Analyse des processus sedimentaires recents dans l'eventail profond du Danube (mer Noire)

Ce travail est consacré à l'étude de l'architecture et de l'évolution sédimentaire récente de l'éventail profond du Danube, en particulier de son dernier système chenal-levée: le chenal du Danube. L'étude a été réalisée dans le cadre du projet de coopération franco-roumaine BlaSON, à partir des données sismiques, bathymétriques-acoustiques et sédimentologiques acquises en 1998 lors d'une campagne en mer Noire réalisée par IFREMER et GeoEcoMar. Des données sismiques et acoustiques antérieures ont été également utilisées. L'éventail profond du Danube s'enserre dans la catégorie des grands éventails vaseux. Comme les autres systèmes de ce genre (tel que les éventails de l'Amazone, du Mississippi ou de l'Indus) il est constitué d'une succession de systèmes chenaux-levées intercalés avec des dépôts de transport en masse. Le fonctionnement de l'éventail était conditionné par la baisse du niveau marin lors des périodes glaciaires. Ses faciès sismiques et sédimentaires s'apparentent aux faciès qui caractérisent la plupart des éventails de ce type. L'éventail du Danube constitue néanmoins un cas particulier parmi les autres systèmes étudiés, du fait de son fonctionnement dans un bassin lacustre. Ceci est dû à la situation spécifique de la mer Noire dont la connexion avec la Méditerranée, par le détroit de Bosphore et la mer de Marmara, a été successivement interrompue (au cours de périodes de bas niveau) et reprise (quand le niveau marin remontait en dépassant le seuil du Bosphore). L'absence de l'apport d'eau salée pendant les périodes glaciaires, associée avec l'augmentation de l'apport fluvial, ont déterminé l'installation d'un milieu d'eau douce dans la mer Noire à chaque fois que la baisse du niveau permettait la reprise du fonctionnement de l'éventail profond. Cette situation particulière aurait favorisé la formation des courants hyperpycnaux à l'embouchure d'un fleuve du débit du Danube qui déversait ses eaux turbides dans un bassin lacustre, et aurait donc influencé l'apparition de courants de turbidité dans l'éventail profond. Le chenal du Danube s'est développé sur la pente continentale en prolongation du canyon du Danube (ou Viteaz) auquel il est directement connecté. Le canyon est incisé de manière significative (26 km) dans la plate-forme continentale. Au cours de bas-niveaux marins il constituait la principale voie de transfert des sédiments terrigènes vers le bassin profond dans cette partie de la marge. Le canyon est constitué par une entaille avec des flancs abrupts et un talweg axial incisé, qui montre l'importance du processus d'érosion du fond pour le développement du canyon. Les segments qui ont été identifiés le long du canyon, avec des morphologies, des orientations et des pentes spécifiques, sont interprétés comme des phases d'avancement du canyon vers la côte. Plusieurs incisions sont visibles dans la structure interne du canyon et témoignent que la morphologie actuelle du canyon est le résultat de son évolution polyphasée. L'instabilité de la zone du canyon est en relation avec les apports sédimentaires importants à l'embouchure du Danube, avec la présence du gaz dans les sédiments superficiels, et possiblement sous un contrôle structural. Sur la pente supérieure (entre le canyon du Danube et environ 1400 m de profondeur) le chenal du Danube présente des levées bien développées et fortement asymétriques, avec la levée droite plus haute et plus large que la levée gauche. Ce type d'asymétrie, fréquemment décrit