Analytical modeling of synthetic fiber ropes. Part II: A linear elastic model for 1+6 fibrous structures
In part I of this study it was shown that, to model synthetic fiber ropes, two scale transition models can be used in sequence. The first model (continuum model) has been presented in the part I and the present paper examines the behavior of a fibrous structure consisting of 6 helicoidal strands around a central core (1 + 6 structure). An analytical model will be presented which enables the global elastic behavior of such a cable under tension-torsion loading to be predicted. In this model, first, the core and the strands are described as Kirchhoff-Love beams and then the traction-torsion coupling behavior is taken into account for both of them. By modeling the contact conditions between the strands and the core, with certain assumptions, it is possible to describe the behavior of the cable section as a function of the degrees of freedom of the core. The behavior of the cable can thus be deduced from the tension-torsion coupling behavior of its constituents. Tensile tests have beer, performed on the core, the strands and then on a full scale 205 ton failure load cable. Finally, predicted stiffness from the analytical models is compared to the test results. (c) 2006 Elsevier Ltd. All rights reserved.
Ghoreishi Seyed Reza, Davies Peter, Cartraud Patrice, Messager Tanguy (2007). Analytical modeling of synthetic fiber ropes. Part II: A linear elastic model for 1+6 fibrous structures. International Journal of Solids and Structures. 44 (9). 2943-2960. https://doi.org/10.1016/j.ijsolstr.2006.08.032, https://archimer.ifremer.fr/doc/00000/2596/