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Abstract:  
 
The distribution of the archaeal communities in deep subseafloor sediments [0–36 m below the 
seafloor (mbsf)] from the New Caledonia and Fairway Basins was investigated using DNA- and RNA-
derived 16S rRNA clone libraries, functional genes and denaturing gradient gel electrophoresis 
(DGGE). A new method, Co-Migration DGGE (CM-DGGE), was developed to access selectively the 
active archaeal diversity. Prokaryotic cell abundances at the open-ocean sites were on average �3.5 
times lower than at a site under terrestrial influence. The sediment surface archaeal community (0–
1.5 mbsf) was characterized by active Marine Group 1 (MG-1) Archaea that co-occurred with ammonia 
monooxygenase gene (amoA) sequences affiliated to a group of uncultured sedimentary 
Crenarchaeota. However, the anoxic subsurface methane-poor sediments (below 1.5 mbsf) were 
dominated by less active archaeal communities, such as the Thermoplasmatales, Marine Benthic 
Group D and other lineages probably involved in the methane cycle (Methanosarcinales, ANME-2 and 
DSAG/MBG-B). Moreover, the archaeal diversity of some sediment layers was restricted to only one 
lineage (Uncultured Euryarchaeota, DHVE6, MBG-B, MG-1 and SAGMEG). Sequences forming two 
clusters within the Thermococcales order were also present in these cold subseafloor sediments, 
suggesting that these uncultured putative thermophilic archaeal communities might have originated 
from a different environment. This study shows a transition between surface and subsurface sediment 
archaeal communities. 
 
 
Introduction 
 
The sub-seafloor biosphere may comprise as much as two thirds of Earth’s total prokaryotic biomass 
(Whitman et al., 1998) and extends to at least 1626 meters below the seafloor  (mbsf) (Roussel et al., 
2008). Ubiquitous microbial communities present in the sub-seafloor play an important role in global 
biochemical cycles (e.g. D'Hondt et al., 2004). The prokaryotic cell density drastically decreases with 
depth and decreasing available energy supply due to reduction in efficient electron acceptors and 
bioavailable organic carbon sources (Parkes et al., 2000; Schippers et al., 2005). However, local 
increases in cell density 
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occur in response to specific geochemical and lithological conditions (D'Hondt et al., 2004; 54 

Parkes et al., 2005; Sørensen and Teske, 2006). 55 

The boundary between surface and subsurface could be defined as a change of the 56 

microbial community composition, shifting from surface (e.g. the water column) to deep 57 

subsurface communities (Teske and Sørensen, 2008). Moreover, microbial metabolic 58 

processes in marine sediments are generally stratified according to the sequential 59 

consumption of electron acceptors diffusing into sediments from the overlying seawater. 60 

Oxygen, the main electron acceptor in surface sediment, is rapidly depleted, followed by 61 

nitrate and manganese (Froelich et al., 1979). However, in deeper anoxic sediments, sulfate 62 

reduction and methanogenesis may represent the main metabolic processes in the deep 63 

sub-seafloor (D'Hondt et al., 2002; D'Hondt et al., 2004; Parkes et al., 2005). Organic rich 64 

coastal sediments, under terrestrial influence, harbor higher microbial densities and activities 65 

compared to open-ocean sediments (D'Hondt et al., 2004). Hence, there appears to be a 66 

correlation between the origin of the organic matter and biochemical processes, such as 67 

methanogenesis (Sivan et al., 2007). Active archaeal communities, involved in biochemical 68 

cycles such as methane cycling at depth, could represent a significant fraction of the 69 

microbial community of the deep marine subsurface (Biddle et al., 2006; Sørensen and 70 

Teske, 2006; Lipp et al., 2008). 71 

The distribution and metabolisms of the sub-seafloor microbial communities are mostly 72 

understood through culture-independent techniques (e.g. Newberry et al., 2004; Parkes et 73 

al., 2005; Biddle et al., 2006; Fry et al., 2006; Sørensen and Teske, 2006; Biddle et al., 74 

2008), since most of these prokaryotes do not have a closely related cultured relative. In 75 

shallow marine sediments, DNA-based molecular approaches are strongly biased as up to 76 

90% of the total DNA is extra cellular (Danovaro et al., 1999; Dell'Anno and Danovaro, 2005), 77 

resulting in an inability to distinguish between living and dead microbial communities 78 

(Dell'Anno and Corinaldesi, 2004; Damste and Coolen, 2006). In order to target metabolically 79 

active communities, to correlate their phylogeny with variable environmental factors, 80 

fluorescent in situ hybridization has commonly been used (e.g. Treude et al., 2005; Biddle et 81 
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al., 2006). However this approach does not provide an overall picture of the active microbial 82 

communities. As rRNA has a rapid turnover (Kemp et al., 1993; Kerkhof and Ward, 1993; 83 

Kramer and Singleton, 1993; Danovaro et al., 1999), extractable archaeal rRNA can be used 84 

to target the active cells from subsurface sediments (Lloyd et al., 2006; Sørensen and Teske, 85 

2006; Roussel et al., 2009). 86 

The current study investigates some of the spatial and abiotic variables that could possibly 87 

control the archaeal community distribution and activities in deep-sea sediments. The 88 

analysis of the archaeal diversity and community structures was performed on surface and 89 

subsurface sediments from the New-Caledonia and Fairway Basins, with different terrestrial 90 

influences, using denaturant gradient gel electrophoresis (DGGE) and cloning PCR-amplified 91 

phylogenetic and functional genes. The active fraction of the archaeal community in deep-92 

sea sediments was also assessed by a new molecular approach based on DGGE. 93 

Results and discussion 94 

Site description and total prokaryotic count depth profiles 95 

The sediment samples were collected from six sites in the New Caledonia and Fairway 96 

basins during the Oceanographic cruise ZoNéCo 12 in February 2006 (Fig. 1). Site MD06-97 

3019 sediments, located in a canyon deriving a substantial amount of terrigenous matter 98 

from New Caledonia, comprised a succession of terrigenous sequences composed of dark 99 

carbonate clay interspaced with sands (Foucher et al., 2006). Moreover, MD06-3019 100 

sediments had higher contents of minerals from a probable detrital origin such as quartz, 101 

chlorite, kaolinite, montmorillonnite, halite and albite, than MD06-3018 sediments, which 102 

displayed higher contents of calcite (data not shown). In contrast with site MD06-3019, site 103 

MD06-3018 sediments were situated in an open-ocean context, characterized by 104 

homogeneous sediment facies composed of foraminiferal clay (Foucher et al., 2006). In the 105 

Fairway Basin, sites MD06-3022, MD06-3026, MD06-3027 and MD06-3028 sediments were 106 

also located in an open-ocean context. Site MD06-3027 represented a reference zone, in 107 

contrast with MD06-3022 and MD06-3028 where the sedimentary sequence was pierced by 108 
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a diapir (see supplementary material, Fig. S1) and showed an extensive faulting in the 109 

sedimentary cover which could be the consequence of gas migration through the sediment 110 

cover (Auzende et al., 2000). 111 

On the whole, the prokaryotic cell counts were within the limits of the general depth 112 

distribution model (Parkes et al., 2000), although the distribution at site MD06-3019 was 113 

more heterogeneous than at the open-ocean sites, fluctuating between the lowest and 114 

highest prediction limits (Fig. 2). Moreover, the low cell number, between 7.5 mbsf and 10.5 115 

mbsf at site MD06-3019, was correlated with the occurrence of driftwood in the sediment. 116 

