An in vitro study of two GAG-like marine polysaccharides incorporated into injectable hydrogels for bone and cartilage tissue engineering

Natural polysaccharides are attractive compounds with which to build scaffolds for bone and cartilage tissue engineering. Here we tested two non-standard ones, HE800 and GY785, for the two-dimensional (2-D) and three-dimensional (3-D) culture of osteoblasts (MC3T3-E1) and chondrocytes (C28/I2). These two glycosaminoglycan-like marine exopolysaccharides were incorporated into an injectable silylated hydroxypropylmethylcellulose-based hydrogel (Si-HPMC) that has already shown its suitability for bone and cartilage tissue engineering. Results showed that, similarly to hyaluronic acid (HA) (the control), HE800 and GY785 significantly improved the mechanical properties of the Si-HPMC hydrogel and induced the attachment of MC3T3-E1 and C28/I2 cells when these were cultured on top of the scaffolds. Si-HPMC hydrogel containing 0.67% HE800 exhibited the highest compressive modulus (11 kPa) and allowed the best cell dispersion, especially of MC3T3-E1 cells. However, these cells did not survive when cultured in 3-D within hydrogels containing HE800, in contrast to C28/I2 cells. The latter proliferated in the microenvironment or concentrically depending on the nature of the hydrogel. Among all the constructs tested the Si-HPMC hydrogels containing 0.34% HE800 or 0.67% GY785 or 0.67% HA presented the most interesting features for cartilage tissue engineering applications, since they offered the highest compressive modulus (9.5–11 kPa) while supporting the proliferation of chondrocytes.

Keyword(s)

Glycosaminoglycan, Hydrogel, Polysaccharide, Bone and cartilage tissue engineering, In vitro test

Full Text

FilePagesSizeAccess
Author's final draft
23732 Ko
Publisher's official version
121 Mo
How to cite
Rederstorff Emilie, Weiss Pierre, Sourice S., Pilet P., Xie F., Sinquin Corinne, Colliec-Jouault Sylvia, Guicheux Jerome, Laib S. (2011). An in vitro study of two GAG-like marine polysaccharides incorporated into injectable hydrogels for bone and cartilage tissue engineering. Acta Biomaterialia. 7 (5). 2119-2130. https://doi.org/10.1016/j.actbio.2011.01.025, https://archimer.ifremer.fr/doc/00030/14090/

Copy this text