dans les éventails profonds est généralement attribué à l'effet Coriolis (Menard, 1955). Le chenal est légèrement sinueux, partiellement comblé et incisé par un talweg axial qui représente la continuation sur la pente du talweg incisé dans le canyon du Danube. L'analyse sismique détaillée du remplissage de la vallée montre plusieurs phases de dépôt, séparées par des discontinuités érosives. Ces surfaces d'érosion correspondent à des terrasses emboîtées, relativement parallèles le long de la vallée, visibles dans la bathymétrie. Les dépôts qui constituent le remplissage du chenal présentent un faciès sismique de type HAR (High Amplitude Reflections) dans l'axe du chenal, partiellement (ou parfois totalement) enlevé par les phases d'érosion subséquentes, qui continue latéralement avec des réflexions litées correspondant à un faciès sédimentaire de levée. Le remplissage de la vallée a été donc associé avec des écoulements dans le chenal, et non pas avec l'interruption de son fonctionnement. Sur la pente inférieure, le chenal unique bifurque plusieurs fois par avulsion et forme de nouveaux systèmes chenaux-levées méandriformes. Ces systèmes se succèdent verticalement en onlap, ce qui montre qu'un seul chenal a été actif à la fois. Chaque phase d'avulsion a eu comme résultat la mise en place d'une unité constituée par un lobe défini comme "High Amplitude Reflection Packets" (HARP, Flood et al., 1991) à la base, et un système chenal-levée au sommet. Le dépôt d'un lobe HARP est associé avec de l'érosion dans le chenal en amont du point d'avulsion pour l'ajustement de son profil après la rupture de la levée. Quand le chenal a retrouvé son profil d'équilibre, l'érosion a cessé et des levées ont commencé à se développer au-dessus des HARPs (Pirmez et al., 1997). Toutes les phases d'avulsion se sont développées d'après le même modèle: (1) la rupture de la levée gauche, plus étroite; (2) le dépôt d'un lobe HARP par les écoulements non-chenalisés en aval du point d'avulsion, et l'abandon de l'ancien chenal; (3) l'initiation d'un nouveau système chenal-levée. La migration systématique du chenal vers le nord est influencée par l'assymétrie des levées (donc par la force de Coriolis), et confinée entre les grandes levées de la phase initiale du chenal du Danube, au sud, et le relief abrupt de l'éventail du Dniepr au nord. La structure sédimentaire du chenal du Danube indique que les surfaces érosives à l'intérieur du remplissage du chenal se seraient formées en réponse aux avulsions, du fait de l'ajustement du profil du chenal après la rupture d'une levée. Les sédiments du chenal érodés au cours de ce processus ont formé les lobes HARP. Quand le chenal a retrouvé son profil d'équilibre, un système chenal-levée s'est développé en aval du point d'avulsion au dessus du lobe HARP, mais aussi en amont de ce point, où il se trouve confiné dans la vallée érosive. Les incisions fluviatiles identifiés sur la plate-forme continentale et la position de la ligne de côte pendant la dernière période d'activité du chenal du Danube montrent que le paléo-Danube se dirigeait directement vers la tête du canyon du Danube. Son embouchure était située à proximité du canyon, qui alimentait le chenal du Danube. Cependant, les courants hyperpycnaux devaient prévaloir dans le milieu de salinité réduite qui caractérisait la mer Noire lors des périodes actives de l'éventail. Ces conditions auraient favorisé la mise en place d'un système quasi-continu fleuve-canyon-éventail profond, qui contrôlait le transfert des sédiments entre la côte et le bassin profond.