Therefore, as the core lithology comprised a succession of terrigenous sequences, the 117 

heterogeneous prokaryotic cell number distribution and methane depth profile might be 118 

related to the strong erosion events of New Caledonia. Although the prokaryotic abundances 119 

at the open-ocean sites (MD06-3022, MD06-3026 and MD06-3028) were ~3.5 times lower 120 

than at the site under terrestrial influence (MD06-3019), no correlation was found between 121 

prokaryotic counts and biogeochemical data (Fig. 2). However the low cell numbers and 122 

methane content in the Fairway Basin sediments are consistent with the general depth 123 

distribution of methane and prokaryotic cells in open-ocean sub-seafloor sediments, 124 

presumably reflecting the lower inputs of organic carbon compared with the site under 125 

terrigenous influence (Wellsbury et al., 2002; D'Hondt et al., 2004). 126 

Archaeal community structure 127 

Co-Migration DGGE (CM-DGGE). One of the most revealing questions, in sub-seafloor 128 

studies, is discriminating and identifying active and living from the dead or quiescent 129 

microbial communities. Nucleic acid-based molecular analyses of deep sub-seafloor 130 

microbial communities are limited, as sediment samples are usually characterized by low 131 

biomass, limited material and the presence of PCR inhibitors (Webster et al., 2003). 132 

Fingerprinting techniques, such as DGGE, are recommended for describing the microbial 133 

community structures, as a large number of samples can be analyzed (for review, see 134 

Smalla et al., 2007). However, as DGGE analyses can be biased by gel variations (e.g. 135 
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Ferrari and Hollibaugh, 1999; Nunan et al., 2005), running intra-lane standards enhances 136 

sample-to-sample comparisons (Muyzer, 1999; Neufeld and Mohn, 2005). Here, we 137 

developed a new fingerprinting approach based on DGGE and named Co-Migration DGGE 138 

(CM-DGGE, see experimental procedures), adapting the use of different terminally labelled 139 

fluorescent PCR products, to compare simultaneously the DNA- and RNA-derived microbial 140 

community in deep-sea sediments. As the use of labelled primers improves the sensitivity 141 

and specificity of DGGE fingerprint detection (Neufeld and Mohn, 2005), it is possible to use 142 

rRNA to detect minor archaeal activities, such as the Thermococcales Group 1 (TG-1) at site 143 

MD06-3019 (see supplementary material, Fig. S6). Moreover, this technique is also time 144 

saving and minimizes the problems of gel handling and staining. 145 

Cluster analysis of DGGE profiles. All the DNA-derived 16S rRNA PCR products from all 146 

depths were screened by DGGE prior cloning, in order to select the depths with the most 147 

representative archaeal phylogenetic distribution for each core (Webster et al., 2003), and to 148 

assess the archaeal community structures. As the degree of separation between DGGE 149 

fragments decreases with size due to the melting of multiple melting domains in the larger 150 

fragments (Myers, 1988; Sheffield et al., 1989), two sets of primers (A344fGC-A915r and Saf-151 

PARCH 519r) and gel conditions were optimized in order to obtain different scales of band 152 

discrimination (Roussel et al., unpublished data). However, the PCR surveys of archaeal 153 

communities using the Saf-PARCH 519r primer set were probably less biased than with 154 

A344fGC-A915r primer set, as there is a lower number of primer mismatches with specific 155 

subsurface and hydrothermal vent archaeal sequences (Teske and Sørensen, 2008). The 156 

resulting dendrogram of DGGE patterns, using Saf-PARCH 519r, displayed two major 157 

clusters (see supplementary material, Fig. S2C). The Cluster A depths ranged from 0 to 1.5 158 

mbsf, except for two samples (7.5 and 9 mbsf) and had fragments exclusively affiliated to 159 

MG-1, whereas cluster B was composed of fragments related to 6 different phylotypes (Fig. 160 

S2B, Rice cluster V, Thermoplasmatales, MBG-D, SAGMEG, unclassified Euryarchaeota). 161 

Statistical analyses of the clone libraries. According to the results of the DGGE screening, 162 

twenty five different clone libraries were constructed, representing a total of 771 sequences 163 

Page 6 of 45

Society for Applied Microbiology, Editors: K. Timmis, D. Stahl, E. DeLong, M. Wagner, M. Jetten, J.L. Ramos



For Peer Review
 O

nly

Roussel et al.  Archaeal communities in subseafloor sediments 

 7 

(Fig. 3). Whole 16S rRNA sequences, derived from RNA and DNA, were assigned to 71 164 

OTUs based on a 95% genus level of phylotype differentiation (Schloss and Handelsman, 165 

2004). Amplifiable DNA was obtained from all depths, and 1 to 13 OTUs were respectively 166 

assigned per clone library. The DNA-derived clone libraries were named DNAxTy, where “x” 167 

represents the core number and “y” the depth in centimetres of the clone library (Fig. 3). 168 

Amplifiable RNA was only obtained above 1.5 mbsf and was not detected at any other depth 169 

(Fig. 5 and S6). Thus, two RNA-derived clone libraries, named RNA18T150 (MD06-3018, 1.5 170 

mbsf) and RNA19T150 (MD06-3019, 1.5 mbsf), were respectively assigned with 27 OTUs 171 

and 5 OTUs. The coverage values for the 16S rRNA gene clone libraries ranged from 18 to 172 

100% (Fig. 3). Rarefaction curves were strongly curvilinear for all clone libraries attesting 173 

adequate sampling, except for DNA19T150 and DNA19T4 as a result of strong intra-lineage 174 

diversities (see supplementary material, Fig. S3). 175 

The archaeal diversity of the seawater clone library (Fig. 3) was significantly different from all 176 

sediment clone libraries (P < 0.01), suggesting that the detected Archaea are marine 177 

sediment communities. Moreover, differences between all DNA-derived clone library diversity 178 

indices (FST and the exact test method) were statistically significant (P < 0.01) except 179 

between 13 clone libraries distributed among three groups, as described in figure 3. The 180 

clone libraries of each group were from similar lineage distributions and matched the cluster 181 

analysis of DGGE band patterns, except for DNA28T450 (Fig. 3 and S2). Both the cluster 182 

analysis of DGGE band patterns and the distribution of archaeal lineages in clone libraries 183 

showed distinct phylogenetical archaeal communities (except for the MG-1 lineage) either 184 

restricted to surface (0 to 1.5 mbsf) or to subsurface (below 1.5 mbsf) sediment horizon (Fig. 185 

3 and S2) suggesting that these archaeal communities could be adapted to specific 186 

sedimentary environmental conditions. 187 

Archaeal diversity and metabolic activity: from the sediment surface to the subsurface 188 

Sediment surface. The sediment surface archaeal communities of all clone libraries and 189 

DGGE community structures above 1.5 mbsf were exclusively dominated by crenarchaeal 190 
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phylotypes related to Marine Group I (MG-1; Fig. 3 and S2). The MG-1 diversity was high 191 

