Integrated survey of elemental stoichiometry (C, N, P) from the western to eastern Mediterranean Sea

Type Article
Date 2011
Language English
Author(s) Pujo-Pay M.1, 2, Conan Pascal1, 2, Oriol L.1, 2, Cornet-Barthaux V.3, Falco C.4, Ghiglione J. -F.1, 2, Goyet C.4, Moutin T.3, Prieur L.5, 6
Affiliation(s) 1 : Observatoire Oceanolog, INSU CNRS UMR 7621, Lab Oceanog Microbienne, F-66651 Banyuls Sur Mer, France.
2 : Univ Paris 06, Observatoire Oceanolog, Lab Oceanog Microbienne, UPMC UMR 7621, F-66651 Banyuls Sur Mer, France.
3 : CNRS IRD Univ Mediterranee, LOPB, Ctr Oceanol Marseille, F-13288 Marseille 09, France.
4 : UPVD, IMAGES, EA 4218, F-66860 Perpignan, France.
5 : Observatoire Oceanolog, INSU CNRS UMR 7093, Lab Oceanog Villefranche, F-06234 Villefranche Sur Mer, France.
6 : Univ Paris 06, Lab Oceanog Villefranche, UPMC, Observatoire Oceanolog,UMR 7093, F-06230 Villefranche Sur Mer, France.
Source Biogeosciences (1726-4170) (Copernicus Gesellschaft Mbh), 2011 , Vol. 8 , N. 4 , P. 883-899
DOI 10.5194/bg-8-883-2011
WOS© Times Cited 136
Abstract This paper provides an extensive vertical and longitudinal description of the biogeochemistry along an East-West transect of 3000 km across the Mediterranean Sea during summer 2008 (BOUM cruise). During this period of strong stratification, the distribution of nutrients, particulate and dissolved organic carbon (DOC), nitrogen (DON) and phosphorus (DOP) were examined to produce a detailed spatial and vertically extended description of the elemental stoichiometry of the Mediterranean Sea. Surface waters were depleted in nutrients and the thickness of this depleted layer increased towards the East from about 10 m in the Gulf of Lion to more than 100 m in the Levantine basin, with the phosphacline deepening to a greater extent than that for corresponding nitracline and thermocline depths. We used the minimum oxygen concentration through the water column in combination with 2 fixed concentrations of dissolved oxygen to distinguish an intermediate layer (Mineralization Layer; ML) from surface (Biogenic Layer; BL), and deep layers (DL). Whilst each layer was represented by different water masses, this approach allowed us to propose a schematic box-plot representation of the biogeochemical functioning of the two Mediterranean basins. Despite the increasing oligotrophic nature and the degree of P-depletion along the West to East gradient strong similarities were encountered between eastern and western ecosystems. Within the BL, the C:N:P ratios in all pools largely exceeded the Redfield ratios, but surprisingly, the nitrate vs. phosphate ratios in the ML and DL tended towards the canonical Redfield values in both basins. A change in particulate matter composition has been identified by a C increase relative to N and P along the whole water column in the western basin and between BL and ML in the eastern one. Our data showed a noticeable stability of the DOC: DON ratio (12-13) throughout the Mediterranean Sea. This is in good agreement with a P-limitation of microbial activities but in contradiction of the accepted concept that N is recycled faster than C. The western and eastern basins had similar or close biological functioning. Differences come from variability in the allochtonous nutrient sources in terms of quantity and quality, and to the specific hydrodynamic features of the Mediterranean basins.
Full Text
File Pages Size Access
Publisher's official version 17 2 MB Open access
Top of the page

How to cite 

Pujo-Pay M., Conan Pascal, Oriol L., Cornet-Barthaux V., Falco C., Ghiglione J. -F., Goyet C., Moutin T., Prieur L. (2011). Integrated survey of elemental stoichiometry (C, N, P) from the western to eastern Mediterranean Sea. Biogeosciences, 8(4), 883-899. Publisher's official version : https://doi.org/10.5194/bg-8-883-2011 , Open Access version : https://archimer.ifremer.fr/doc/00133/24396/