Implications of Extreme Life Span in Clonal Organisms: Millenary Clones in Meadows of the Threatened Seagrass Posidonia oceanica

Type Article
Date 2012-02
Language English
Author(s) Arnaud-Haond SophieORCID1, 2, Duarte Carlos M.3, 4, Diaz-Almela Elena3, Marba Nuria3, Sintes Tomas5, Serrao Ester A.2
Affiliation(s) 1 : IFREMER,,DEEP Ctr Brest, Plouzane, France.
2 : Univ Algarve, Lab BEE, CCMAR, Faro, Portugal.
3 : IMEDEA, CSIC UIB, Dept Global Change Res, Mallorca, Spain.
4 : Univ Western Australia, Oceans Inst, Nedlands, WA 6009, Australia.
5 : IFISC, CSIC UIB, Inst Fis Interdisciplinar & Sistemas Complejos, Mallorca, Spain.
Source Plos One (1932-6203) (Public Library Science), 2012-02 , Vol. 7 , N. 2 , P. -
DOI 10.1371/journal.pone.0030454
WOS© Times Cited 100
Abstract The maximum size and age that clonal organisms can reach remains poorly known, although we do know that the largest natural clones can extend over hundreds or thousands of metres and potentially live for centuries. We made a review of findings to date, which reveal that the maximum clone age and size estimates reported in the literature are typically limited by the scale of sampling, and may grossly underestimate the maximum age and size of clonal organisms. A case study presented here shows the occurrence of clones of slow-growing marine angiosperm Posidonia oceanica at spatial scales ranging from metres to hundreds of kilometres, using microsatellites on 1544 sampling units from a total of 40 locations across the Mediterranean Sea. This analysis revealed the presence, with a prevalence of 3.5 to 8.9%, of very large clones spreading over one to several (up to 15) kilometres at the different locations. Using estimates from field studies and models of the clonal growth of P. oceanica, we estimated these large clones to be hundreds to thousands of years old, suggesting the evolution of general purpose genotypes with large phenotypic plasticity in this species. These results, obtained combining genetics, demography and model-based calculations, question present knowledge and understanding of the spreading capacity and life span of plant clones. These findings call for further research on these life history traits associated with clonality, considering their possible ecological and evolutionary implications.
Full Text
File Pages Size Access
16283.pdf 10 454 KB Open access
Top of the page