(Fig. 4), covering more than five subclades (α, β, ε, ξ and η) and only related to sequences 192 

from deep marine sediments (Newberry et al., 2004; Sørensen et al., 2004; Teske and 193 

Sørensen, 2008). MG-1 Archaea, identified as aerobic autotrophic ammonia oxidizers 194 

(Francis et al., 2005; Könneke et al., 2005; Hallam et al., 2006), are commonly found in 195 

seawater and marine sediments, forming several phylogenetic clusters with currently two 196 

cultured relatives (Preston et al., 1996; Könneke et al., 2005). Moreover, based on the 197 

analysis of the first sequenced genome of a cultured relative (Crenarchaeum symbiosum), 198 

the MG-1 were recently proposed as a novel archaeal phylum named Thaumarchaeota 199 

(Brochier-Armanet et al., 2008). The seawater archaeal diversity, in the CTDII clone library, 200 

was exclusively composed of sequences related to marine groups, such as MG-1 (95%), 201 

MG-2 (3%) and MG-3 (2%) (Fig. 3). However, only two sequences (DNA19T150), out of 673 202 

rRNA gene sequences from sediment samples, matched with sequences from the seawater 203 

clone library (Fig. 4), and amoA genes related to seawater phylotypes were not detected 204 

(Fig. 6), which suggests that contamination of the sediment by seawater was negligible. As 205 

the MG-1 phylotypes retrieved in the sediments were different from those found in the oxic 206 

seawater, specific MG-1 subclades could be adapted to sedimentary suboxic conditions 207 

(Teske and Sørensen, 2008). 208 

The active fraction of the archaeal community was assessed by Co-Migration DGGE (CM-209 

DGGE) analysis of reverse-transcribed and PCR-amplified rRNA and compared to the DNA-210 

derived archaeal community. By using the same primer sets and gel conditions as for the 211 

previous DGGE analyses, we showed that the archaeal communities were most active 212 

between 0 to 1.5 mbsf, as no rRNA was detected below 1.5 mbsf (Fig. 5 and S6), and that 213 

they were composed of MG-1 Archaea. Congruently, the two RNA-derived libraries 214 

(RNA18T150 and RNA19T150) were dominated by sequences related to the same MG-1 215 

sequences as the DNA-derived libraries (Fig. 4) demonstrating that these sediment surface 216 

MG-1 communities were active. Moreover, insignificant FST and P tests (P < 0.01) suggested 217 

that the sequences from the DNA19T0, DNA19T2, DNA19T4, RNA18T150 and RNA19T150 218 
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clone libraries were from similar lineage distributions and were indistinguishable from the 219 

combined communities. However, although the molecular techniques (reverse transcription, 220 

PCR and cloning), used to build clone libraries, are known to be inherently biased (Suzuki 221 

and Giovannoni, 1996; von Wintzingerode et al., 1997), significant differences in lineage 222 

distribution were detected between the RNA and DNA derived libraries at the same depth 223 

(RNA18T150, RNA19T150, DNA18T150 and DNA19T150). The ratios between the 16S 224 

rRNA gene and 16S rRNA per cell have been reported to be proportional to the metabolic 225 

activity of the cells (Dell'Anno et al., 1998), the rRNA content per cell increasing with 226 

metabolic activity. As the MG-1 lineage was detected in RNA18T150 and RNA19T150 227 

libraries, whereas absent in DNA18T150 and DNA19T150 libraries, we suggest that the 228 

sediments at 1.5 mbsf could have low cell concentrations of very active MG-1 lineage. 229 

As MG-1 are putative ammonia-oxidizing Archaea, amplifications of the amoA gene, using 230 

archaeal amoA primers (Francis et al., 2005), were performed in order to confirm the 231 

occurrence of ammonia-oxidizing Archaea (AOA) in deep marine sediments at sites MD06-232 

3018 and 3019. Archaeal amoA gene was only detected between the sediment surface and 233 

1.5 mbsf. Moreover, to investigate the amoA gene diversity, two archaeal amoA libraries (n = 234 

40, coverage = 83%) were analyzed. These libraries were exclusively composed of 635-bp 235 

length sequences related to uncultured Crenarchaeota (Fig. 6). These sequences formed 15 236 

OTUs (based on a 2% cut-off) grouping in a distinct phylogenetic group of sequences from 237 

sediments (Francis et al., 2005). However, no amoA sequences related to water column 238 

Archaea were detected (Francis et al., 2005) (Fig. 6), suggesting that amoA sequences 239 

retrieved were from archaeal communities adapted to sedimentary environments. Moreover, 240 

amoA genes related to the sediment cluster were only retrieved at the depths where MG-1 241 

rRNA genes were detected. Altogether, these evidences suggest that ammonia-oxidizing 242 

could be one of the main archaeal activities at the sediment surface. 243 

Subseafloor MG-1 Archaea were also detected at some sites below 1.5 mbsf characterized 244 

by an extensive faulting in the sedimentary cover (MD-3026 and 3028; Fig. 3). These sub-245 

surface MG-1 communities were phylogenetically related to the MG-1 Archaea found at the 246 
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sediment surface horizon, and amoA genes related to MG-1 were only detected at depths 247 

containing MG-1 rRNA genes. Therefore, these communities might be fuelled by ammonium 248 

rich fluids originating either from seawater intrusion or from fluid advection from depth. 249 

However, no RNA was detected from these depths, suggesting that sub-surface MG-1 are 250 

less active or less abundant than the surface communities. 251 

Sediment subsurface. The sub-surface archaeal community, restricted to depths below 1.5 252 

mbsf, was composed of typical sub-seafloor lineages (Fig. 3, S4 and S5, MBG-B, MBG-D, 253 

MCG and SAGMEG; for review, see Teske and Sørensen, 2008) usually detected in 254 

subsurface sediments and methane-rich environments (Bidle et al., 1999; Inagaki et al., 255 

2003; Newberry et al., 2004; Sørensen et al., 2004; Parkes et al., 2005; Inagaki et al., 2006b; 256 

Sørensen and Teske, 2006). A majority of sequences were related to uncultured 257 

environmental sequences from these environments (Fig. S4 and S5, highest similarity to 258 

pure culture, 99%). The sediment-derived clone library diversities were very heterogeneous, 259 

either strongly dominated by sequences related to Euryarchaeota or by sequences related to 260 

Crenarchaeota (Fig. 3). Overall, euryarchaeal lineages represented less than 1% of the clone 261 

libraries from surface sediments (0 to 1.5 mbsf), whereas below they represented 59% (Fig. 262 

3). The whole Euryarchaeota phylogenetic diversity was high, representing a total of 10 263 

different lineages (Fig. 3 and S4): Methanococcoides, Novel Methanosarcinales group 1 264 

(NMG-1), Methanosaeta, ANME-2, Thermoplasmatales, Marine Benthic Group D (MBG-D), 265 

Deep-Sea Hydrothermal Vent Euryarchaeotal Group 6 (DHVE6), South African Gold Mine 266 

Euryarchaeotic Group (SAGMEG), Thermococcales and Uncultured Euryarchaeota (for 267 

review see Teske and Sørensen, 2008). Sequences related to the very ubiquitous 268 

Thermoplasmatales and MBG-D lineages were found in 44% of the libraries, representing 269 