Mot-clé(s)

Sismique haute résolution, Paléogéographie, Canyon sous marin, Eventail profond, Mer Noire

This study is focusing on the architecture and recent sedimentary evolution of the Danube channel, the youngest channel-levee system in the Danube deep-sea fan. The study was conducted as part of the BlaSON French-Romanian Project, and combined high-resolution seismic-reflection profiles and chirp profiles with multibeam bathymetry and piston cores. This data set was acquired in 1998 during a joint survey IFREMER-GeoEcoMar of the north-western Black Sea. Previous seismic and acoustic data were also used. The Danube deep-sea fan is a large passive-margin mud-rich fan. Like the other systems of this type (Amazon fan, Mississippi fan or Indus fan) the Danube fan consists of stacked channel-levee systems intercalated with mass-transport deposits. Seismic and sedimentary facies in the Danube fan are similar to those identified in most of the mud-rich systems. Nevertheless, the Danube fan is distinguished by a specific feature: its development in a freshwater environment. This is due to the peculiar water-level history of the Black Sea controlled by the link to the Mediterranean through the Strait of Bosphorus and the Sea of Marmara. This connexion was successively interrupted (during sea level lowstands) and re-established (when the sea level was rising above the Bosphorus). Temporary absence of marine water influx during lowstands together with large freshwater inputs from the Danube and other major rivers changed the Black Sea into a freshwater lake during times of fan activity. This peculiarity possibly favourised the development of hyperpycnal flow at the Danube mouth and the initiation of turbidity currents in the deep-sea fan. The Danube channel is directly connected to the large shelf-indenting Danube canyon (also known as Viteaz canyon). The Danube canyon is deeply incised into the shelf margin for 26 km landward of the shelfbreak. During lowstands this canyon acted as the most important path for sediment supply to the deep sea in this part of the continental margin. It consists of a main trough with steep flanks, and a meandering thalweg cut into the flat canyon floor, attesting for the development of the canyon by erosion in the entrenched axial thalweg. Sections with specific morphology, orientation and gradient identified along the canyon, are interpreted as phases of landward expansion of the canyon. Internal structure of the canyon shows several erosional surfaces, which indicate that the present morphology of the canyon is the result of its polyphasic evolution. Instability in the zone of the canyon is related to the important sediment supply at the Danube mouth, to the presence of the gas in the surficial sediment, and possibly under a structural control. The upper part of the Danube channel (between the Danube canyon and ~1400 m depth) consists in a single leveed-channel that has undergone significant overbank deposition, as attested by the well-developed levees. The levees are strongly asymmetrical, being higher and wider on the right-hand side looking downstream. This type of asymmetry is rather common in deep-sea fans, and is generally attributed to the Coriolis effect (Menard, 1955). The channel is slightly sinuous, partially filled and incised by an entrenched thalweg, connected to the axial thalweg of the Danube canyon. Detailed seismic investigation inside the channel trough documented several depositional phases within the channel fill, separated by erosional surfaces. These surfaces are associated with distinct terraces identified on the multibeam bathymetry, that can be followed downward along the main trough axis. The valley fill deposits (where not removed by the subsequent erosional event) show an axial HAR (High Amplitude Reflections) seismic facies with lateral lower amplitude continuous reflections consisting in a levee facies, as proved by sampling. This indicates that filling up was associated with flow within the channel, and not with interruption of fan activity. On the middle slope below 1400 m, this single channel bifurcates through repeated avulsions. As a result, several highly meandering channels developed. The onlap relationships between these channels indicate that only one channel was active at a time. Each phase of avulsion resulted in a depositional unit consisting in a basal unchannelized lobe defined as High Amplitude Reflection Packets (HARP, Flood et al., 1991) that underlies a channel-levee system. The deposition of HARPs was associated with the readjustment of the longitudinal profile of the channel after the breaching of a levee, which resulted in remobilization of upslope channel deposits and eroded levees. When this adjustment was complete, erosion ceased and levees began to develop above the HARPs (Pirmez et al., 1997). All the identified phases of avulsion followed the same pattern: (1) breaching of the lower and narrower left levee; (2) building of a unit of High Amplitude Reflector Packets (HARP) basinward of the bifurcation point by the unchannelized flow, while the former channel was abandoned; and (3) initiation of a new meandering leveed channel. The northward migration of the resulting units through repeated bifurcations is influenced by the asymmetry between levees (hence by the Coriolis effect), and confined between the high levees of the initial phase of the Danube channel (to the south) and the steep relief of the Dniepr fan (to the north). Structure of the fan valley fill indicate that the erosional surfaces inside the upper channel could be formed in response of successive avulsions, by the adjustment of the longitudinal profile of the channel following the breaching of a levee wall. Sediments removed by erosion formed the HARP lobes basinward of the avulsion point. When this adjustment was complete, a channel-levee system developed downward of the bifurcation, overlying the HARPs, but also upward of this point, as a confined channel-levee system inside the erosional trough of the fan valley. Fluvial incisions identified on the continental shelf, together with the coastline location during the last active period of the Danube channel, indicated that the paleo-Danube was directed towards the head of the Danube canyon. Paleo-Danube mouth was fairly close (ca. 10 km) to the Danube canyon, supplying sediment to the Danube channel. Furthermore, hyperpycnal flow probably prevailed in the freshwater environment that characterized the Black Sea during times of fan activity. These conditions would have enabled the development of a quasi-continuous river-canyon-deep-sea fan system, ensuring the effective transfer of the sediment between the coastal zone and the deep sea.

Keyword(s)

High resolution seismic, Lowstand palaeogeography, Submarine canyons, Deep sea fans, Black Sea

Texte intégral

FichierPagesTailleAccès
860.pdf
30724 Mo
Comment citer
Popescu Irina (2002). Analyse des processus sedimentaires recents dans l'eventail profond du Danube (mer Noire). PhD Thesis, Université de Bucarest - Université de Bretagne occidentale. https://archimer.ifremer.fr/doc/00000/1206/

Copier ce texte