Influence of ploidy and metal-metal interactions on the accumulation of Ag, Cd, and Cu in oysters Crassostrea gigas thunberg

The present study was designed to compare the response to contaminants in diploid with triploid specimens of the oyster Crassostrea gigas. The reproduction investment in bivalve molluscs has priority on somatic growth. Thus, genetic sterilization by triploidy induction enables the energy flux to be directed toward somatic growth and glucide storage. Bioaccumulation was examined for Ag (10 mug/L), Cd (10 mug/L), and Cu (30 mug/L) to determine if the response to metals follows similar patterns in diploid (2n) and triploid (3n) groups. The effect of ploidy was also evaluated as a function of dry weight of soft tissue and condition index. Moreover, the reciprocal influence of these metals on their incorporation was studied. The results showed that the major factor governing the degree of metal bioaccumulation by oysters is the nature of the metal introduced in the experimental medium. Thus, the uptake of Cd is proportionally more important than in the case of Ag and even more in Cu. For Cu-treated samples, the influence of ploidy on weight and metal body burden (and Cu concentration) was not significant, whereas for Ag and Cd, significant differences according to genetic type were evidenced by higher tissue weight and lower concentrations in triploid than diploid specimens. Metal-metal interactions study especially showed a reciprocal antagonism between Ag and Cu.

Keyword(s)

Oyster culture, Metal bioaccaumulation, Polyploidy

Full Text

FilePagesSizeAccess
457.pdf
28218 Ko
How to cite
Amiard Jean-Claude, Perrein Ettajani H, Gerard Andre, Baud Jean-Pierre, Amiard Triquet C (2005). Influence of ploidy and metal-metal interactions on the accumulation of Ag, Cd, and Cu in oysters Crassostrea gigas thunberg. Archives of Environmental Contamination and Toxicology. 48 (1). 68-74. https://doi.org/10.1007/s00244-003-0180-8, https://archimer.ifremer.fr/doc/00000/791/

Copy this text