26% of the clones in the libraries below 1.5 mbsf (Fig. 3), suggesting that these lineages 270 

could be shallow sediment subsurface-dwelling Archaea (for review see Teske and 271 

Sørensen, 2008). The crenarchaeal sequences, detected below 1.5 mbsf, clustered into the 272 

Miscellaneous Crenarchaeotic Group (MCG) (<1%) and the Marine Benthic Group B (MBG-273 

B, also called DSAG) lineages (15%) (Fig. 3, Fig. S2 and S5). MCG Archaea are very 274 
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ubiquitous in sediment subsurface environments and are thought to be heterotrophic 275 

anaerobes utilizing complex organic substrates (Teske and Sørensen, 2008; Fry et al, 2008). 276 

Although the small number of sequences related to MCG Archaea retrieved from the New 277 

Caledonia and Fairway Basins sediments could be the result of the low organic matter 278 

concentrations of these sediments, it is more likely to be the consequence of a primer-related 279 

bias, as the primer A344f contains a high number of mismatches with most of the known 280 

MCG 16S rRNA genes (Teske and Sørensen, 2008). The archaeal diversity of some 281 

sediment layers at different sites was restricted to only one lineage (Fig. 3, Uncultured 282 

Euryarchaeota, DHVE6, MBG-B, MG-1 and SAGMEG). Moreover, uncultured 283 

Euryarchaeota, DHVE6 and SAGMEG were not detected in any other sediment samples, 284 

suggesting that these Archaea may have been selected by specific environmental conditions. 285 

However, no archaeal rRNA was retrieved below 1.5 mbsf, presumably being below the 286 

detection limit (Fig. S6), suggesting that these probably less active deep subseafloor 287 

archaeal communities are adapted to these low energy and organic carbon availability 288 

environments (D'Hondt et al., 2002; Valentine, 2007). 289 

Sulfate reduction and methane cycling activities widely occur in deep marine sediments 290 

(D'Hondt et al., 2002; D'Hondt et al., 2004; Parkes et al., 2005; Biddle et al., 2006; Sørensen 291 

and Teske, 2006; Webster et al., 2008). At site MD06-3019, sodium (r = 0.919; P < 0.0001) 292 

and chloride (r = 0.774; P < 0.0001) concentrations increased, whereas sulfate (r = -0.913; P 293 

< 0.0001) and calcium (r = -0.931; P < 0.0001) concentrations decreased with increasing 294 

depth (Fig. 2). Although sulfate concentrations decreased with increasing depth at all sites, 295 

suggesting the occurrence of sulfate-reducing prokaryotes, no genes encoding for the 296 

dissimilatory sulfate reductase (dsr) were detected (data not shown), probably resulting from 297 

a too low number of sulfate-reducing bacteria. Methane was the only volatile hydrocarbon 298 

detected from all sites and co-occurred with relatively high concentration of sulphate (Fig. 2). 299 

Though concentrations at all sites were very low, the increase in methane concentrations at 300 

sites MD06-3022 (r = 0.996; P < 0.001), MD06-3026 (r = 0.881; P < 0.05) and MD06-3028 (r 301 
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= 0.999; P < 0.0001) was correlated with increasing depth (Fig. 2), suggesting the 302 

occurrence of methanogenesis. Remarkably, although 16S rRNA gene sequences related to 303 

methanogenic and methanotrophic Archaea are very rarely detected in deep sub-seafloor 304 

sediments (Parkes et al., 2005), putative methane cycling communities represented almost 305 

4% of the libraries below 1.5 mbsf (Fig. 3). A large proportion of these sequences (44%) 306 

were related to the Methanococcoides lineage, a methylotrophic methanogen (Singh et al., 307 

2005). The methanogens utilizing C1 compounds usually dominate the marine methanogens 308 

within the zone of sulfate reduction, since sulfate reducing bacteria (SRB) do not compete for 309 

the same substrates (Purdy et al., 2003). Moreover, two sequences related to Novel 310 

Methanosarcinales group 1 (NMG-1), a new uncultured phylotype in the 311 

Methanosarcinaceae family (Roussel et al., 2009) (see supplementary material, Fig. S4), 312 

were retrieved from open-ocean sites (DNA19T150 and DNA22T150). These sequences 313 

grouped with environmental clones (highest similarity to pure culture, 96% to Methanolobus 314 

oregonensis) from a sulfide rich spring (Elshahed et al., 2004) and from estuary sediments 315 

(Purdy et al., 2002; Roussel et al., 2009). Interestingly, although Methanosaeta Archaea are 316 

acetoclastic methanogens that can be out-competed by SRBs in the sulfate reduction zone 317 

(for review, see Muyzer and Stams, 2008), 16S rRNA sequences related to this putative 318 

methanogenic lineage were detected in sulfate rich sediments at the open-ocean sites (Fig. 3 319 

and S4). Theoretically competitive prokaryotic activities, such as sulfate reduction and 320 

methanogenesis, seem to co-occur at the same sediment horizons in several other deeper 321 

subseafloor sediments (D'Hondt et al., 2004; Parkes et al., 2005; Webster et al., 2008), 322 

suggesting that the in-situ environmental conditions may strongly modify the interactions 323 

between these metabolic pathways (D'Hondt et al., 2004; Webster et al., 2008). Moreover, 324 

two sequences related to ANME-2 Archaea, a putative anaerobic methane oxidizer that is 325 

usually found in association with SRBs (Hinrichs et al., 1999; Boetius et al., 2000) and rarely 326 

detected in deeper subsurface sediments (Roussel et al., 2008), were detected (Fig. 3 and 327 

S4), suggesting that methane and sulphate concentrations in these open-ocean sediments 328 

might be sufficient to enable a detectable ANME biomass to develop. Moreover, MBG-B 329 
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Archaea, a lineage that may possibly benefit directly or indirectly from anaerobic methane 330 

oxidization (AOM) (Biddle et al., 2006; Sørensen and Teske, 2006; Teske and Sørensen, 331 

2008), are numerous in clone libraries below 1.5 mbsf (15%). The MBG-B Archaea are 332 

limited to marine environments such as hydrothermal vents (Takai and Horikoshi, 1999), cold 333 

seeps (Lloyd et al., 2006) and subsurface sediments (Biddle et al., 2006; Sørensen and 334 

Teske, 2006). However, although no methyl-coenzyme M reductase (mcr) genes were 335 

retrieved (data not shown), the detection of putative methanotrophs, acetoclastic 336 

methanogens and methylotrophic methanogens at two open-ocean sites, suggests that low 337 

methane cycling rates may comprise a proportion of the archaeal activities at these sites. 338 

Contamination by exogenous DNA was of particular concern (see Experimental Procedures), 339 

and as all contamination controls were negative, the detection of rarely detected sub-seafloor 340 

sediment lineages, such as Methanosarcinales and Thermococcales (Fig. 3), was probably 341 

related to methodological implications. The 16S rRNA gene PCR-based surveys are biased, 342 

as only the most abundant lineages with very similar matching priming sites are detected 343 

(Teske and Sørensen, 2008). Thus, the several DNA extractions followed by pooling and 344 

concentration of several PCR and nested PCR products (increasing sensitivity), combined to 345 

the use of a primer (A344f) containing degeneracies (Teske and Sørensen, 2008), may 346 

reduce stochastic PCR biases and facilitate the detection of these rare deep sub-seafloor 347 

lineages. 348 

Thermococcales. Although sites MD06-3018 and MD06-3019 were geographically close (< 349 

