Formation and preservation of greigite (Fe3S4) in sediments from the Santa Barbara Basin: Implications for paleoenvironmental changes during the past 35 ka
Diagenetic processes are known to modify sedimentary records, but they can also reveal important paleoenvironmental changes. Here we investigate variations in sedimentary iron diagenesis and depositional environments for the last 35 ka by analyzing the rock magnetic and geochemical properties of two sediment cores collected in the Santa Barbara Basin (California). In organic-rich sediments, early diagenesis often leads to partial dissolution of detrital iron oxides and stepwise formation of authigenic pyrite (FeS2). The pyritization process takes place following several geochemical pathways, sometimes involving intermediate iron sulfide species such as greigite (Fe3S4). Sedimentary conditions in the basin appear to have recurrently favored preservation of greigite (identified by its magnetic properties) and inhibited its complete transformation into pyrite. The Holocene interval contains a series of centimeter-thick greigite-bearing layers that are associated with large flood deposits, which are known in the basin as "gray layers.'' We propose that greigite preservation was enabled in these sediments by their relative enrichment in reactive iron over organic matter and/or hydrogen sulfide (because of their high ratio of terrigenous over organic material), which limited pyritization reactions. Within the glacial deposits, formation and preservation of meter-thick greigite layers occurred in terrigenous-rich and organic-poor sedimentary layers and is proposed to result from a similar diagenetic process to that in the Holocene greigite-bearing layers (dominance of reactive iron over organic matter and/or HS-). The terrigenous enrichments in the glacial greigite-bearing layers are probably related to climatic or sea level changes because they occur at times of massive iceberg releases in the North Atlantic, the so-called Heinrich events.
Blanchet C. L., Thouveny N., Vidal L. (2009). Formation and preservation of greigite (Fe3S4) in sediments from the Santa Barbara Basin: Implications for paleoenvironmental changes during the past 35 ka. Paleoceanography. 24 (PA2224). 1-15. https://doi.org/10.1029/2008PA001719, https://archimer.ifremer.fr/doc/00218/32936/