Earth-viewing L-band radiometer sensing of sea surface scattered celestial sky radiation - Part I: General characteristics

Type Article
Date 2008-03
Language English
Author(s) Tenerelli Joseph1, Reul NicolasORCID1, Mouche AlexisORCID1, 2, Chapron Bertrand1
Affiliation(s) 1 : IFREMER, Ctr Brest, Lab Oceang Spatiale, F-29200 Plouzane, France.
2 : Ctr Natl Etud Spatiales, F-75039 Paris, France.
Source IEEE-Transactions on geoscience and remote sensing (0196-2892) (IEEE GRSS), 2008-03 , Vol. 46 , N. 3 , P. 659-674
DOI 10.1109/TGRS.2007.914803
WOS© Times Cited 46
Keyword(s) Scattering, Remote sensing, Radiometry
Abstract The "galactic glitter" phenomenon at L-band, i.e., the scattering of celestial sky radiation by the rough ocean surface, is examined here as a potential source of error for sea surface salinity (SSS) remote sensing. We begin by considering the transformations that must be applied to downwelling celestial noise in order to compute the eventual impact on the antenna temperature. Then, outside the context of any particular measurement system, we use approximate scattering models along with a model for the equilibrium wind wave spectrum to examine how the scattered signal at the surface might depend on the geophysical conditions and scattering geometry. It is found that, when the specular point lies far away from the galactic plane, where the incident celestial brightness is uniform, sea surface roughness has a negligible impact on the glitter. At such a point, variations in both the orientation of the incidence plane and the wind direction relative to the scattering azimuth have negligible impact. By contrast, when the specular point lies in the vicinity of a localized maximum of brightness, scattering by the roughened ocean surface may reduce the glitter by more than 30%, as compared to a perfectly flat surface, and the glitter amplitude may vary by up to 0.7 K with variations in wind direction and by up to 0.5 K with variations in incidence plane orientation. It is shown that accounting for the roughness impact on celestial noise contamination is of particular concern for the remote sensing of SSS.
Full Text
File Pages Size Access
publication-3922.pdf 16 690 KB Open access
Top of the page

How to cite 

Tenerelli Joseph, Reul Nicolas, Mouche Alexis, Chapron Bertrand (2008). Earth-viewing L-band radiometer sensing of sea surface scattered celestial sky radiation - Part I: General characteristics. IEEE-Transactions on geoscience and remote sensing, 46(3), 659-674. Publisher's official version : , Open Access version :