100 km), they showed drastic differences in lithology and archaeal diversity. The MD06-3018 350 

sediments were mainly characterized by a homogeneous distribution of carbonate clay and a 351 

high diversity of archaeal lineages commonly found in marine sediments, in contrast with the 352 

MD06-3019 sediments which were characterized by a heterogeneous distribution of sand 353 

and clay and a very specific archaeal diversity. Although the in-situ sediment temperatures at 354 

all sites were in a range between 2 to 3°C (Foucher et al., 2006), the low archaeal diversity, 355 

retrieved from the DGGE and clone library analysis of MD06-3019 sediments below 1.5 mbsf 356 

(Fig 3, S2), was exclusively dominated by Thermococcales, a putative (hyper) thermophilic 357 
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Euryarchaeota commonly found at hydrothermal vent sites and representing an excellent 358 

indicator of subseafloor ecosystems (Kelley et al., 2002). These sequences were shown to 359 

form a unique cluster (Fig. 7), named Thermococcales Group 1 (TG-1), within the genera 360 

Thermococcus. TG-1 16S rRNA gene sequences contain a high GC content (66%), and 361 

were related to sequences retrieved from sulphide rich hydrothermal environments (Summit 362 

and Baross, 2001). Sequences affiliated to putative Thermococcales have been previously 363 

detected in other cold (1-12°C) deep marine sediments (Inagaki et al., 2001; Kormas et al., 364 

2003; Inagaki et al., 2006a). Their occurrence was usually interpreted as a deposition 365 

resulting from fluid migration, or as buried microbial relicts, representing “fossil DNA” (Inagaki 366 

et al., 2001; Kormas et al., 2003; Inagaki et al., 2006a). Even though the minimum 367 

temperature required for the growth of a Thermococcus is 40°C (Miroshnichenko et al., 368 

2001), Thermococcales can survive over long periods in cold (4°C), oxygenated samples 369 

(Jannasch et al., 1992), possibly allowing a wide dissemination in marine environments. 370 

Interestingly, a reverse-transcribed and PCR-amplified rRNA fragment related to the 371 

Thermococcales order was detected from site MD06-3019 at 0.6 mbsf by CM-DGGE and 372 

was correlated with the occurrence of an authigenic mineral (aragonite), indicating the 373 

presence of probably viable Thermococcales at this depth (see supplementary material, Fig. 374 

S6). All the sequences affiliated to the Thermococcales order found at MD06-3019 grouped 375 

in a unique cluster (TG-1), therefore suggesting an identical origin (Fig. 7). Recently, an 376 

extensive active alkaline hydrothermal field was revealed in the south-west lagoon of New 377 

Caledonia (Pelletier et al., 2006). As the MD06-3019 site shows no signs of fluid migration 378 

and as it is located in a canyon deriving substantial amounts of terrigenous matter from the 379 

lagoon, we suggest that the TG-1 could have rafted from New-Caledonia on biotic or 380 

terrigenous substrates (Thiel and Gutow, 2005; Thiel and Haye, 2006), progressively 381 

becoming less active as organic matter became recalcitrant with burial (Wellsbury et al., 382 

2002). 383 

A distinct Thermococcus cluster was detected at site MD06-3028, grouping with sequences 384 

retrieved from deep hot subseafloor sediments (Roussel et al., 2008); for that reason, it was 385 
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named Deep Sub-Seafloor Thermococcales Group (DSSTG). Yet, the Thermococcales 386 

detected were characterized by a probably low activity as no rRNA phylotypes were detected 387 

by RT-PCR. However, the DSSTG Archaea were only detected at this strongly faulted open-388 

ocean site (MD06-3028, Fig. S1), whereas absent at the non-faulted adjacent reference site 389 

MD06-3027, suggesting that these communities could have been introduced by a vertical 390 

fluid migration. 391 

In conclusion, the deep marine sediment archaeal distribution clearly differs from the 392 

seawater and depends on spatial and geochemical variables as previously shown (Parkes et 393 

al., 2005; Fry et al., 2006; Sørensen and Teske, 2006). This study also shows the transition 394 

between active surface archaeal communities, a component of which is probably capable of 395 

ammonium oxidation and less active deep typical sub-seafloor lineages possibly related to 396 

the methane cycle. Moreover, the occurrence of putative thermophiles in cold marine 397 

sediments suggests a possible dispersion of these typical hydrothermal archaeal 398 

communities. 399 

Experimental Procedures 400 

Site description and sampling 401 

Six piston cores (MD06-3018, MD06-3019, MD06-3022, MD06-3026, MD06-3027, and 402 

MD06-3028) were collected from the New Caledonia and Fairway basins (Fig. 1) during 403 

Marion Dufresne Cruise ZoNéCo 12 in 2006, using a Calypso piston corer. Site MD06-3018 404 

(23°00.19'S, 166°08.97'E; 2470 meters water depth; core length 24.96 m), located on the 405 

New Caledonian Basin 50 km off the New Caledonia coast, is mainly in an open-ocean 406 

context (Foucher et al., 2006). Site MD06-3019 (22°30.64’S, 165°11.75’E; 3522 meters water 407 

depth; core length 36.25 m), 80 km off the coast, is located in a canyon deriving a substantial 408 

amount of terrigenous matter (Foucher et al., 2006). Sites MD06-3022 (23°12.11'S, 409 

163°27.94'E; 2294 meters water depth; core length 8.43 m),  MD06-3026 (23°56.26'S, 410 

163°27.72'E; 2717 meters water depth; core length 9.40 m), MD06-3027 (24°40.61'S, 411 

163°36.14'E; 2720 meters water depth; core length 5.22 m), and MD06-3028 (24°45.20'S, 412 
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163°36.95'E; 2716 meters water depth; core length 8.03 m) are located in an open-ocean 413 

context in the Fairway Basin.  414 

The cores were aseptically sub-sampled on board, every 20 cm on the first 100 cm, and then 415 

every 150 cm, using 5 mL syringes (luer end removed). The samples were then immediately 416 

stored anaerobically at –80°C for molecular analysis and at 4°C for prokaryotic enumeration 417 

and for enrichment cultures. 418 

As a contamination control, seawater from the water column was collected (MD06-CTD2; 419 

24°45.22'S, 163°36.95'E, 2690 meters water depth) using a CTD rosette and immediately 420 

stored at –80°C. 421 

Total prokaryotic cell enumeration 422 

Total prokaryotic counts were determined, with an epifluorescence microscope (BX60, 423 

Olympus™), by acridine orange staining, on subsamples stored at 4°C under anaerobic 424 

conditions in the dark (< 5 days), as previously described (Cragg et al., 2000).  425 

Mineralogical composition of sediments 426 

The mineralogy of 8 sediment samples from cores MD06-3018 and MD06-3019 was 427 

determined by X-ray diffraction (XRD) analysis using a Bruker D8 Advance equipped with a 428 

