Integrating Biogeochemistry and Ecology Into Ocean Data Assimilation Systems
Type | Article | ||||||||
---|---|---|---|---|---|---|---|---|---|
Date | 2009-09 | ||||||||
Language | English | ||||||||
Author(s) | Brasseur Pierre1, Gruber Nicolas2, Barciela Rosa4, Brander Keith3, Doron Maeva1, El Moussaoui Abdelali5, Hobday Alistair J.6, Huret Martin![]() |
||||||||
Affiliation(s) | 1 : CNRS, LEGI, Grenoble, France. 2 : ETH, Inst Biogeochem & Pollutant Dynam, Zurich, Switzerland. 3 : Danish Tech Univ, Natl Inst Aquat Resources DTU Aqua, Copenhagen, Denmark. 4 : Met Off, Exeter, Devon, England. 5 : Mercator Ocean, Toulouse, France. 6 : CSIRO, Hobart, Tas, Australia. 7 : IFREMER, Nantes, France. 8 : IPSL LSCE, Gif Sur Yvette, France. 9 : CLS, Ramonville St Agne, France. 10 : Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. 11 : Inst Marine Res, N-5024 Bergen, Norway. |
||||||||
Source | Oceanography (1042-8275) (The Oceanography Society), 2009-09 , Vol. 22 , N. 3 , P. 206-215 | ||||||||
WOS© Times Cited | 47 | ||||||||
Abstract | Monitoring and predicting the biogeochemical state of the ocean and marine ecosystems is an important application of operational oceanography that needs to be expanded. The accurate depiction of the ocean's physical environment enabled by Global Ocean Data Assimilation Experiment (GODAE) systems, in both real-time and reanalysis modes, is already valuable for various for various applications, such as the fishing industry and fisheries management. However, most of these applications require accurate estimates of both physical and biogeochemical ocean conditions over a wide range of spatial and temporal scales. In this paper, we discuss recent developments that enable coupling new biogeochemical models and assimilation components with the existing GODAE systems, and we examine the potential of such systems in several areas of interest: phytoplankton biomass monitoring in the open ocean, ocean carbon cycle monitoring and assessment, marine ecosystem management at seasonal and longer time scales, and downscaling in coastal areas. A number of key requirements and research priorities are then identified for the future, GODAE systems will need to improve their representation of physical variables that are not yet considered essential, such as upper-ocean vertical fluxes that are critically important to biological activity. Further, the observing systems will need to be expanded in terms of in situ platforms (with intensified deployments of sensors for O-2 and chlorophyll, and inclusion of new sensors for nutrients, zooplankton, micronekton biomass, and others), satellite missions (e.g., hyperspectral instruments for ocean color, lidar systems for mixed-layer depths, and wide-swath altimeters for coastal sea level), and improved methods to assimilate these new measurements. | ||||||||
Full Text |
|