarities estimated from the cross wavelet spectra
were slightly lower than the dissimilarities estimated from the
wavelet power spectra, indicating a general effect of the DMI
on longline catches in the Indian Ocean. However, this impact
appeared to be stronger in some geographical areas than oth-
ers. The boxplots by province modalities indeed differed from
one geographical area to another, such as MONSW and EAFR
that exhibited opposite patterns. The substantial decrease of
the median in the EAFR province illustrated the homogene-
ity in the pattern of co-variation between the DMI and the
catch time series. Conversely, the increase of the median in
MONSW indicated that the wavelets cross spectra between
the tuna time series and the DMI exhibited different patterns
of variation (e.g., the WCS of the Japanese swordfish versus
the WCS of the Japanese bigeye tuna). This unexpected re-
sult for MONSW is likely related to the species targeting. The
species composition of the catches differed in MONSW and in
EAFR. Indeed, bigeye and yellowfin tuna strongly dominated
the catches of both fleet in MONSW (catch ratio greater than
92% for both species), while swordfish remained a by-catch
species for Japan. On the contrary, catches of all species oc-
curred in the EAFR province, as already noticed by Fonteneau
(1997, 1998).

Based on fishery statistics of two fleets, our study con-
firmed that the Indian Ocean Dipole influences the patterns
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Fig. 7. Wavelet cross-spectra (WCS) between the four species and the DMI in the EAFR province from 1968 to 2003, for the Japanese and
Taiwanese catch data. YFT = yellowfin tuna; BET = bigeye tuna; SWO = swordfish; ALB = albacore tuna. Strong values of variability are
represented in darkness shade while low values are represented in lightness shade.

of variation of tuna and swordfish in the Indian Ocean. But
we demonstrated that the geographic locations modulated its
impact. The spatial scale appears then to be more important
than the species level when analyzing fishery statistics and
the impact of large climatic index. Furthermore, the patterns
of variations reflected a complex set of embedded and in-
teracting processes (Rouyer et al. 2008b): fleet dynamics in-
cluding targeting practices, catchability, responses to environ-
mental variability and biological processes. Disentangling all
these effects would necessitate further investigations based on
fine scale information (e.g., Vessel Monitoring System and
electronic tagging). Finally, this study evidenced the risk of
misleading interpretations on biomass changes or depletion
of large pelagic fish stocks when analyzing population trends
from fishery statistics aggregated over an oceanic basin (Myers
and Worm 2003).

Appendix

Wavelets derive from a mother wavelet ψ(t), expressed as
a function of the time position τ and the scale of the wavelets
a. A wavelet transform of a time series x(t) is defined as a

convolution product:

Wx(a, τ) =
1√
a

∫ +∞
−∞

x(t)ψ∗
( t − τ

a

)
dt

where Wx(a, τ) are the wavelet coefficients and (*) denotes the
complex conjugate form.

According to the mother wavelet, the frequency f can be
substituted for the wavelet scale a. The wavelet power spec-
trum (WPS) is an estimation of the variance for the frequency
f at the time position τ:

WPS x( f , τ) = |Wx( f , τ)|2

The wavelet cross spectrum WCS between x(t) and y(t) pro-
vides local information on the covariance at particular frequen-
cies:

WCS x,y( f , τ) = Wx( f , τ)W∗y ( f , τ)
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