Cu X Ray tube and a Vantec detector. Samples were not dried before analysis and diffraction 429 

patterns were obtained between 5 and 70 degrees. Mineral determination and semi-430 

quantitative estimations were performed with the EUA program. 431 

Geochemical analysis 432 

Methane analyses were performed on cores MD06-3019, MD06-3022, MD06-3026, MD06-433 

3027 and MD06-3028, at the end of each core segment (1.5 m long), using the headspace 434 

technique. The cores were immediately sub-sampled on board using 5 mL syringes (luer end 435 

removed) and added to headspace vials (20 mL) filled with a NaCl/HgCl2 work solution. 436 

Methane concentrations were determined using a HP 7694 automatic headspace sampler 437 

connected to a HP 5890 gas chromatograph equipped with FID and TCD detectors. The 2-438 
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sigma uncertainty is better than 4% (Donval et al., unpublished). Results are expressed as 439 

microlitre per litre of sediment (µL/L). 440 

Pore-waters were extracted on board from MD06-3019 and MD06-3022 cores from the end 441 

of each core segment by centrifuging sediment samples (10000 rpm over 30 min). The 442 

dissolved anions (SO4
2-, Cl-) and cations (Na+, Ca2+, Mg2+) were determined from diluted 443 

pore-waters using a Dionex DX100 ion chromatograph. The IAPSO standard seawater was 444 

used for calibration and quality control. Results are expressed as millimole per litre pore-445 

water (mM). 446 

DNA extractions and PCR amplification 447 

To avoid contaminations, all manipulations were carried out in a PCR cabinet exclusively 448 

dedicated to the present study (Biocap™ RNA/DNA, erlab®), using Biopur® 1.5 mL Safe-Lock 449 

micro test tubes (Eppendorf™), Rnase/Dnase Free Water (MP Biomedicals™) and UV-450 

treated (>60 min) plasticware and pipettes.  451 

DNA was extracted, pooled and purified from 5 × 1g uncontaminated frozen sample following 452 

a modified FastDNA® Spin Kit for Soil (Bio101 Systems, MP Biomedicals™) protocol 453 

(Webster et al., 2003; Roussel et al., 2009). 454 

All amplifications were performed using a "GeneAmp PCR system" 9700® (Applied 455 

Biosystems™). All PCR mixtures (50 µL) contained 5 µL of DNA template, 1X Taq DNA 456 

polymerase buffer (MP Biomedicals™), 1 µL of dNTP (10 mM of each dATP, dCTP, dGTP 457 

and dTTP), 10 µM of each primer and 0.5 µL of Taq DNA polymerase (MP Biomedicals™). 458 

Negative controls were also carried out with DNA extractions performed with no sample. For 459 

all controls, no PCR products were detected. 460 

Archaeal 16S rRNA gene amplification was conducted by nested PCR with combination of 461 

primers A8f (5’-CGG TTG ATC CTG CCG GA-3’) and A1492r (5’-GGC TAC CTT GTT ACG 462 

ACT T-3’) in the first round (Teske et al., 2002; Lepage et al., 2004), and  with A344f (5’-AYG 463 

GGG YGC ASC AGG SG-3’) and A915r (5’-GTG CTC CCC CGC CAA TTC CT-3’) in the 464 

second round (Stahl and Amann, 1991; Sørensen et al., 2004). PCR cycles for the first round 465 
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(A8f/A1492r), and for the second round (A344f/A915r) were as previously described 466 

(Roussel et al., 2009). To minimize stochastic PCR bias, five independent PCR products 467 

from the first round were pooled and purified (QIAquick PCR purification Kit; Qiagen™) and 468 

used as template for the second round. This nested PCR was necessary to obtain visible 469 

PCR products on a 0.8% (w/v) agarose gel stained with ethidium bromide. 470 

A portion of the amoA gene (635 bp) was amplified with primers Arch-amoAF and Arch-471 

amoAR (Francis et al., 2005), and the following reaction conditions were performed: 1 cycle 472 

of 5 min at 95°C, 35 cycles of 45s at 94°C, 60s at 53°C and 60s at 72°C, and 1 cycle of 15 473 

min at 72°C. 474 

RNA extractions and RT-PCR amplification 475 

Total RNA was extracted from each uncontaminated frozen sample (5 × 1g) using the 476 

FastRNA® Pro soil direct Kit (Bio101 Systems, MP Biomedicals™) as previously described 477 

(Roussel et al., 2009), with the following modifications: the addition of 170 µg poly-adenylic 478 

acid, tubes kept on ice and extended spin. After bead-beating on a FastPrep FP120 479 

homogenizer (Bio101 Systems, MP Biomedicals™), the ¾ of the aqueous phases were 480 

transferred to a new tube before the remaining aqueous phases were homogenized a 481 

second time. After the addition of 660 µL of isopropanol (100%), the tubes were incubated 60 482 

min at –20°C followed by centrifugation at 20000 × g for 15 min at 1°C. In order to increase 483 

the RNA yield, the extraction procedure was ended after the first ethanol wash and diluted in 484 

100 µL of DEPC water. 485 

To digest trace amounts of DNA, the extraction products were immediately pooled and 150 486 

µL were incubated 1 hour at 37°C with 1X of TURBO DNase® buffer and 18U of TURBO 487 

DNase® (Ambion™). The digestion was stopped by adding EDTA to a final concentration of 488 

15 mM and heating 10 min at 65°C. The product was finally concentrated and purified with 489 

the RNeasy minikit (QiagenTM), following manufacturer’s instructions, to give a final volume of 490 

100 µL. 491 
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The purified RNA product was immediately serially diluted (1 to 50 times) and reverse 492 

transcribed using the OneStep RT-PCR kit (Qiagen™), according to the manufacturer’s 493 

instructions, with combination of 16S rRNA primers for Archaea with A8f-A1492r and the 494 

following touchdown PCR protocol as previously described (Roussel et al., 2009). To obtain 495 

visible products, a nested PCR was performed as described for the 16S rRNA gene 496 

amplification. Nested PCR assays, using the 16S rRNA primers for Archaea, without the 497 

reverse transcribed step, showed no DNA contamination.  498 

DGGE analysis 499 

In order to obtain the general archaeal 16S rRNA gene depth diversity, a PCR-DGGE 500 

analysis was performed. To avoid background interference, visualization of unspecific 501 

fragments, and to increase sensitivity and resolution, nested PCR was performed as 502 

described for the archaeal 16S rRNA gene amplification using a Cy3 labelled reverse primer 503 

Saf-PARCH 519r*Cy3 or A344fGC-A915r*Cy3. All manipulations were performed in the dark. 504 

The touchdown PCR protocol was as previously described (Casamayor et al., 2000; Nicol et 505 

al., 2003). The PCR products were analyzed by DGGE using a DCode Universal Mutation 506 

Detection System (BioRad™) on a 1 mm thick (16 × 16 cm) polyacrylamide gel 507 

(acrylamide/bisacrylamide, 40%, 37,5:1, BioRad™) prepared with 1 × TAE buffer (pH 8, 508 

40 mM de Tris Base, 20 mM acetic acid, 1 mM d’EDTA, MP Biomedicals™) and poured with 509 

a "Gradient maker" (Hoefer SG30). For Saf-PARCH 519r*Cy3 PCR products, the 8% (w/v) 510 

polyacrylamide gel had a denaturant gradient between 30 and 60%. For A344fGC-A915r*Cy3 511 

PCR products, the 6% (w/v) polyacrylamide gel had a denaturant gradient between 40 and 512 

70%. Electrophoresis was carried in 1 × TAE buffer at 60°C for 330 min at 200 V (initially at 513 

80 V for 10 min). The gel was scanned using a Phospho fluorimager Typhoon 9400 514 

(Amersham Biosciences™). Prior to band excision as described previously (Wilms et al., 515 

2006), the gel was stained with SYBRGold nucleic acid gel stain for 20 min, and washed for 516 

10 min with 1 × TAE buffer and visualized with a Dark Reader transilluminator (Clare 517 

Chemicals, Dolores, CO). The DGGE profiles were analyzed by cluster analysis using the 518 
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software package GelCompar II version 5.10 (Applied Maths, St-Martens-Latem, Belgium) as 519 

described elsewhere  (Wilms et al., 2006). 520 

Co-Migration-DGGE analysis (CM-DGGE) 521 

Co-Migration-DGGE analysis (CM-DGGE), a new approach based on DGGE was developed 522 

in order to obtain the general archaeal depth diversity and associated active fraction. After 523 

amplification of the PCR products, using two different fluorescent reverse labelled primers 524 

from either total DNA or cDNA of the same sample, these were pooled and loaded into the 525 

same lane. Archaeal 16S rRNA gene amplification was performed with primers A344fGC-526 

A915r or Saf-PARCH 519r, labelled with either Cy3 or Cy5, following touchdown PCR 527 

protocol as previously described (Casamayor et al., 2000; Nicol et al., 2003). The DGGE 528 

analysis and gel conditions were the same as described for the DGGE analysis, except that 529 

loading and migration were performed in the dark. The gel was scanned using a Phospho 530 

fluorimager Typhoon 9400 (Amersham Biosciences™). 531 

Cloning and sequencing 532 

According to archaeal DGGE profiles, 21 DNA-derived 16SrRNA gene, two RNA-derived 533 

16S rRNA gene and two DNA-derived amoA gene clone libraries were constructed. To 534 

minimize stochastic PCR bias (Polz and Cavanaugh, 1998), five independent PCR products 535 

were pooled, purified (QIAquick PCR purification Kit; Qiagen™), and cloned into Escherichia 536 

coli (XL10-Gold; Stratagene™) using the pGEM-T Easy vector system  I (Promega™) 537 

following the manufacturer’s instructions. Positive transformants were screened by PCR 538 

amplification of the insert using the vector-specific M13 primers. Plasmid extraction, 539 

purification and sequencing of the insert, were carried out by the sequencing Ouest-540 

Genepole platform of Roscoff Marine laboratory (France). 541 

Phylogenetic analysis 542 

Chimeras (Cole et al., 2003) were excluded from the clone libraries and a total of 771 543 

sequences (including those from the 16S rRNA gene and amoA gene) were used for further 544 
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phylogenetic analysis. The phylogenetic placement was carried out using NCBI BLAST 545 

search program within GenBank (http://www.ncbi.nlm.nih.gov/blast) (Altschul et al., 1990). 546 

The 16S rRNA sequences (~553 bases) were then edited in the BioEdit 7.0.5.3 program 547 

(Hall, 1999) and aligned using CLUSTALW (Thompson et al., 1994). The phylogenetic trees 548 

were constructed by the PHYLO_WIN program (Galtier et al., 1996) with neighbour-joining 549 

method (Saitou and Nei, 1987) and Jukes and Cantor correction. The Thermococcales 550 

dataset was further analyzed by Bayesian method. Bayesian trees were inferred using 551 

MrBayes 3.1.2. (Huelsenbeck and Ronquist, 2001). The Markov Chain Monte Carlo search 552 

was run with 4 chains for 2000000 generations, with trees being sampled every 100 553 

generations. Stabilization of the chain parameters (tree likelihood, α shape parameter, and 554 

proportion of invariant sites) was verified with the program ModelTest version 3.7.2 (Posada 555 

and Crandall, 1998). The first 5000 trees were discarded (burn-in), keeping only trees 556 

generated after those parameters stabilized. Phylogenetic trees were viewed using the 557 

program TreeDyn (Chevenet et al., 2006). The nonchimeric amoA sequences (~635 bases) 558 

were translated into amino acids using BioEdit and then aligned using CLUSTALW, and the 559 

PHYLO_WIN program with neighbour-joining algorithm and PAM distance (Dayhoff et al., 560 

1978) was then used for phylogenetic tree construction. For the 16S rRNA and amoA 561 

phylogenetic reconstruction, the robustness of inferred topology was tested by bootstrap 562 

resampling (1000), values over 50% are shown on the trees. The richness from the clone 563 

libraries was estimated, with the rarefaction curves at 99%, 97% and 95% sequence identity 564 

levels, using the DOTUR program (Schloss and Handelsman, 2005). Operational taxonomic 565 

units (OTUs), using a 97% sequence similarity, were generated with the SON program 566 

(Schloss and Handelsman, 2006), and the percentage of coverage (Cx) of the clone libraries 567 

was calculated by Good’s method (Good, 1953) as described by Singleton and colleagues 568 

(Singleton et al., 2001). Statistical estimators, the significance of population differentiation 569 

among clone libraries (FST) (Martin, 2002), and the exact tests of population genetic 570 

differentiation (Raymond and Rousset, 1995), were calculated using Arlequin 3.11 (Excoffier 571 

et al., 2005). 572 
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Nucleotide sequence accession numbers 573 

The sequences are available from GenBank database under the following accession 574 

numbers and names: 16S rRNA gene and rRNA (AM989356 to AM989452) and amoA gene 575 

(AM988840 to AM988859). 576 
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Captions 850 

Fig. 1. Bathymetric map of the location of ZoNéCo 12 sites. The white arrow represents 851 

substantial amounts of terrigenous matter derived from New Caledonia. 852 

Fig. 2. Geochemical and total prokaryote cell depth profiles of the sediments from the 853 

Fairway and New Caledonia Basin sites. 854 

Fig. 3. Depth distribution of the archaeal phylogenetic community structures based on 16S 855 

rRNA gene from the Fairway and New Caledonia Basin sites. According to archaeal DGGE 856 

profiles (DGGE), clone libraries were only constructed for the depths with the most 857 

representative archaeal phylogenetic distribution for each core. The phylogenetic affiliation of 858 

each clone sequence was determined by similarity analysis. The relative abundance of each 859 

phylotype was calculated and represented in a column diagram. The percentage of coverage 860 

of each clone library examined is indicated in brackets. The asterisks indicate groups of 861 

clone libraries with insignificant (P < 0.01) differences between all the diversity indices (FST 862 

and the exact test method). ANME-2: anaerobic methane oxidizers group 2, NMG-1: Novel 863 

Methanosarcinales group 1, SAGMEG: South African Gold Mine Euryarchaeotic Group, 864 

DHVE6: Deep-Sea Hydrothermal Vent Euryarchaeotal Group 6. 865 

Fig. 4. Phylogenetic tree representing the Marine Group 1 (MG-1) 16S rRNA gene 866 

sequences DNA- and RNA-derived. Each phylotype from each clone library is represented 867 

by one sequence with ≥97% similarity grouping. The tree was constructed using the 868 

neighbour-joining method with Jukes and Cantor correction. Bootstrap values <50% are not 869 

shown. Sequences are color-coded according to site location. Sequences from RNA-derived 870 

clone libraries were underlined. 871 

Fig. 5. Co-migration denaturant gradient gel electrophoresis (CM-DGGE) analysis of 872 

archaeal 16S rRNA genes DNA-derived (blue) and RNA-derived (red) from MD06-3018 and 873 

MD06-3019 sites. The numbered bands were excised and sequenced. The lineage and the 874 

sequence similarity of the closest match by BLASTN search are given on the right. PCR 875 

products were amplified with the Saf-PARCH 519r*Cy5 (blue) or Saf-PARCH 519r*Cy3 (red) 876 

primer set and electrophoresis was performed using a gradient of 30–60% denaturant. 877 
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Fig. 6. Phylogenetic tree based on translated, partial amino acid sequences of amoA gene 878 

(<212 amino acids). The tree was constructed using the neighbour-joining method using 879 

PAM distance (Dayhoff et al., 1978). The robustness of inferred topology was tested by the 880 

bootstrap. Bootstrap values <50% are not shown. Sequences are color-coded according to 881 

location (blue, sediment; red, seawater; brown, soil) and were clustered as previously 882 

published (Francis et al., 2005). Sequences retrieved from the New Caledonia Basin are in 883 

black. 884 

Fig. 7. Phylogenetic tree representing the Thermococcus 16S rRNA gene sequences from 885 

the Fairway and New Caledonia Basin sites. Tree topology was inferred by neighbour-joining 886 

analysis on ~550 bases with Jukes and Cantor correction. Bootstrap support values over 887 

50% (1,000 replicates) and bayesian posterior probabilities are indicated at nodes. Closely 888 

related sequence clusters are represented by single sequences. TG-1: Thermococcales 889 

Group 1, DSSTG: Deep Sub-Seafloor Thermococcales Group. Sequences are color-coded 890 

according to the clone library. 891 

Supplementary material 892 

Fig. S1. Seismic profiles of the Fairway Basin with the location of each site: MD06-3022, 893 

MD06-3026, MD06-3027 and MD06-3028. Figure modified from Foucher et al. (2006). 894 

 895 

Fig. S2. Denaturant gradient gel electrophoresis (DGGE) analysis of archaeal 16S rRNA 896 

genes of the cores from the Fairway and New Caledonia Basin sites. The numbered bands 897 

were excised and sequenced. The lineage and the sequence similarity of the closest match 898 

by BLASTN search are given on the right. (A) PCR products were amplified with the A344fGC-899 

A915r primer set and electrophoresis was performed using a gradient of 40–70% denaturant. 900 

(B) PCR products were amplified with the Saf-PARCH 519r primer set and electrophoresis 901 

was performed using a gradient of 30–60% denaturant. (C) Cluster analysis of DGGE band 902 

patterns. The dendrogram was calculated by Pearson correlation and UPGMA. 903 
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Fig. S3. Rarefaction curves for the 16S rRNA gene clone libraries from the Fairway and New 904 

Caledonia Basin sites (Schloss and Handelsman, 2005). The sequence identity levels are 905 

represented in brackets. 906 

Fig. S4. Phylogenetic tree representing the Euryarchaeota 16S rRNA gene, except the 907 

Thermococcales lineage, sequences DNA- and RNA derived. RNA-derived sequences are 908 

underlined. Each phylotype is represented by one sequence with ≥97% similarity grouping. 909 

The tree was constructed using the neighbour-joining method with Jukes and Cantor 910 

correction. Bootstrap values <50% are not shown. ANME: anaerobic methane oxidizers, 911 

NMG-1: Novel Methanosarcinales group 1, SAGMEG: South African Gold Mine 912 

Euryarchaeotic Group, DHVE6: Deep-Sea Hydrothermal Vent Euryarchaeotal Group 6, 913 

MBG-D: Marine Benthic Group D, MG: Marine Groups. Sequences are color-coded 914 

according to site location. 915 

Fig. S5. Phylogenetic tree representing the Crenarchaeota 16S rRNA gene sequences, 916 

except the MG-1 lineage, DNA- and RNA derived. RNA-derived sequences are underlined. 917 

Each phylotype is represented by one sequence with ≥97% similarity grouping. The tree was 918 

constructed using the neighbour-joining method with Jukes and Cantor correction. Bootstrap 919 

values <50% are not shown. MCG: Miscellaneous Crenarchaeotal Group, MBG-B: Marine 920 

Benthic Group B, MBG-A: Marine Benthic Group A. Sequences are color-coded according to 921 

site location. 922 

Fig. S6. Co-Migration Denaturant Gradient Gel Electrophoresis (CM-DGGE) analysis of 923 

archaeal 16S rRNA genes DNA-derived (blue) and RNA-derived (red) from the cores at 924 

MD06-3018 and MD06-3019 sites. The numbered bands were excised and sequenced. The 925 

lineage and the sequence similarity of the closest match by BLASTN search are given on the 926 

right. PCR products were amplified with the A344fGC-A915r*Cy5 (blue) or A344fGC-A915r*Cy3 927 

(red) primer set and electrophoresis was performed using a gradient of 40–70% denaturant. 928 

(A) DNA-derived (A344fGC-A915r*Cy5). (B) RNA-derived (A344fGC-A915r*Cy3). (C) both 929 

DNA- and RNA-derived. 930 

 931 
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Fig. S2. Denaturant gradient gel electrophoresis (DGGE) analysis of archaeal 16S rRNA genes of the cores
from the Fairway and New Caledonia Basin sites. The numbered bands were excised and sequenced. The
lineage and the sequence similarity of the closest match by BLASTN search are given on the right. (A) PCR
products were amplified with the A344fGC-A915r primer set and electrophoresis was performed using a
gradient of 40–70% denaturant. (B) PCR products were amplified with the Saf-PARCH 519r primer set and
electrophoresis was performed using a gradient of 30–60% denaturant. (C) Cluster analysis of DGGE band
patterns. The dendrogram was calculated by Pearson correlation and UPGMA.

Page 41 of 45

Society for Applied Microbiology, Editors: K. Timmis, D. Stahl, E. DeLong, M. Wagner, M. Jetten, J.L. Ramos



For Peer Review
 O

nly

Page 42 of 45

Society for Applied Microbiology, Editors: K. Timmis, D. Stahl, E. DeLong, M. Wagner, M. Jetten, J.L. Ramos



For Peer Review
 O

nly

Page 43 of 45

Society for Applied Microbiology, Editors: K. Timmis, D. Stahl, E. DeLong, M. Wagner, M. Jetten, J.L. Ramos



For Peer Review
 O

nly

Page 44 of 45

Society for Applied Microbiology, Editors: K. Timmis, D. Stahl, E. DeLong, M. Wagner, M. Jetten, J.L. Ramos



For Peer Review
 O

nly

Page 45 of 45

Society for Applied Microbiology, Editors: K. Timmis, D. Stahl, E. DeLong, M. Wagner, M. Jetten, J.L. Ramos


	p1 blackwell.pdf
	Environmental Microbiology
	Archaeal communities associated with shallow to deep subseafloor sediments of the New Caledonia Basin




